Step | Hyp | Ref
| Expression |
1 | | breq2 5153 |
. . . . . 6
⊢ (𝑥 = 0s → (𝑧 ≤s 𝑥 ↔ 𝑧 ≤s 0s )) |
2 | | oveq1 7426 |
. . . . . . 7
⊢ (𝑥 = 0s → (𝑥 -s 𝑧) = ( 0s
-s 𝑧)) |
3 | 2 | eleq1d 2810 |
. . . . . 6
⊢ (𝑥 = 0s → ((𝑥 -s 𝑧) ∈ ℕ0s
↔ ( 0s -s 𝑧) ∈
ℕ0s)) |
4 | 1, 3 | imbi12d 343 |
. . . . 5
⊢ (𝑥 = 0s → ((𝑧 ≤s 𝑥 → (𝑥 -s 𝑧) ∈ ℕ0s) ↔ (𝑧 ≤s 0s → (
0s -s 𝑧) ∈
ℕ0s))) |
5 | 4 | ralbidv 3167 |
. . . 4
⊢ (𝑥 = 0s →
(∀𝑧 ∈
ℕ0s (𝑧
≤s 𝑥 → (𝑥 -s 𝑧) ∈ ℕ0s)
↔ ∀𝑧 ∈
ℕ0s (𝑧
≤s 0s → ( 0s -s 𝑧) ∈
ℕ0s))) |
6 | | breq2 5153 |
. . . . . 6
⊢ (𝑥 = 𝑦 → (𝑧 ≤s 𝑥 ↔ 𝑧 ≤s 𝑦)) |
7 | | oveq1 7426 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → (𝑥 -s 𝑧) = (𝑦 -s 𝑧)) |
8 | 7 | eleq1d 2810 |
. . . . . 6
⊢ (𝑥 = 𝑦 → ((𝑥 -s 𝑧) ∈ ℕ0s ↔ (𝑦 -s 𝑧) ∈
ℕ0s)) |
9 | 6, 8 | imbi12d 343 |
. . . . 5
⊢ (𝑥 = 𝑦 → ((𝑧 ≤s 𝑥 → (𝑥 -s 𝑧) ∈ ℕ0s) ↔ (𝑧 ≤s 𝑦 → (𝑦 -s 𝑧) ∈
ℕ0s))) |
10 | 9 | ralbidv 3167 |
. . . 4
⊢ (𝑥 = 𝑦 → (∀𝑧 ∈ ℕ0s (𝑧 ≤s 𝑥 → (𝑥 -s 𝑧) ∈ ℕ0s) ↔
∀𝑧 ∈
ℕ0s (𝑧
≤s 𝑦 → (𝑦 -s 𝑧) ∈
ℕ0s))) |
11 | | breq2 5153 |
. . . . . 6
⊢ (𝑥 = (𝑦 +s 1s ) → (𝑧 ≤s 𝑥 ↔ 𝑧 ≤s (𝑦 +s 1s
))) |
12 | | oveq1 7426 |
. . . . . . 7
⊢ (𝑥 = (𝑦 +s 1s ) → (𝑥 -s 𝑧) = ((𝑦 +s 1s ) -s
𝑧)) |
13 | 12 | eleq1d 2810 |
. . . . . 6
⊢ (𝑥 = (𝑦 +s 1s ) → ((𝑥 -s 𝑧) ∈ ℕ0s
↔ ((𝑦 +s
1s ) -s 𝑧) ∈
ℕ0s)) |
14 | 11, 13 | imbi12d 343 |
. . . . 5
⊢ (𝑥 = (𝑦 +s 1s ) → ((𝑧 ≤s 𝑥 → (𝑥 -s 𝑧) ∈ ℕ0s) ↔ (𝑧 ≤s (𝑦 +s 1s ) → ((𝑦 +s 1s )
-s 𝑧) ∈
ℕ0s))) |
15 | 14 | ralbidv 3167 |
. . . 4
⊢ (𝑥 = (𝑦 +s 1s ) →
(∀𝑧 ∈
ℕ0s (𝑧
≤s 𝑥 → (𝑥 -s 𝑧) ∈ ℕ0s)
