Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sqdeccom12 Structured version   Visualization version   GIF version

Theorem sqdeccom12 42407
Description: The square of a number in terms of its digits switched. (Contributed by Steven Nguyen, 3-Jan-2023.)
Hypotheses
Ref Expression
sqdeccom12.a 𝐴 ∈ ℕ0
sqdeccom12.b 𝐵 ∈ ℕ0
Assertion
Ref Expression
sqdeccom12 ((𝐴𝐵 · 𝐴𝐵) − (𝐵𝐴 · 𝐵𝐴)) = (99 · ((𝐴 · 𝐴) − (𝐵 · 𝐵)))

Proof of Theorem sqdeccom12
StepHypRef Expression
1 sqdeccom12.a . . . . . . . . 9 𝐴 ∈ ℕ0
21, 1nn0mulcli 12426 . . . . . . . 8 (𝐴 · 𝐴) ∈ ℕ0
3 0nn0 12403 . . . . . . . 8 0 ∈ ℕ0
42, 3deccl 12609 . . . . . . 7 (𝐴 · 𝐴)0 ∈ ℕ0
54, 3deccl 12609 . . . . . 6 (𝐴 · 𝐴)00 ∈ ℕ0
65nn0cni 12400 . . . . 5 (𝐴 · 𝐴)00 ∈ ℂ
7 sqdeccom12.b . . . . . . . . 9 𝐵 ∈ ℕ0
87, 7nn0mulcli 12426 . . . . . . . 8 (𝐵 · 𝐵) ∈ ℕ0
98, 3deccl 12609 . . . . . . 7 (𝐵 · 𝐵)0 ∈ ℕ0
109, 3deccl 12609 . . . . . 6 (𝐵 · 𝐵)00 ∈ ℕ0
1110nn0cni 12400 . . . . 5 (𝐵 · 𝐵)00 ∈ ℂ
121nn0cni 12400 . . . . . 6 𝐴 ∈ ℂ
1312, 12mulcli 11126 . . . . 5 (𝐴 · 𝐴) ∈ ℂ
147nn0cni 12400 . . . . . 6 𝐵 ∈ ℂ
1514, 14mulcli 11126 . . . . 5 (𝐵 · 𝐵) ∈ ℂ
16 subadd4 11412 . . . . 5 ((((𝐴 · 𝐴)00 ∈ ℂ ∧ (𝐵 · 𝐵)00 ∈ ℂ) ∧ ((𝐴 · 𝐴) ∈ ℂ ∧ (𝐵 · 𝐵) ∈ ℂ)) → (((𝐴 · 𝐴)00 − (𝐵 · 𝐵)00) − ((𝐴 · 𝐴) − (𝐵 · 𝐵))) = (((𝐴 · 𝐴)00 + (𝐵 · 𝐵)) − ((𝐵 · 𝐵)00 + (𝐴 · 𝐴))))
176, 11, 13, 15, 16mp4an 693 . . . 4 (((𝐴 · 𝐴)00 − (𝐵 · 𝐵)00) − ((𝐴 · 𝐴) − (𝐵 · 𝐵))) = (((𝐴 · 𝐴)00 + (𝐵 · 𝐵)) − ((𝐵 · 𝐵)00 + (𝐴 · 𝐴)))
18 eqid 2733 . . . . . 6 (𝐴 · 𝐴)00 = (𝐴 · 𝐴)00
1915addlidi 11308 . . . . . 6 (0 + (𝐵 · 𝐵)) = (𝐵 · 𝐵)
204, 3, 8, 18, 19decaddi 12654 . . . . 5 ((𝐴 · 𝐴)00 + (𝐵 · 𝐵)) = (𝐴 · 𝐴)0(𝐵 · 𝐵)
21 eqid 2733 . . . . . 6 (𝐵 · 𝐵)00 = (𝐵 · 𝐵)00
2213addlidi 11308 . . . . . 6 (0 + (𝐴 · 𝐴)) = (𝐴 · 𝐴)
