MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  n0subs Structured version   Visualization version   GIF version

Theorem n0subs 28253
Description: Subtraction of non-negative surreal integers. (Contributed by Scott Fenton, 26-May-2025.)
Assertion
Ref Expression
n0subs ((𝑀 ∈ ℕ0s𝑁 ∈ ℕ0s) → (𝑀 ≤s 𝑁 ↔ (𝑁 -s 𝑀) ∈ ℕ0s))

Proof of Theorem n0subs
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq2 5111 . . . . . 6 (𝑥 = 0s → (𝑧 ≤s 𝑥𝑧 ≤s 0s ))
2 oveq1 7394 . . . . . . 7 (𝑥 = 0s → (𝑥 -s 𝑧) = ( 0s -s 𝑧))
32eleq1d 2813 . . . . . 6 (𝑥 = 0s → ((𝑥 -s 𝑧) ∈ ℕ0s ↔ ( 0s -s 𝑧) ∈ ℕ0s))
41, 3imbi12d 344 . . . . 5 (𝑥 = 0s → ((𝑧 ≤s 𝑥 → (𝑥 -s 𝑧) ∈ ℕ0s) ↔ (𝑧 ≤s 0s → ( 0s -s 𝑧) ∈ ℕ0s)))
54ralbidv 3156 . . . 4 (𝑥 = 0s → (∀𝑧 ∈ ℕ0s (𝑧 ≤s 𝑥 → (𝑥 -s 𝑧) ∈ ℕ0s) ↔ ∀𝑧 ∈ ℕ0s (𝑧 ≤s 0s → ( 0s -s 𝑧) ∈ ℕ0s)))
6 breq2 5111 . . . . . 6 (𝑥 = 𝑦 → (𝑧 ≤s 𝑥𝑧 ≤s 𝑦))
7 oveq1 7394 . . . . . . 7 (𝑥 = 𝑦 → (𝑥 -s 𝑧) = (𝑦 -s 𝑧))
87eleq1d 2813 . . . . . 6 (𝑥 = 𝑦 → ((𝑥 -s 𝑧) ∈ ℕ0s ↔ (𝑦 -s 𝑧) ∈ ℕ0s))
96, 8imbi12d 344 . . . . 5 (𝑥 = 𝑦 → ((𝑧 ≤s 𝑥 → (𝑥 -s 𝑧) ∈ ℕ0s) ↔ (𝑧 ≤s 𝑦 → (𝑦 -s 𝑧) ∈ ℕ0s)))
109ralbidv 3156 . . . 4 (𝑥 = 𝑦 → (∀𝑧 ∈ ℕ0s (𝑧 ≤s 𝑥 → (𝑥 -s 𝑧) ∈ ℕ0s) ↔ ∀𝑧 ∈ ℕ0s (𝑧 ≤s 𝑦 → (𝑦 -s 𝑧) ∈ ℕ0s)))
11 breq2 5111 . . . . . 6 (𝑥 = (𝑦 +s 1s ) → (𝑧 ≤s 𝑥𝑧 ≤s (𝑦 +s 1s )))
12 oveq1 7394 . . . . . . 7 (𝑥 = (𝑦 +s 1s ) → (𝑥 -s 𝑧) = ((𝑦 +s 1s ) -s 𝑧))
1312eleq1d 2813 . . . . . 6 (𝑥 = (𝑦 +s 1s ) → ((𝑥 -s 𝑧) ∈ ℕ0s ↔ ((𝑦 +s 1s ) -s 𝑧) ∈ ℕ0s))
1411, 13imbi12d 344 . . . . 5 (𝑥 = (𝑦 +s 1s ) → ((𝑧 ≤s 𝑥 → (𝑥 -s 𝑧) ∈ ℕ0s) ↔ (𝑧 ≤s (𝑦 +s 1s ) → ((𝑦 +s 1s ) -s 𝑧) ∈ ℕ0s)))
1514ralbidv 3156 . . . 4 (𝑥 = (𝑦 +s 1s ) → (∀𝑧 ∈ ℕ0s (𝑧 ≤s 𝑥 → (𝑥 -s 𝑧) ∈ ℕ0s) ↔ ∀𝑧 ∈ ℕ0s (𝑧 ≤s (𝑦 +s 1s ) → ((𝑦 +s 1s ) -s 𝑧) ∈ ℕ0s)))
16 breq2 5111 . . . . . 6 (𝑥 = 𝑁 → (𝑧 ≤s 𝑥𝑧 ≤s 𝑁))
17 oveq1 7394 . . . . . . 7 (𝑥 = 𝑁 → (𝑥 -s 𝑧) = (𝑁 -s 𝑧))