↔ ∀𝑧 ∈
ℕ0s (𝑧
≤s (𝑦 +s
1s ) → ((𝑦
+s 1s ) -s 𝑧) ∈
ℕ0s))) |
16 | | breq2 5153 |
. . . . . 6
⊢ (𝑥 = 𝑁 → (𝑧 ≤s 𝑥 ↔ 𝑧 ≤s 𝑁)) |
17 | | oveq1 7426 |
. . . . . . 7
⊢ (𝑥 = 𝑁 → (𝑥 -s 𝑧) = (𝑁 -s 𝑧)) |
18 | 17 | eleq1d 2810 |
. . . . . 6
⊢ (𝑥 = 𝑁 → ((𝑥 -s 𝑧) ∈ ℕ0s ↔ (𝑁 -s 𝑧) ∈
ℕ0s)) |
19 | 16, 18 | imbi12d 343 |
. . . . 5
⊢ (𝑥 = 𝑁 → ((𝑧 ≤s 𝑥 → (𝑥 -s 𝑧) ∈ ℕ0s) ↔ (𝑧 ≤s 𝑁 → (𝑁 -s 𝑧) ∈
ℕ0s))) |
20 | 19 | ralbidv 3167 |
. . . 4
⊢ (𝑥 = 𝑁 → (∀𝑧 ∈ ℕ0s (𝑧 ≤s 𝑥 → (𝑥 -s 𝑧) ∈ ℕ0s) ↔
∀𝑧 ∈
ℕ0s (𝑧
≤s 𝑁 → (𝑁 -s 𝑧) ∈
ℕ0s))) |
21 | | n0sge0 28258 |
. . . . . . . 8
⊢ (𝑧 ∈ ℕ0s
→ 0s ≤s 𝑧) |
22 | 21 | biantrud 530 |
. . . . . . 7
⊢ (𝑧 ∈ ℕ0s
→ (𝑧 ≤s
0s ↔ (𝑧
≤s 0s ∧ 0s ≤s 𝑧))) |
23 | | n0sno 28245 |
. . . . . . . 8
⊢ (𝑧 ∈ ℕ0s
→ 𝑧 ∈ No ) |
24 | | 0sno 27805 |
. . . . . . . 8
⊢
0s ∈ No |
25 | | sletri3 27734 |
. . . . . . . 8
⊢ ((𝑧 ∈
No ∧ 0s ∈ No ) →
(𝑧 = 0s ↔
(𝑧 ≤s 0s
∧ 0s ≤s 𝑧))) |
26 | 23, 24, 25 | sylancl 584 |
. . . . . . 7
⊢ (𝑧 ∈ ℕ0s
→ (𝑧 = 0s
↔ (𝑧 ≤s
0s ∧ 0s ≤s 𝑧))) |
27 | 22, 26 | bitr4d 281 |
. . . . . 6
⊢ (𝑧 ∈ ℕ0s
→ (𝑧 ≤s
0s ↔ 𝑧 =
0s )) |
28 | | oveq2 7427 |
. . . . . . 7
⊢ (𝑧 = 0s → (
0s -s 𝑧) = ( 0s -s
0s )) |
29 | | subsid 28025 |
. . . . . . . . 9
⊢ (
0s ∈ No → ( 0s
-s 0s ) = 0s ) |
30 | 24, 29 | ax-mp 5 |
. . . . . . . 8
⊢ (
0s -s 0s ) = 0s |
31 | | 0n0s 28251 |
. . . . . . . 8
⊢
0s ∈ ℕ0s |
32 | 30, 31 | eqeltri 2821 |
. . . . . . 7
⊢ (
0s -s 0s ) ∈
ℕ0s |
33 | 28, 32 | eqeltrdi 2833 |
. . . . . 6
⊢ (𝑧 = 0s → (
0s -s 𝑧) ∈
ℕ0s) |