239, 3, 2, 21, 22decaddi 12654 . . . . 5 ((𝐵 · 𝐵)00 + (𝐴 · 𝐴)) = (𝐵 · 𝐵)0(𝐴 · 𝐴)
2420, 23oveq12i 7364 . . . 4 (((𝐴 · 𝐴)00 + (𝐵 · 𝐵)) − ((𝐵 · 𝐵)00 + (𝐴 · 𝐴))) = ((𝐴 · 𝐴)0(𝐵 · 𝐵) − (𝐵 · 𝐵)0(𝐴 · 𝐴))
2517, 24eqtr2i 2757 . . 3 ((𝐴 · 𝐴)0(𝐵 · 𝐵) − (𝐵 · 𝐵)0(𝐴 · 𝐴)) = (((𝐴 · 𝐴)00 − (𝐵 · 𝐵)00) − ((𝐴 · 𝐴) − (𝐵 · 𝐵)))
26 eqid 2733 . . . . 5 ((𝐵 · 𝐵) + (𝐴 · 𝐴))(((𝐴 · 𝐵) + (𝐵 · 𝐴)) + 0)((𝐴 · 𝐴) + (𝐵 · 𝐵)) = ((𝐵 · 𝐵) + (𝐴 · 𝐴))(((𝐴 · 𝐵) + (𝐵 · 𝐴)) + 0)((𝐴 · 𝐴) + (𝐵 · 𝐵))
277, 1nn0mulcli 12426 . . . . . . . 8 (𝐵 · 𝐴) ∈ ℕ0
281, 7, 27numcl 12607 . . . . . . 7 ((𝐴 · 𝐵) + (𝐵 · 𝐴)) ∈ ℕ0
292, 28deccl 12609 . . . . . 6 (𝐴 · 𝐴)((𝐴 · 𝐵) + (𝐵 · 𝐴)) ∈ ℕ0
30 eqid 2733 . . . . . 6 (𝐴 · 𝐴)((𝐴 · 𝐵) + (𝐵 · 𝐴))(𝐵 · 𝐵) = (𝐴 · 𝐴)((𝐴 · 𝐵) + (𝐵 · 𝐴))(𝐵 · 𝐵)
31 eqid 2733 . . . . . 6 (𝐵 · 𝐵)0(𝐴 · 𝐴) = (𝐵 · 𝐵)0(𝐴 · 𝐴)
32 eqid 2733 . . . . . . 7 (𝐴 · 𝐴)((𝐴 · 𝐵) + (𝐵 · 𝐴)) = (𝐴 · 𝐴)((𝐴 · 𝐵) + (𝐵 · 𝐴))
33 eqid 2733 . . . . . . 7 (𝐵 · 𝐵)0 = (𝐵 · 𝐵)0
3413, 15addcomi 11311 . . . . . . 7 ((𝐴 · 𝐴) + (𝐵 · 𝐵)) = ((𝐵 · 𝐵) + (𝐴 · 𝐴))
35 eqid 2733 . . . . . . 7 (((𝐴 · 𝐵) + (𝐵 · 𝐴)) + 0) = (((𝐴 · 𝐵) + (𝐵 · 𝐴)) + 0)
362, 28, 8, 3, 32, 33, 34, 35decadd 12648 . . . . . 6 ((𝐴 · 𝐴)((𝐴 · 𝐵) + (𝐵 · 𝐴)) + (𝐵 · 𝐵)0) = ((𝐵 · 𝐵) + (𝐴 · 𝐴))(((𝐴 · 𝐵) + (𝐵 · 𝐴)) + 0)
3715, 13addcomi 11311 . . . . . 6 ((𝐵 · 𝐵) + (𝐴 · 𝐴)) = ((𝐴 · 𝐴) + (𝐵 · 𝐵))
3829, 8, 9, 2, 30, 31, 36, 37decadd 12648 . . . . 5 ((𝐴 · 𝐴)((𝐴 · 𝐵) + (𝐵 · 𝐴))(𝐵 · 𝐵) + (𝐵 · 𝐵)0(𝐴 · 𝐴)) = ((𝐵 · 𝐵) + (𝐴 · 𝐴))(((𝐴 · 𝐵) + (𝐵 · 𝐴)) + 0)((𝐴 · 𝐴) + (𝐵 · 𝐵))
398, 28deccl 12609 . . . . . 6 (𝐵 · 𝐵)((𝐴 · 𝐵) + (𝐵 · 𝐴)) ∈ ℕ0
40 eqid 2733 . . . . . 6 (𝐵 · 𝐵)((𝐴 · 𝐵) + (𝐵 · 𝐴))(𝐴 · 𝐴) = (𝐵 · 𝐵)((𝐴 · 𝐵) + (𝐵 · 𝐴))(𝐴 · 𝐴)
41 eqid 2733 . . . . . 6 (𝐴 · 𝐴)0(𝐵 · 𝐵) = (𝐴 · 𝐴)0(𝐵 · 𝐵)
