Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sqdeccom12 Structured version   Visualization version   GIF version

Theorem sqdeccom12 38157
Description: The square of a number in terms of its digits switched. (Contributed by Steven Nguyen, 3-Jan-2023.)
Hypotheses
Ref Expression
sqdeccom12.a 𝐴 ∈ ℕ0
sqdeccom12.b 𝐵 ∈ ℕ0
Assertion
Ref Expression
sqdeccom12 ((𝐴𝐵 · 𝐴𝐵) − (𝐵𝐴 · 𝐵𝐴)) = (99 · ((𝐴 · 𝐴) − (𝐵 · 𝐵)))

Proof of Theorem sqdeccom12
StepHypRef Expression
1 sqdeccom12.a . . . . . . . . 9 𝐴 ∈ ℕ0
21, 1nn0mulcli 11682 . . . . . . . 8 (𝐴 · 𝐴) ∈ ℕ0
3 0nn0 11659 . . . . . . . 8 0 ∈ ℕ0
42, 3deccl 11860 . . . . . . 7 (𝐴 · 𝐴)0 ∈ ℕ0
54, 3deccl 11860 . . . . . 6 (𝐴 · 𝐴)00 ∈ ℕ0
65nn0cni 11655 . . . . 5 (𝐴 · 𝐴)00 ∈ ℂ
7 sqdeccom12.b . . . . . . . . 9 𝐵 ∈ ℕ0
87, 7nn0mulcli 11682 . . . . . . . 8 (𝐵 · 𝐵) ∈ ℕ0
98, 3deccl 11860 . . . . . . 7 (𝐵 · 𝐵)0 ∈ ℕ0
109, 3deccl 11860 . . . . . 6 (𝐵 · 𝐵)00 ∈ ℕ0
1110nn0cni 11655 . . . . 5 (𝐵 · 𝐵)00 ∈ ℂ
121nn0cni 11655 . . . . . 6 𝐴 ∈ ℂ
1312, 12mulcli 10384 . . . . 5 (𝐴 · 𝐴) ∈ ℂ
147nn0cni 11655 . . . . . 6 𝐵 ∈ ℂ
1514, 14mulcli 10384 . . . . 5 (𝐵 · 𝐵) ∈ ℂ
16 subadd4 10667 . . . . 5 ((((𝐴 · 𝐴)00 ∈ ℂ ∧ (𝐵 · 𝐵)00 ∈ ℂ) ∧ ((𝐴 · 𝐴) ∈ ℂ ∧ (𝐵 · 𝐵) ∈ ℂ)) → (((𝐴 · 𝐴)00 − (𝐵 · 𝐵)00) − ((𝐴 · 𝐴) − (𝐵 · 𝐵))) = (((𝐴 · 𝐴)00 + (𝐵 · 𝐵)) − ((𝐵 · 𝐵)00 + (𝐴 · 𝐴))))
176, 11, 13, 15, 16mp4an 683 . . . 4 (((𝐴 · 𝐴)00 − (𝐵 · 𝐵)00) − ((𝐴 · 𝐴) − (𝐵 · 𝐵))) = (((𝐴 · 𝐴)00 + (𝐵 · 𝐵)) − ((𝐵 · 𝐵)00 + (𝐴 · 𝐴)))
18 eqid 2778 . . . . . 6 (𝐴 · 𝐴)00 = (𝐴 · 𝐴)00
1915addid2i 10564 . . . . . 6 (0 + (𝐵 · 𝐵)) = (𝐵 · 𝐵)
204, 3, 8, 18, 19decaddi 11906 . . . . 5 ((𝐴 · 𝐴)00 + (𝐵 · 𝐵)) = (𝐴 · 𝐴)0(𝐵 · 𝐵)
21 eqid 2778 . . . . . 6 (𝐵 · 𝐵)00 = (𝐵 · 𝐵)00
2213addid2i 10564 . . . . . 6 (0 + (𝐴 · 𝐴)) = (𝐴 · 𝐴)