34 | 27, 33 | biimtrdi 252 |
. . . . 5
⊢ (𝑧 ∈ ℕ0s
→ (𝑧 ≤s
0s → ( 0s -s 𝑧) ∈
ℕ0s)) |
35 | 34 | rgen 3052 |
. . . 4
⊢
∀𝑧 ∈
ℕ0s (𝑧
≤s 0s → ( 0s -s 𝑧) ∈
ℕ0s) |
36 | | breq1 5152 |
. . . . . . 7
⊢ (𝑧 = 𝑥 → (𝑧 ≤s 𝑦 ↔ 𝑥 ≤s 𝑦)) |
37 | | oveq2 7427 |
. . . . . . . 8
⊢ (𝑧 = 𝑥 → (𝑦 -s 𝑧) = (𝑦 -s 𝑥)) |
38 | 37 | eleq1d 2810 |
. . . . . . 7
⊢ (𝑧 = 𝑥 → ((𝑦 -s 𝑧) ∈ ℕ0s ↔ (𝑦 -s 𝑥) ∈
ℕ0s)) |
39 | 36, 38 | imbi12d 343 |
. . . . . 6
⊢ (𝑧 = 𝑥 → ((𝑧 ≤s 𝑦 → (𝑦 -s 𝑧) ∈ ℕ0s) ↔ (𝑥 ≤s 𝑦 → (𝑦 -s 𝑥) ∈
ℕ0s))) |
40 | 39 | cbvralvw 3224 |
. . . . 5
⊢
(∀𝑧 ∈
ℕ0s (𝑧
≤s 𝑦 → (𝑦 -s 𝑧) ∈ ℕ0s)
↔ ∀𝑥 ∈
ℕ0s (𝑥
≤s 𝑦 → (𝑦 -s 𝑥) ∈
ℕ0s)) |
41 | | n0sno 28245 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ ℕ0s
→ 𝑦 ∈ No ) |
42 | | peano2no 27947 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈
No → (𝑦
+s 1s ) ∈ No
) |
43 | | subsid1 28024 |
. . . . . . . . . . . 12
⊢ ((𝑦 +s 1s )
∈ No → ((𝑦 +s 1s ) -s
0s ) = (𝑦
+s 1s )) |
44 | 41, 42, 43 | 3syl 18 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ ℕ0s
→ ((𝑦 +s
1s ) -s 0s ) = (𝑦 +s 1s
)) |
45 | | peano2n0s 28252 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ ℕ0s
→ (𝑦 +s
1s ) ∈ ℕ0s) |
46 | 44, 45 | eqeltrd 2825 |
. . . . . . . . . 10
⊢ (𝑦 ∈ ℕ0s
→ ((𝑦 +s
1s ) -s 0s ) ∈
ℕ0s) |
47 | | oveq2 7427 |
. . . . . . . . . . 11
⊢ (𝑧 = 0s → ((𝑦 +s 1s )
-s 𝑧) = ((𝑦 +s 1s )
-s 0s )) |
48 | 47 | eleq1d 2810 |
. . . . . . . . . 10
⊢ (𝑧 = 0s → (((𝑦 +s 1s )
-s 𝑧) ∈
ℕ0s ↔ ((𝑦 +s 1s ) -s
0s ) ∈ ℕ0s)) |
