| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sqabssub | Structured version Visualization version GIF version | ||
| Description: Square of absolute value of difference. (Contributed by NM, 21-Jan-2007.) |
| Ref | Expression |
|---|---|
| sqabssub | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘(𝐴 − 𝐵))↑2) = ((((abs‘𝐴)↑2) + ((abs‘𝐵)↑2)) − (2 · (ℜ‘(𝐴 · (∗‘𝐵)))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cjsub 15188 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (∗‘(𝐴 − 𝐵)) = ((∗‘𝐴) − (∗‘𝐵))) | |
| 2 | 1 | oveq2d 7447 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 − 𝐵) · (∗‘(𝐴 − 𝐵))) = ((𝐴 − 𝐵) · ((∗‘𝐴) − (∗‘𝐵)))) |
| 3 | cjcl 15144 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (∗‘𝐴) ∈ ℂ) | |
| 4 | cjcl 15144 | . . . . 5 ⊢ (𝐵 ∈ ℂ → (∗‘𝐵) ∈ ℂ) | |
| 5 | 3, 4 | anim12i 613 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((∗‘𝐴) ∈ ℂ ∧ (∗‘𝐵) ∈ ℂ)) |
| 6 | mulsub 11706 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((∗‘𝐴) ∈ ℂ ∧ (∗‘𝐵) ∈ ℂ)) → ((𝐴 − 𝐵) · ((∗‘𝐴) − (∗‘𝐵))) = (((𝐴 · (∗‘𝐴)) + ((∗‘𝐵) · 𝐵)) − ((𝐴 · (∗‘𝐵)) + ((∗‘𝐴) · 𝐵)))) | |
| 7 | 5, 6 | mpdan 687 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 − 𝐵) · ((∗‘𝐴) − (∗‘𝐵))) = (((𝐴 · (∗‘𝐴)) + ((∗‘𝐵) · 𝐵)) − ((𝐴 · (∗‘𝐵)) + ((∗‘𝐴) · 𝐵)))) |
| 8 | 2, 7 | eqtrd 2777 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 − 𝐵) · (∗‘(𝐴 − 𝐵))) = (((𝐴 · (∗‘𝐴)) + ((∗‘𝐵) · 𝐵)) − ((𝐴 · (∗‘𝐵)) + ((∗‘𝐴) · 𝐵)))) |
| 9 | subcl 11507 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 − 𝐵) ∈ ℂ) | |
| 10 | absvalsq 15319 | . . 3 ⊢ ((𝐴 − 𝐵) ∈ ℂ → ((abs‘(𝐴 − 𝐵))↑2) = ((𝐴 − 𝐵) · (∗‘(𝐴 − 𝐵)))) | |
| 11 | 9, 10 | syl 17 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘(𝐴 − 𝐵))↑2) = ((𝐴 − 𝐵) · (∗‘(𝐴 − 𝐵)))) |
| 12 | absvalsq 15319 | . . . 4 ⊢ (𝐴 ∈ ℂ → ((abs‘𝐴)↑2) = (𝐴 · (∗‘𝐴))) | |
| 13 | absvalsq 15319 | . . . . 5 ⊢ (𝐵 ∈ ℂ → ((abs‘𝐵)↑2) = (𝐵 · (∗‘𝐵))) | |
| 14 | mulcom 11241 | . . . . . 6 ⊢ ((𝐵 ∈ ℂ ∧ (∗‘𝐵) ∈ ℂ) → (𝐵 · (∗‘𝐵)) = ((∗‘𝐵) · 𝐵)) | |
| 15 | 4, 14 | mpdan 687 | . . . . 5 ⊢ (𝐵 ∈ ℂ → (𝐵 · (∗‘𝐵)) = ((∗‘𝐵) · 𝐵)) |
| 16 | 13, 15 | eqtrd 2777 | . . . 4 ⊢ (𝐵 ∈ ℂ → ((abs‘𝐵)↑2) = ((∗‘𝐵) · 𝐵)) |
| 17 | 12, 16 | oveqan12d 7450 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((abs‘𝐴)↑2) + ((abs‘𝐵)↑2)) = ((𝐴 · (∗‘𝐴)) + ((∗‘𝐵) · 𝐵))) |
| 18 | mulcl 11239 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ (∗‘𝐵) ∈ ℂ) → (𝐴 · (∗‘𝐵)) ∈ ℂ) | |
| 19 | 4, 18 | sylan2 593 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · (∗‘𝐵)) ∈ ℂ) |
| 20 | 19 | addcjd 15251 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · (∗‘𝐵)) + (∗‘(𝐴 · (∗‘𝐵)))) = (2 · (ℜ‘(𝐴 · (∗‘𝐵))))) |
| 21 | cjmul 15181 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ (∗‘𝐵) ∈ ℂ) → (∗‘(𝐴 · (∗‘𝐵))) = ((∗‘𝐴) · (∗‘(∗‘𝐵)))) | |
| 22 | 4, 21 | sylan2 593 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (∗‘(𝐴 · (∗‘𝐵))) = ((∗‘𝐴) · (∗‘(∗‘𝐵)))) |
| 23 | cjcj 15179 | . . . . . . . 8 ⊢ (𝐵 ∈ ℂ → (∗‘(∗‘𝐵)) = 𝐵) | |
| 24 | 23 | adantl 481 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (∗‘(∗‘𝐵)) = 𝐵) |
| 25 | 24 | oveq2d 7447 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((∗‘𝐴) · (∗‘(∗‘𝐵))) = ((∗‘𝐴) · 𝐵)) |
| 26 | 22, 25 | eqtrd 2777 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (∗‘(𝐴 · (∗‘𝐵))) = ((∗‘𝐴) · 𝐵)) |
| 27 | 26 | oveq2d 7447 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · (∗‘𝐵)) + (∗‘(𝐴 · (∗‘𝐵)))) = ((𝐴 · (∗‘𝐵)) + ((∗‘𝐴) · 𝐵))) |
| 28 | 20, 27 | eqtr3d 2779 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (2 · (ℜ‘(𝐴 · (∗‘𝐵)))) = ((𝐴 · (∗‘𝐵)) + ((∗‘𝐴) · 𝐵))) |
| 29 | 17, 28 | oveq12d 7449 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((abs‘𝐴)↑2) + ((abs‘𝐵)↑2)) − (2 · (ℜ‘(𝐴 · (∗‘𝐵))))) = (((𝐴 · (∗‘𝐴)) + ((∗‘𝐵) · 𝐵)) − ((𝐴 · (∗‘𝐵)) + ((∗‘𝐴) · 𝐵)))) |
| 30 | 8, 11, 29 | 3eqtr4d 2787 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘(𝐴 − 𝐵))↑2) = ((((abs‘𝐴)↑2) + ((abs‘𝐵)↑2)) − (2 · (ℜ‘(𝐴 · (∗‘𝐵)))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ‘cfv 6561 (class class class)co 7431 ℂcc 11153 + caddc 11158 · cmul 11160 − cmin 11492 2c2 12321 ↑cexp 14102 ∗ccj 15135 ℜcre 15136 abscabs 15273 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 ax-pre-sup 11233 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-sup 9482 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-div 11921 df-nn 12267 df-2 12329 df-3 12330 df-n0 12527 df-z 12614 df-uz 12879 df-rp 13035 df-seq 14043 df-exp 14103 df-cj 15138 df-re 15139 df-im 15140 df-sqrt 15274 df-abs 15275 |
| This theorem is referenced by: sqabssubi 15445 lawcoslem1 26858 cncph 30838 |
| Copyright terms: Public domain | W3C validator |