1817eleq1d 2813 . . . . . 6 (𝑥 = 𝑁 → ((𝑥 -s 𝑧) ∈ ℕ0s ↔ (𝑁 -s 𝑧) ∈ ℕ0s))
1916, 18imbi12d 344 . . . . 5 (𝑥 = 𝑁 → ((𝑧 ≤s 𝑥 → (𝑥 -s 𝑧) ∈ ℕ0s) ↔ (𝑧 ≤s 𝑁 → (𝑁 -s 𝑧) ∈ ℕ0s)))
2019ralbidv 3156 . . . 4 (𝑥 = 𝑁 → (∀𝑧 ∈ ℕ0s (𝑧 ≤s 𝑥 → (𝑥 -s 𝑧) ∈ ℕ0s) ↔ ∀𝑧 ∈ ℕ0s (𝑧 ≤s 𝑁 → (𝑁 -s 𝑧) ∈ ℕ0s)))
21 n0sge0 28230 . . . . . . . 8 (𝑧 ∈ ℕ0s → 0s ≤s 𝑧)
2221biantrud 531 . . . . . . 7 (𝑧 ∈ ℕ0s → (𝑧 ≤s 0s ↔ (𝑧 ≤s 0s ∧ 0s ≤s 𝑧)))
23 n0sno 28216 . . . . . . . 8 (𝑧 ∈ ℕ0s𝑧 No )
24 0sno 27738 . . . . . . . 8 0s No
25 sletri3 27667 . . . . . . . 8 ((𝑧 No ∧ 0s No ) → (𝑧 = 0s ↔ (𝑧 ≤s 0s ∧ 0s ≤s 𝑧)))
2623, 24, 25sylancl 586 . . . . . . 7 (𝑧 ∈ ℕ0s → (𝑧 = 0s ↔ (𝑧 ≤s 0s ∧ 0s ≤s 𝑧)))
2722, 26bitr4d 282 . . . . . 6 (𝑧 ∈ ℕ0s → (𝑧 ≤s 0s𝑧 = 0s ))
28 oveq2 7395 . . . . . . 7 (𝑧 = 0s → ( 0s -s 𝑧) = ( 0s -s 0s ))
29 subsid 27973 . . . . . . . . 9 ( 0s No → ( 0s -s 0s ) = 0s )
3024, 29ax-mp 5 . . . . . . . 8 ( 0s -s 0s ) = 0s
31 0n0s 28222 . . . . . . . 8 0s ∈ ℕ0s
3230, 31eqeltri 2824 . . . . . . 7 ( 0s -s 0s ) ∈ ℕ0s
3328, 32eqeltrdi 2836 . . . . . 6 (𝑧 = 0s → ( 0s -s 𝑧) ∈ ℕ0s)
3427, 33biimtrdi 253 . . . . 5 (𝑧 ∈ ℕ0s → (𝑧 ≤s 0s → ( 0s -s 𝑧) ∈ ℕ0s))
3534rgen 3046 . . . 4 𝑧 ∈ ℕ0s (𝑧 ≤s 0s → ( 0s -s 𝑧) ∈ ℕ0s)
36 breq1 5110 . . . . . . 7 (𝑧 = 𝑥 → (𝑧 ≤s 𝑦𝑥 ≤s 𝑦))
37 oveq2 7395 . . . . . . . 8 (𝑧 = 𝑥 → (𝑦 -s 𝑧) = (𝑦 -s 𝑥))
3837eleq1d 2813 . . . . . . 7 (𝑧 = 𝑥 → ((𝑦 -s 𝑧) ∈ ℕ0s ↔ (𝑦 -s 𝑥) ∈ ℕ0s))
3936, 38imbi12d 344 . . . . . 6 (𝑧 = 𝑥 → ((𝑧 ≤s 𝑦 → (𝑦 -s 𝑧) ∈ ℕ0s) ↔ (𝑥 ≤s 𝑦 → (𝑦 -s 𝑥) ∈ ℕ0s)))
4039cbvralvw 3215 . . . . 5 (∀𝑧 ∈ ℕ0s (𝑧 ≤s 𝑦 → (𝑦 -s 𝑧) ∈ ℕ0s) ↔ ∀𝑥 ∈ ℕ0s (𝑥 ≤s 𝑦 → (𝑦 -s 𝑥) ∈ ℕ0s))
41 n0sno 28216 . . . . . . . . . . . 12 (𝑦 ∈ ℕ0s𝑦 No )
42 peano2no 27891 . . . . . . . . . . . 12 (𝑦 No → (𝑦 +s 1s ) ∈ No )
43 subsid1 27972 . . . . . . . . . . . 12 ((𝑦 +s 1s ) ∈ No → ((𝑦 +s 1s ) -s 0s ) = (𝑦 +s 1s ))