49 | 46, 48 | syl5ibrcom 246 |
. . . . . . . . 9
⊢ (𝑦 ∈ ℕ0s
→ (𝑧 = 0s
→ ((𝑦 +s
1s ) -s 𝑧) ∈
ℕ0s)) |
50 | 49 | 2a1dd 51 |
. . . . . . . 8
⊢ (𝑦 ∈ ℕ0s
→ (𝑧 = 0s
→ (∀𝑥 ∈
ℕ0s (𝑥
≤s 𝑦 → (𝑦 -s 𝑥) ∈ ℕ0s)
→ (𝑧 ≤s (𝑦 +s 1s )
→ ((𝑦 +s
1s ) -s 𝑧) ∈
ℕ0s)))) |
51 | 50 | adantr 479 |
. . . . . . 7
⊢ ((𝑦 ∈ ℕ0s
∧ 𝑧 ∈
ℕ0s) → (𝑧 = 0s → (∀𝑥 ∈ ℕ0s
(𝑥 ≤s 𝑦 → (𝑦 -s 𝑥) ∈ ℕ0s) → (𝑧 ≤s (𝑦 +s 1s ) → ((𝑦 +s 1s )
-s 𝑧) ∈
ℕ0s)))) |
52 | | breq1 5152 |
. . . . . . . . . 10
⊢ (𝑥 = (𝑧 -s 1s ) → (𝑥 ≤s 𝑦 ↔ (𝑧 -s 1s ) ≤s 𝑦)) |
53 | | oveq2 7427 |
. . . . . . . . . . 11
⊢ (𝑥 = (𝑧 -s 1s ) → (𝑦 -s 𝑥) = (𝑦 -s (𝑧 -s 1s
))) |
54 | 53 | eleq1d 2810 |
. . . . . . . . . 10
⊢ (𝑥 = (𝑧 -s 1s ) → ((𝑦 -s 𝑥) ∈ ℕ0s
↔ (𝑦 -s
(𝑧 -s
1s )) ∈ ℕ0s)) |
55 | 52, 54 | imbi12d 343 |
. . . . . . . . 9
⊢ (𝑥 = (𝑧 -s 1s ) → ((𝑥 ≤s 𝑦 → (𝑦 -s 𝑥) ∈ ℕ0s) ↔ ((𝑧 -s 1s )
≤s 𝑦 → (𝑦 -s (𝑧 -s 1s ))
∈ ℕ0s))) |
56 | 55 | rspcv 3602 |
. . . . . . . 8
⊢ ((𝑧 -s 1s )
∈ ℕ0s → (∀𝑥 ∈ ℕ0s (𝑥 ≤s 𝑦 → (𝑦 -s 𝑥) ∈ ℕ0s) → ((𝑧 -s 1s )
≤s 𝑦 → (𝑦 -s (𝑧 -s 1s ))
∈ ℕ0s))) |
57 | 23 | adantl 480 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ ℕ0s
∧ 𝑧 ∈
ℕ0s) → 𝑧 ∈ No
) |
58 | | 1sno 27806 |
. . . . . . . . . . . 12
⊢
1s ∈ No |
59 | 58 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ ℕ0s
∧ 𝑧 ∈
ℕ0s) → 1s ∈ No
) |
60 | 41 | adantr 479 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ ℕ0s
∧ 𝑧 ∈
ℕ0s) → 𝑦 ∈ No
) |
61 | 57, 59, 60 | slesubaddd 28049 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ ℕ0s
∧ 𝑧 ∈