239, 3, 2, 21, 22decaddi 11906 . . . . 5 ((𝐵 · 𝐵)00 + (𝐴 · 𝐴)) = (𝐵 · 𝐵)0(𝐴 · 𝐴)
2420, 23oveq12i 6934 . . . 4 (((𝐴 · 𝐴)00 + (𝐵 · 𝐵)) − ((𝐵 · 𝐵)00 + (𝐴 · 𝐴))) = ((𝐴 · 𝐴)0(𝐵 · 𝐵) − (𝐵 · 𝐵)0(𝐴 · 𝐴))
2517, 24eqtr2i 2803 . . 3 ((𝐴 · 𝐴)0(𝐵 · 𝐵) − (𝐵 · 𝐵)0(𝐴 · 𝐴)) = (((𝐴 · 𝐴)00 − (𝐵 · 𝐵)00) − ((𝐴 · 𝐴) − (𝐵 · 𝐵)))
26 eqid 2778 . . . . 5 ((𝐵 · 𝐵) + (𝐴 · 𝐴))(((𝐴 · 𝐵) + (𝐵 · 𝐴)) + 0)((𝐴 · 𝐴) + (𝐵 · 𝐵)) = ((𝐵 · 𝐵) + (𝐴 · 𝐴))(((𝐴 · 𝐵) + (𝐵 · 𝐴)) + 0)((𝐴 · 𝐴) + (𝐵 · 𝐵))
277, 1nn0mulcli 11682 . . . . . . . 8 (𝐵 · 𝐴) ∈ ℕ0
281, 7, 27numcl 11858 . . . . . . 7 ((𝐴 · 𝐵) + (𝐵 · 𝐴)) ∈ ℕ0
292, 28deccl 11860 . . . . . 6 (𝐴 · 𝐴)((𝐴 · 𝐵) + (𝐵 · 𝐴)) ∈ ℕ0
30 eqid 2778 . . . . . 6 (𝐴 · 𝐴)((𝐴 · 𝐵) + (𝐵 · 𝐴))(𝐵 · 𝐵) = (𝐴 · 𝐴)((𝐴 · 𝐵) + (𝐵 · 𝐴))(𝐵 · 𝐵)
31 eqid 2778 . . . . . 6 (𝐵 · 𝐵)0(𝐴 · 𝐴) = (𝐵 · 𝐵)0(𝐴 · 𝐴)
32 eqid 2778 . . . . . . 7 (𝐴 · 𝐴)((𝐴 · 𝐵) + (𝐵 · 𝐴)) = (𝐴 · 𝐴)((𝐴 · 𝐵) + (𝐵 · 𝐴))
33 eqid 2778 . . . . . . 7 (𝐵 · 𝐵)0 = (𝐵 · 𝐵)0
3413, 15addcomi 10567 . . . . . . 7 ((𝐴 · 𝐴) + (𝐵 · 𝐵)) = ((𝐵 · 𝐵) + (𝐴 · 𝐴))
35 eqid 2778 . . . . . . 7 (((𝐴 · 𝐵) + (𝐵 · 𝐴)) + 0) = (((𝐴 · 𝐵) + (𝐵 · 𝐴)) + 0)
362, 28, 8, 3, 32, 33, 34, 35decadd 11900 . . . . . 6 ((𝐴 · 𝐴)((𝐴 · 𝐵) + (𝐵 · 𝐴)) + (𝐵 · 𝐵)0) = ((𝐵 · 𝐵) + (𝐴 · 𝐴))(((𝐴 · 𝐵) + (𝐵 · 𝐴)) + 0)
3715, 13addcomi 10567 . . . . . 6 ((𝐵 · 𝐵) + (𝐴 · 𝐴)) = ((𝐴 · 𝐴) + (𝐵 · 𝐵))
3829, 8, 9, 2, 30, 31, 36, 37decadd 11900 . . . . 5 ((𝐴 · 𝐴)((𝐴 · 𝐵) + (𝐵 · 𝐴))(𝐵 · 𝐵) + (𝐵 · 𝐵)0(𝐴 · 𝐴)) = ((𝐵 · 𝐵) + (𝐴 · 𝐴))(((𝐴 · 𝐵) + (𝐵 · 𝐴)) + 0)((𝐴 · 𝐴) + (𝐵 · 𝐵))
398, 28deccl 11860 . . . . . 6 (𝐵 · 𝐵)((𝐴 · 𝐵) + (𝐵 · 𝐴)) ∈ ℕ0
40 eqid 2778 . . . . . 6 (𝐵 · 𝐵)((𝐴 · 𝐵) + (𝐵 · 𝐴))(𝐴 · 𝐴) = (𝐵 · 𝐵)((𝐴 · 𝐵) + (𝐵 · 𝐴))(𝐴 · 𝐴)
41 eqid 2778 . . . . . 6 (𝐴 · 𝐴)0(𝐵 · 𝐵) = (𝐴 · 𝐴)0(𝐵 · 𝐵)
42 eqid 2778 . . . . . . 7 (𝐵 · 𝐵)((𝐴 · 𝐵) + (𝐵 · 𝐴)) = (𝐵 · 𝐵)((𝐴 · 𝐵) + (𝐵 · 𝐴))