42 eqid 2733 . . . . . . 7 (𝐵 · 𝐵)((𝐴 · 𝐵) + (𝐵 · 𝐴)) = (𝐵 · 𝐵)((𝐴 · 𝐵) + (𝐵 · 𝐴))
43 eqid 2733 . . . . . . 7 (𝐴 · 𝐴)0 = (𝐴 · 𝐴)0
44 eqid 2733 . . . . . . 7 ((𝐵 · 𝐵) + (𝐴 · 𝐴)) = ((𝐵 · 𝐵) + (𝐴 · 𝐴))
458, 28, 2, 3, 42, 43, 44, 35decadd 12648 . . . . . 6 ((𝐵 · 𝐵)((𝐴 · 𝐵) + (𝐵 · 𝐴)) + (𝐴 · 𝐴)0) = ((𝐵 · 𝐵) + (𝐴 · 𝐴))(((𝐴 · 𝐵) + (𝐵 · 𝐴)) + 0)
46 eqid 2733 . . . . . 6 ((𝐴 · 𝐴) + (𝐵 · 𝐵)) = ((𝐴 · 𝐴) + (𝐵 · 𝐵))
4739, 2, 4, 8, 40, 41, 45, 46decadd 12648 . . . . 5 ((𝐵 · 𝐵)((𝐴 · 𝐵) + (𝐵 · 𝐴))(𝐴 · 𝐴) + (𝐴 · 𝐴)0(𝐵 · 𝐵)) = ((𝐵 · 𝐵) + (𝐴 · 𝐴))(((𝐴 · 𝐵) + (𝐵 · 𝐴)) + 0)((𝐴 · 𝐴) + (𝐵 · 𝐵))
4826, 38, 473eqtr4i 2766 . . . 4 ((𝐴 · 𝐴)((𝐴 · 𝐵) + (𝐵 · 𝐴))(𝐵 · 𝐵) + (𝐵 · 𝐵)0(𝐴 · 𝐴)) = ((𝐵 · 𝐵)((𝐴 · 𝐵) + (𝐵 · 𝐴))(𝐴 · 𝐴) + (𝐴 · 𝐴)0(𝐵 · 𝐵))
4929, 8deccl 12609 . . . . . 6 (𝐴 · 𝐴)((𝐴 · 𝐵) + (𝐵 · 𝐴))(𝐵 · 𝐵) ∈ ℕ0
5049nn0cni 12400 . . . . 5 (𝐴 · 𝐴)((𝐴 · 𝐵) + (𝐵 · 𝐴))(𝐵 · 𝐵) ∈ ℂ
519, 2deccl 12609 . . . . . 6 (𝐵 · 𝐵)0(𝐴 · 𝐴) ∈ ℕ0
5251nn0cni 12400 . . . . 5 (𝐵 · 𝐵)0(𝐴 · 𝐴) ∈ ℂ
5339, 2deccl 12609 . . . . . 6 (𝐵 · 𝐵)((𝐴 · 𝐵) + (𝐵 · 𝐴))(𝐴 · 𝐴) ∈ ℕ0
5453nn0cni 12400 . . . . 5 (𝐵 · 𝐵)((𝐴 · 𝐵) + (𝐵 · 𝐴))(𝐴 · 𝐴) ∈ ℂ
554, 8deccl 12609 . . . . . 6 (𝐴 · 𝐴)0(𝐵 · 𝐵) ∈ ℕ0
5655nn0cni 12400 . . . . 5 (𝐴 · 𝐴)0(𝐵 · 𝐵) ∈ ℂ
57 addsubeq4com 42398 . . . . 5 ((((𝐴 · 𝐴)((𝐴 · 𝐵) + (𝐵 · 𝐴))(𝐵 · 𝐵) ∈ ℂ ∧ (𝐵 · 𝐵)0(𝐴 · 𝐴) ∈ ℂ) ∧ ((𝐵 · 𝐵)((𝐴 · 𝐵) + (𝐵 · 𝐴))(𝐴 · 𝐴) ∈ ℂ ∧ (𝐴 · 𝐴)0(𝐵 · 𝐵) ∈ ℂ)) → (((𝐴 · 𝐴)((𝐴 · 𝐵) + (𝐵 · 𝐴))(𝐵 · 𝐵) + (𝐵 · 𝐵)0(𝐴 · 𝐴)) = ((𝐵 · 𝐵)((𝐴 · 𝐵) + (𝐵 · 𝐴))(𝐴 · 𝐴) + (𝐴 · 𝐴)0(𝐵 · 𝐵)) ↔ ((𝐴 · 𝐴)((𝐴 · 𝐵) + (𝐵 · 𝐴))(𝐵 · 𝐵) − (𝐵 · 𝐵)((𝐴 · 𝐵) + (𝐵 · 𝐴))(𝐴 · 𝐴)) = ((𝐴 · 𝐴)0(𝐵 · 𝐵) − (𝐵 · 𝐵)0(𝐴 · 𝐴))))