ℕ0s) → ((𝑧 -s 1s ) ≤s 𝑦 ↔ 𝑧 ≤s (𝑦 +s 1s
))) |
62 | 60, 57, 59 | subsubs2d 28051 |
. . . . . . . . . . . 12
⊢ ((𝑦 ∈ ℕ0s
∧ 𝑧 ∈
ℕ0s) → (𝑦 -s (𝑧 -s 1s )) = (𝑦 +s ( 1s
-s 𝑧))) |
63 | 60, 59, 57 | addsubsassd 28037 |
. . . . . . . . . . . 12
⊢ ((𝑦 ∈ ℕ0s
∧ 𝑧 ∈
ℕ0s) → ((𝑦 +s 1s ) -s
𝑧) = (𝑦 +s ( 1s -s
𝑧))) |
64 | 62, 63 | eqtr4d 2768 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ ℕ0s
∧ 𝑧 ∈
ℕ0s) → (𝑦 -s (𝑧 -s 1s )) = ((𝑦 +s 1s )
-s 𝑧)) |
65 | 64 | eleq1d 2810 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ ℕ0s
∧ 𝑧 ∈
ℕ0s) → ((𝑦 -s (𝑧 -s 1s )) ∈
ℕ0s ↔ ((𝑦 +s 1s ) -s
𝑧) ∈
ℕ0s)) |
66 | 61, 65 | imbi12d 343 |
. . . . . . . . 9
⊢ ((𝑦 ∈ ℕ0s
∧ 𝑧 ∈
ℕ0s) → (((𝑧 -s 1s ) ≤s 𝑦 → (𝑦 -s (𝑧 -s 1s )) ∈
ℕ0s) ↔ (𝑧 ≤s (𝑦 +s 1s ) → ((𝑦 +s 1s )
-s 𝑧) ∈
ℕ0s))) |
67 | 66 | biimpd 228 |
. . . . . . . 8
⊢ ((𝑦 ∈ ℕ0s
∧ 𝑧 ∈
ℕ0s) → (((𝑧 -s 1s ) ≤s 𝑦 → (𝑦 -s (𝑧 -s 1s )) ∈
ℕ0s) → (𝑧 ≤s (𝑦 +s 1s ) → ((𝑦 +s 1s )
-s 𝑧) ∈
ℕ0s))) |
68 | 56, 67 | syl9r 78 |
. . . . . . 7
⊢ ((𝑦 ∈ ℕ0s
∧ 𝑧 ∈
ℕ0s) → ((𝑧 -s 1s ) ∈
ℕ0s → (∀𝑥 ∈ ℕ0s (𝑥 ≤s 𝑦 → (𝑦 -s 𝑥) ∈ ℕ0s) → (𝑧 ≤s (𝑦 +s 1s ) → ((𝑦 +s 1s )
-s 𝑧) ∈
ℕ0s)))) |
69 | | n0s0m1 28274 |
. . . . . . . 8
⊢ (𝑧 ∈ ℕ0s
→ (𝑧 = 0s
∨ (𝑧 -s
1s ) ∈ ℕ0s)) |
70 | 69 | adantl 480 |
. . . . . . 7
⊢ ((𝑦 ∈ ℕ0s
∧ 𝑧 ∈
ℕ0s) → (𝑧 = 0s ∨ (𝑧 -s 1s ) ∈
ℕ0s)) |
71 | 51, 68, 70 | mpjaod 858 |
. . . . . 6
⊢ ((𝑦 ∈ ℕ0s
∧ 𝑧 ∈
ℕ0s) → (∀𝑥 ∈ ℕ0s (𝑥 ≤s 𝑦 → (𝑦 -s 𝑥) ∈ ℕ0s) → (𝑧 ≤s (𝑦 +s 1s ) → ((𝑦 +s 1s )
-s 𝑧) ∈
ℕ0s))) |
72 | 71 | ralrimdva 3143 |
. . . . 5