43 eqid 2778 . . . . . . 7 (𝐴 · 𝐴)0 = (𝐴 · 𝐴)0
44 eqid 2778 . . . . . . 7 ((𝐵 · 𝐵) + (𝐴 · 𝐴)) = ((𝐵 · 𝐵) + (𝐴 · 𝐴))
458, 28, 2, 3, 42, 43, 44, 35decadd 11900 . . . . . 6 ((𝐵 · 𝐵)((𝐴 · 𝐵) + (𝐵 · 𝐴)) + (𝐴 · 𝐴)0) = ((𝐵 · 𝐵) + (𝐴 · 𝐴))(((𝐴 · 𝐵) + (𝐵 · 𝐴)) + 0)
46 eqid 2778 . . . . . 6 ((𝐴 · 𝐴) + (𝐵 · 𝐵)) = ((𝐴 · 𝐴) + (𝐵 · 𝐵))
4739, 2, 4, 8, 40, 41, 45, 46decadd 11900 . . . . 5 ((𝐵 · 𝐵)((𝐴 · 𝐵) + (𝐵 · 𝐴))(𝐴 · 𝐴) + (𝐴 · 𝐴)0(𝐵 · 𝐵)) = ((𝐵 · 𝐵) + (𝐴 · 𝐴))(((𝐴 · 𝐵) + (𝐵 · 𝐴)) + 0)((𝐴 · 𝐴) + (𝐵 · 𝐵))
4826, 38, 473eqtr4i 2812 . . . 4 ((𝐴 · 𝐴)((𝐴 · 𝐵) + (𝐵 · 𝐴))(𝐵 · 𝐵) + (𝐵 · 𝐵)0(𝐴 · 𝐴)) = ((𝐵 · 𝐵)((𝐴 · 𝐵) + (𝐵 · 𝐴))(𝐴 · 𝐴) + (𝐴 · 𝐴)0(𝐵 · 𝐵))
4929, 8deccl 11860 . . . . . 6 (𝐴 · 𝐴)((𝐴 · 𝐵) + (𝐵 · 𝐴))(𝐵 · 𝐵) ∈ ℕ0
5049nn0cni 11655 . . . . 5 (𝐴 · 𝐴)((𝐴 · 𝐵) + (𝐵 · 𝐴))(𝐵 · 𝐵) ∈ ℂ
519, 2deccl 11860 . . . . . 6 (𝐵 · 𝐵)0(𝐴 · 𝐴) ∈ ℕ0
5251nn0cni 11655 . . . . 5 (𝐵 · 𝐵)0(𝐴 · 𝐴) ∈ ℂ
5339, 2deccl 11860 . . . . . 6 (𝐵 · 𝐵)((𝐴 · 𝐵) + (𝐵 · 𝐴))(𝐴 · 𝐴) ∈ ℕ0
5453nn0cni 11655 . . . . 5 (𝐵 · 𝐵)((𝐴 · 𝐵) + (𝐵 · 𝐴))(𝐴 · 𝐴) ∈ ℂ
554, 8deccl 11860 . . . . . 6 (𝐴 · 𝐴)0(𝐵 · 𝐵) ∈ ℕ0
5655nn0cni 11655 . . . . 5 (𝐴 · 𝐴)0(𝐵 · 𝐵) ∈ ℂ
57 addsubeq4com 38148 . . . . 5 ((((𝐴 · 𝐴)((𝐴 · 𝐵) + (𝐵 · 𝐴))(𝐵 · 𝐵) ∈ ℂ ∧ (𝐵 · 𝐵)0(𝐴 · 𝐴) ∈ ℂ) ∧ ((𝐵 · 𝐵)((𝐴 · 𝐵) + (𝐵 · 𝐴))(𝐴 · 𝐴) ∈ ℂ ∧ (𝐴 · 𝐴)0(𝐵 · 𝐵) ∈ ℂ)) → (((𝐴 · 𝐴)((𝐴 · 𝐵) + (𝐵 · 𝐴))(𝐵 · 𝐵) + (𝐵 · 𝐵)0(𝐴 · 𝐴)) = ((𝐵 · 𝐵)((𝐴 · 𝐵) + (𝐵 · 𝐴))(𝐴 · 𝐴) + (𝐴 · 𝐴)0(𝐵 · 𝐵)) ↔ ((𝐴 · 𝐴)((𝐴 · 𝐵) + (𝐵 · 𝐴))(𝐵 · 𝐵) − (𝐵 · 𝐵)((𝐴 · 𝐵) + (𝐵 · 𝐴))(𝐴 · 𝐴)) = ((𝐴 · 𝐴)0(𝐵 · 𝐵) − (𝐵 · 𝐵)0(𝐴 · 𝐴))))
5850, 52, 54, 56, 57mp4an 683 . . . 4 (((𝐴 · 𝐴)((𝐴 · 𝐵) + (𝐵 · 𝐴))(𝐵 · 𝐵) + (𝐵 · 𝐵)0(𝐴 · 𝐴)) = ((𝐵 · 𝐵)((𝐴 · 𝐵) + (𝐵 · 𝐴))(𝐴 · 𝐴) + (𝐴 · 𝐴)0(𝐵 · 𝐵)) ↔ ((𝐴 · 𝐴)((𝐴 · 𝐵) + (𝐵 · 𝐴))(𝐵 · 𝐵) − (𝐵 · 𝐵)((𝐴 · 𝐵) + (𝐵 · 𝐴))(𝐴 · 𝐴)) = ((𝐴 · 𝐴)0(𝐵 · 𝐵) − (𝐵 · 𝐵)0(𝐴 · 𝐴)))