5850, 52, 54, 56, 57mp4an 693 . . . 4 (((𝐴 · 𝐴)((𝐴 · 𝐵) + (𝐵 · 𝐴))(𝐵 · 𝐵) + (𝐵 · 𝐵)0(𝐴 · 𝐴)) = ((𝐵 · 𝐵)((𝐴 · 𝐵) + (𝐵 · 𝐴))(𝐴 · 𝐴) + (𝐴 · 𝐴)0(𝐵 · 𝐵)) ↔ ((𝐴 · 𝐴)((𝐴 · 𝐵) + (𝐵 · 𝐴))(𝐵 · 𝐵) − (𝐵 · 𝐵)((𝐴 · 𝐵) + (𝐵 · 𝐴))(𝐴 · 𝐴)) = ((𝐴 · 𝐴)0(𝐵 · 𝐵) − (𝐵 · 𝐵)0(𝐴 · 𝐴)))
5948, 58mpbi 230 . . 3 ((𝐴 · 𝐴)((𝐴 · 𝐵) + (𝐵 · 𝐴))(𝐵 · 𝐵) − (𝐵 · 𝐵)((𝐴 · 𝐵) + (𝐵 · 𝐴))(𝐴 · 𝐴)) = ((𝐴 · 𝐴)0(𝐵 · 𝐵) − (𝐵 · 𝐵)0(𝐴 · 𝐴))
60 10nn0 12612 . . . . . . 7 10 ∈ ℕ0
6160, 3deccl 12609 . . . . . 6 100 ∈ ℕ0
6261nn0cni 12400 . . . . 5 100 ∈ ℂ
63 ax-1cn 11071 . . . . 5 1 ∈ ℂ
6413, 15subcli 11444 . . . . 5 ((𝐴 · 𝐴) − (𝐵 · 𝐵)) ∈ ℂ
6562, 63, 64subdiri 11574 . . . 4 ((100 − 1) · ((𝐴 · 𝐴) − (𝐵 · 𝐵))) = ((100 · ((𝐴 · 𝐴) − (𝐵 · 𝐵))) − (1 · ((𝐴 · 𝐴) − (𝐵 · 𝐵))))
6662, 13, 15subdii 11573 . . . . . 6 (100 · ((𝐴 · 𝐴) − (𝐵 · 𝐵))) = ((100 · (𝐴 · 𝐴)) − (100 · (𝐵 · 𝐵)))
67 eqid 2733 . . . . . . . 8 100 = 100
682dec0u 12615 . . . . . . . 8 (10 · (𝐴 · 𝐴)) = (𝐴 · 𝐴)0
6913mul02i 11309 . . . . . . . 8 (0 · (𝐴 · 𝐴)) = 0
702, 60, 3, 67, 68, 69decmul1 12658 . . . . . . 7 (100 · (𝐴 · 𝐴)) = (𝐴 · 𝐴)00
718dec0u 12615 . . . . . . . 8 (10 · (𝐵 · 𝐵)) = (𝐵 · 𝐵)0
7215mul02i 11309 . . . . . . . 8 (0 · (𝐵 · 𝐵)) = 0
738, 60, 3, 67, 71, 72decmul1 12658 . . . . . . 7 (100 · (𝐵 · 𝐵)) = (𝐵 · 𝐵)00
7470, 73oveq12i 7364 . . . . . 6 ((100 · (𝐴 · 𝐴)) − (100 · (𝐵 · 𝐵))) = ((𝐴 · 𝐴)00 − (𝐵 · 𝐵)00)
7566, 74eqtri 2756 . . . . 5 (100 · ((𝐴 · 𝐴) − (𝐵 · 𝐵))) = ((𝐴 · 𝐴)00 − (𝐵 · 𝐵)00)
7664mullidi 11124 . . . . 5 (1 · ((𝐴 · 𝐴) − (𝐵 · 𝐵))) = ((𝐴 · 𝐴) − (𝐵 · 𝐵))
7775, 76oveq12i 7364 . . . 4 ((100 · ((𝐴 · 𝐴) − (𝐵 · 𝐵))) − (1 · ((𝐴 · 𝐴) − (𝐵 · 𝐵)))) = (((𝐴 · 𝐴)00 − (𝐵 · 𝐵)00) − ((𝐴 · 𝐴) − (𝐵 · 𝐵)))
7865, 77eqtri 2756 . . 3 ((100 − 1) · ((𝐴 · 𝐴) − (𝐵 · 𝐵))) = (((𝐴 · 𝐴)00 − (𝐵 · 𝐵)00) − ((𝐴 · 𝐴) − (𝐵 · 𝐵)))
7925, 59, 783eqtr4i 2766 . 2 ((𝐴 · 𝐴)((𝐴 · 𝐵) + (𝐵 · 𝐴))(𝐵 · 𝐵) − (𝐵 · 𝐵)((𝐴 · 𝐵) + (𝐵 · 𝐴))(𝐴 · 𝐴)) = ((100 − 1) · ((𝐴 · 𝐴) − (𝐵 · 𝐵)))