⊢ (𝑦 ∈ ℕ0s
→ (∀𝑥 ∈
ℕ0s (𝑥
≤s 𝑦 → (𝑦 -s 𝑥) ∈ ℕ0s)
→ ∀𝑧 ∈
ℕ0s (𝑧
≤s (𝑦 +s
1s ) → ((𝑦
+s 1s ) -s 𝑧) ∈
ℕ0s))) |
73 | 40, 72 | biimtrid 241 |
. . . 4
⊢ (𝑦 ∈ ℕ0s
→ (∀𝑧 ∈
ℕ0s (𝑧
≤s 𝑦 → (𝑦 -s 𝑧) ∈ ℕ0s)
→ ∀𝑧 ∈
ℕ0s (𝑧
≤s (𝑦 +s
1s ) → ((𝑦
+s 1s ) -s 𝑧) ∈
ℕ0s))) |
74 | 5, 10, 15, 20, 35, 73 | n0sind 28254 |
. . 3
⊢ (𝑁 ∈ ℕ0s
→ ∀𝑧 ∈
ℕ0s (𝑧
≤s 𝑁 → (𝑁 -s 𝑧) ∈
ℕ0s)) |
75 | | breq1 5152 |
. . . . 5
⊢ (𝑧 = 𝑀 → (𝑧 ≤s 𝑁 ↔ 𝑀 ≤s 𝑁)) |
76 | | oveq2 7427 |
. . . . . 6
⊢ (𝑧 = 𝑀 → (𝑁 -s 𝑧) = (𝑁 -s 𝑀)) |
77 | 76 | eleq1d 2810 |
. . . . 5
⊢ (𝑧 = 𝑀 → ((𝑁 -s 𝑧) ∈ ℕ0s ↔ (𝑁 -s 𝑀) ∈
ℕ0s)) |
78 | 75, 77 | imbi12d 343 |
. . . 4
⊢ (𝑧 = 𝑀 → ((𝑧 ≤s 𝑁 → (𝑁 -s 𝑧) ∈ ℕ0s) ↔ (𝑀 ≤s 𝑁 → (𝑁 -s 𝑀) ∈
ℕ0s))) |
79 | 78 | rspcva 3604 |
. . 3
⊢ ((𝑀 ∈ ℕ0s
∧ ∀𝑧 ∈
ℕ0s (𝑧
≤s 𝑁 → (𝑁 -s 𝑧) ∈ ℕ0s))
→ (𝑀 ≤s 𝑁 → (𝑁 -s 𝑀) ∈
ℕ0s)) |
80 | 74, 79 | sylan2 591 |
. 2
⊢ ((𝑀 ∈ ℕ0s
∧ 𝑁 ∈
ℕ0s) → (𝑀 ≤s 𝑁 → (𝑁 -s 𝑀) ∈
ℕ0s)) |
81 | | n0sge0 28258 |
. . 3
⊢ ((𝑁 -s 𝑀) ∈ ℕ0s →
0s ≤s (𝑁
-s 𝑀)) |
82 | | n0sno 28245 |
. . . . 5
⊢ (𝑁 ∈ ℕ0s
→ 𝑁 ∈ No ) |
83 | 82 | adantl 480 |
. . . 4
⊢ ((𝑀 ∈ ℕ0s
∧ 𝑁 ∈
ℕ0s) → 𝑁 ∈ No
) |
84 | | n0sno 28245 |
. . . . 5
⊢ (𝑀 ∈ ℕ0s
→ 𝑀 ∈ No ) |
85 | 84 | adantr 479 |
. . . 4
⊢ ((𝑀 ∈ ℕ0s
∧ 𝑁 ∈
ℕ0s) → 𝑀 ∈ No
) |
86 | 83, 85 | subsge0d 28055 |
. . 3
⊢ ((𝑀 ∈ ℕ0s
∧ 𝑁 ∈
ℕ0s) → ( 0s ≤s (𝑁 -s 𝑀) ↔ 𝑀 ≤s 𝑁)) |
87 | 81, 86 | imbitrid 243 |
. 2
⊢ ((𝑀 ∈ ℕ0s
∧ 𝑁 ∈
ℕ0s) → ((𝑁 -s 𝑀) ∈ ℕ0s → 𝑀 ≤s 𝑁)) |
88 | 80, 87 | impbid 211 |
1
⊢ ((𝑀 ∈ ℕ0s
∧ 𝑁 ∈
ℕ0s) → (𝑀 ≤s 𝑁 ↔ (𝑁 -s 𝑀) ∈
ℕ0s)) |