5948, 58mpbi 222 . . 3 ((𝐴 · 𝐴)((𝐴 · 𝐵) + (𝐵 · 𝐴))(𝐵 · 𝐵) − (𝐵 · 𝐵)((𝐴 · 𝐵) + (𝐵 · 𝐴))(𝐴 · 𝐴)) = ((𝐴 · 𝐴)0(𝐵 · 𝐵) − (𝐵 · 𝐵)0(𝐴 · 𝐴))
60 10nn0 11863 . . . . . . 7 10 ∈ ℕ0
6160, 3deccl 11860 . . . . . 6 100 ∈ ℕ0
6261nn0cni 11655 . . . . 5 100 ∈ ℂ
63 ax-1cn 10330 . . . . 5 1 ∈ ℂ
6413, 15subcli 10699 . . . . 5 ((𝐴 · 𝐴) − (𝐵 · 𝐵)) ∈ ℂ
6562, 63, 64subdiri 10825 . . . 4 ((100 − 1) · ((𝐴 · 𝐴) − (𝐵 · 𝐵))) = ((100 · ((𝐴 · 𝐴) − (𝐵 · 𝐵))) − (1 · ((𝐴 · 𝐴) − (𝐵 · 𝐵))))
6662, 13, 15subdii 10824 . . . . . 6 (100 · ((𝐴 · 𝐴) − (𝐵 · 𝐵))) = ((100 · (𝐴 · 𝐴)) − (100 · (𝐵 · 𝐵)))
67 eqid 2778 . . . . . . . 8 100 = 100
682dec0u 11867 . . . . . . . 8 (10 · (𝐴 · 𝐴)) = (𝐴 · 𝐴)0
6913mul02i 10565 . . . . . . . 8 (0 · (𝐴 · 𝐴)) = 0
702, 60, 3, 67, 68, 69decmul1 11910 . . . . . . 7 (100 · (𝐴 · 𝐴)) = (𝐴 · 𝐴)00
718dec0u 11867 . . . . . . . 8 (10 · (𝐵 · 𝐵)) = (𝐵 · 𝐵)0
7215mul02i 10565 . . . . . . . 8 (0 · (𝐵 · 𝐵)) = 0
738, 60, 3, 67, 71, 72decmul1 11910 . . . . . . 7 (100 · (𝐵 · 𝐵)) = (𝐵 · 𝐵)00
7470, 73oveq12i 6934 . . . . . 6 ((100 · (𝐴 · 𝐴)) − (100 · (𝐵 · 𝐵))) = ((𝐴 · 𝐴)00 − (𝐵 · 𝐵)00)
7566, 74eqtri 2802 . . . . 5 (100 · ((𝐴 · 𝐴) − (𝐵 · 𝐵))) = ((𝐴 · 𝐴)00 − (𝐵 · 𝐵)00)
7664mulid2i 10382 . . . . 5 (1 · ((𝐴 · 𝐴) − (𝐵 · 𝐵))) = ((𝐴 · 𝐴) − (𝐵 · 𝐵))
7775, 76oveq12i 6934 . . . 4 ((100 · ((𝐴 · 𝐴) − (𝐵 · 𝐵))) − (1 · ((𝐴 · 𝐴) − (𝐵 · 𝐵)))) = (((𝐴 · 𝐴)00 − (𝐵 · 𝐵)00) − ((𝐴 · 𝐴) − (𝐵 · 𝐵)))
7865, 77eqtri 2802 . . 3 ((100 − 1) · ((𝐴 · 𝐴) − (𝐵 · 𝐵))) = (((𝐴 · 𝐴)00 − (𝐵 · 𝐵)00) − ((𝐴 · 𝐴) − (𝐵 · 𝐵)))
7925, 59, 783eqtr4i 2812 . 2 ((𝐴 · 𝐴)((𝐴 · 𝐵) + (𝐵 · 𝐴))(𝐵 · 𝐵) − (𝐵 · 𝐵)((𝐴 · 𝐵) + (𝐵 · 𝐴))(𝐴 · 𝐴)) = ((100 − 1) · ((𝐴 · 𝐴) − (𝐵 · 𝐵)))
80 eqid 2778 . . . 4 (𝐴 · 𝐴) = (𝐴 · 𝐴)
81 eqid 2778 . . . 4 ((𝐴 · 𝐵) + (𝐵 · 𝐴)) = ((𝐴 · 𝐵) + (𝐵 · 𝐴))