80 eqid 2733 . . . 4 (𝐴 · 𝐴) = (𝐴 · 𝐴)
81 eqid 2733 . . . 4 ((𝐴 · 𝐵) + (𝐵 · 𝐴)) = ((𝐴 · 𝐵) + (𝐵 · 𝐴))
82 eqid 2733 . . . 4 (𝐵 · 𝐵) = (𝐵 · 𝐵)
831, 7, 1, 7, 80, 81, 82decpmulnc 42405 . . 3 (𝐴𝐵 · 𝐴𝐵) = (𝐴 · 𝐴)((𝐴 · 𝐵) + (𝐵 · 𝐴))(𝐵 · 𝐵)
8414, 12mulcli 11126 . . . . 5 (𝐵 · 𝐴) ∈ ℂ
8512, 14mulcli 11126 . . . . 5 (𝐴 · 𝐵) ∈ ℂ
8684, 85addcomi 11311 . . . 4 ((𝐵 · 𝐴) + (𝐴 · 𝐵)) = ((𝐴 · 𝐵) + (𝐵 · 𝐴))
877, 1, 7, 1, 82, 86, 80decpmulnc 42405 . . 3 (𝐵𝐴 · 𝐵𝐴) = (𝐵 · 𝐵)((𝐴 · 𝐵) + (𝐵 · 𝐴))(𝐴 · 𝐴)
8883, 87oveq12i 7364 . 2 ((𝐴𝐵 · 𝐴𝐵) − (𝐵𝐴 · 𝐵𝐴)) = ((𝐴 · 𝐴)((𝐴 · 𝐵) + (𝐵 · 𝐴))(𝐵 · 𝐵) − (𝐵 · 𝐵)((𝐴 · 𝐵) + (𝐵 · 𝐴))(𝐴 · 𝐴))
89 9nn0 12412 . . . . . 6 9 ∈ ℕ0
9089, 89deccl 12609 . . . . 5 99 ∈ ℕ0
9190nn0cni 12400 . . . 4 99 ∈ ℂ
92 9p1e10 12596 . . . . . 6 (9 + 1) = 10
93 eqid 2733 . . . . . 6 99 = 99
9489, 92, 93decsucc 12635 . . . . 5 (99 + 1) = 100
9591, 63, 94addcomli 11312 . . . 4 (1 + 99) = 100
9663, 91, 95mvlladdi 11386 . . 3 99 = (100 − 1)
9796oveq1i 7362 . 2 (99 · ((𝐴 · 𝐴) − (𝐵 · 𝐵))) = ((100 − 1) · ((𝐴 · 𝐴) − (𝐵 · 𝐵)))
9879, 88, 973eqtr4i 2766 1 ((𝐴𝐵 · 𝐴𝐵) − (𝐵𝐴 · 𝐵𝐴)) = (99 · ((𝐴 · 𝐴) − (𝐵 · 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1541  wcel 2113  (class class class)co 7352  cc 11011  0cc0 11013  1c1 11014   + caddc 11016   · cmul 11018  cmin 11351  9c9 12194  0cn0 12388  cdc 12594
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-pnf 11155  df-mnf 11156  df-ltxr 11158  df-sub 11353  df-nn 12133  df-2 12195  df-3 12196  df-4 12197  df-5 12198  df-6 12199  df-7 12200  df-8 12201  df-9 12202  df-n0 12389  df-dec 12595
This theorem is referenced by:  sq3deccom12  42408
  Copyright terms: Public domain W3C validator