82 eqid 2778 . . . 4 (𝐵 · 𝐵) = (𝐵 · 𝐵)
831, 7, 1, 7, 80, 81, 82decpmulnc 38155 . . 3 (𝐴𝐵 · 𝐴𝐵) = (𝐴 · 𝐴)((𝐴 · 𝐵) + (𝐵 · 𝐴))(𝐵 · 𝐵)
8414, 12mulcli 10384 . . . . 5 (𝐵 · 𝐴) ∈ ℂ
8512, 14mulcli 10384 . . . . 5 (𝐴 · 𝐵) ∈ ℂ
8684, 85addcomi 10567 . . . 4 ((𝐵 · 𝐴) + (𝐴 · 𝐵)) = ((𝐴 · 𝐵) + (𝐵 · 𝐴))
877, 1, 7, 1, 82, 86, 80decpmulnc 38155 . . 3 (𝐵𝐴 · 𝐵𝐴) = (𝐵 · 𝐵)((𝐴 · 𝐵) + (𝐵 · 𝐴))(𝐴 · 𝐴)
8883, 87oveq12i 6934 . 2 ((𝐴𝐵 · 𝐴𝐵) − (𝐵𝐴 · 𝐵𝐴)) = ((𝐴 · 𝐴)((𝐴 · 𝐵) + (𝐵 · 𝐴))(𝐵 · 𝐵) − (𝐵 · 𝐵)((𝐴 · 𝐵) + (𝐵 · 𝐴))(𝐴 · 𝐴))
89 9nn0 11668 . . . . . 6 9 ∈ ℕ0
9089, 89deccl 11860 . . . . 5 99 ∈ ℕ0
9190nn0cni 11655 . . . 4 99 ∈ ℂ
92 9p1e10 11847 . . . . . 6 (9 + 1) = 10
93 eqid 2778 . . . . . 6 99 = 99
9489, 92, 93decsucc 11887 . . . . 5 (99 + 1) = 100
9591, 63, 94addcomli 10568 . . . 4 (1 + 99) = 100
9663, 91, 95mvlladdi 10641 . . 3 99 = (100 − 1)
9796oveq1i 6932 . 2 (99 · ((𝐴 · 𝐴) − (𝐵 · 𝐵))) = ((100 − 1) · ((𝐴 · 𝐴) − (𝐵 · 𝐵)))
9879, 88, 973eqtr4i 2812 1 ((𝐴𝐵 · 𝐴𝐵) − (𝐵𝐴 · 𝐵𝐴)) = (99 · ((𝐴 · 𝐴) − (𝐵 · 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wb 198   = wceq 1601  wcel 2107  (class class class)co 6922  cc 10270  0cc0 10272  1c1 10273   + caddc 10275   · cmul 10277  cmin 10606  9c9 11437  0cn0 11642  cdc 11845
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4672  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-om 7344  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-er 8026  df-en 8242  df-dom 8243  df-sdom 8244  df-pnf 10413  df-mnf 10414  df-ltxr 10416  df-sub 10608  df-nn 11375  df-2 11438  df-3 11439  df-4 11440  df-5 11441  df-6 11442  df-7 11443  df-8 11444  df-9 11445  df-n0 11643  df-dec 11846
This theorem is referenced by:  sq3deccom12  38158
  Copyright terms: Public domain W3C validator