4441, 42, 433syl 18 . . . . . . . . . . 11 (𝑦 ∈ ℕ0s → ((𝑦 +s 1s ) -s 0s ) = (𝑦 +s 1s ))
45 peano2n0s 28223 . . . . . . . . . . 11 (𝑦 ∈ ℕ0s → (𝑦 +s 1s ) ∈ ℕ0s)
4644, 45eqeltrd 2828 . . . . . . . . . 10 (𝑦 ∈ ℕ0s → ((𝑦 +s 1s ) -s 0s ) ∈ ℕ0s)
47 oveq2 7395 . . . . . . . . . . 11 (𝑧 = 0s → ((𝑦 +s 1s ) -s 𝑧) = ((𝑦 +s 1s ) -s 0s ))
4847eleq1d 2813 . . . . . . . . . 10 (𝑧 = 0s → (((𝑦 +s 1s ) -s 𝑧) ∈ ℕ0s ↔ ((𝑦 +s 1s ) -s 0s ) ∈ ℕ0s))
4946, 48syl5ibrcom 247 . . . . . . . . 9 (𝑦 ∈ ℕ0s → (𝑧 = 0s → ((𝑦 +s 1s ) -s 𝑧) ∈ ℕ0s))
50492a1dd 51 . . . . . . . 8 (𝑦 ∈ ℕ0s → (𝑧 = 0s → (∀𝑥 ∈ ℕ0s (𝑥 ≤s 𝑦 → (𝑦 -s 𝑥) ∈ ℕ0s) → (𝑧 ≤s (𝑦 +s 1s ) → ((𝑦 +s 1s ) -s 𝑧) ∈ ℕ0s))))
5150adantr 480 . . . . . . 7 ((𝑦 ∈ ℕ0s𝑧 ∈ ℕ0s) → (𝑧 = 0s → (∀𝑥 ∈ ℕ0s (𝑥 ≤s 𝑦 → (𝑦 -s 𝑥) ∈ ℕ0s) → (𝑧 ≤s (𝑦 +s 1s ) → ((𝑦 +s 1s ) -s 𝑧) ∈ ℕ0s))))
52 breq1 5110 . . . . . . . . . 10 (𝑥 = (𝑧 -s 1s ) → (𝑥 ≤s 𝑦 ↔ (𝑧 -s 1s ) ≤s 𝑦))
53 oveq2 7395 . . . . . . . . . . 11 (𝑥 = (𝑧 -s 1s ) → (𝑦 -s 𝑥) = (𝑦 -s (𝑧 -s 1s )))
5453eleq1d 2813 . . . . . . . . . 10 (𝑥 = (𝑧 -s 1s ) → ((𝑦 -s 𝑥) ∈ ℕ0s ↔ (𝑦 -s (𝑧 -s 1s )) ∈ ℕ0s))
5552, 54imbi12d 344 . . . . . . . . 9 (𝑥 = (𝑧 -s 1s ) → ((𝑥 ≤s 𝑦 → (𝑦 -s 𝑥) ∈ ℕ0s) ↔ ((𝑧 -s 1s ) ≤s 𝑦 → (𝑦 -s (𝑧 -s 1s )) ∈ ℕ0s)))
5655rspcv 3584 . . . . . . . 8 ((𝑧 -s 1s ) ∈ ℕ0s → (∀𝑥 ∈ ℕ0s (𝑥 ≤s 𝑦 → (𝑦 -s 𝑥) ∈ ℕ0s) → ((𝑧 -s 1s ) ≤s 𝑦 → (𝑦 -s (𝑧 -s 1s )) ∈ ℕ0s)))
5723adantl 481 . . . . . . . . . . 11 ((𝑦 ∈ ℕ0s𝑧 ∈ ℕ0s) → 𝑧 No )
58 1sno 27739 . . . . . . . . . . . 12 1s No
5958a1i 11 . . . . . . . . . . 11 ((𝑦 ∈ ℕ0s𝑧 ∈ ℕ0s) → 1s No )
6041adantr 480 . . . . . . . . . . 11 ((𝑦 ∈ ℕ0s𝑧 ∈ ℕ0s) → 𝑦 No )
6157, 59, 60slesubaddd 27997 . . . . . . . . . 10 ((𝑦 ∈ ℕ0s𝑧 ∈ ℕ0s) → ((𝑧 -s 1s ) ≤s 𝑦𝑧 ≤s (𝑦 +s 1s )))
6260, 57, 59subsubs2d 27999 . . . . . . . . . . . 12 ((𝑦 ∈ ℕ0s𝑧 ∈ ℕ0s) → (𝑦 -s (𝑧 -s 1s )) = (𝑦 +s ( 1s -s 𝑧)))
6360, 59, 57addsubsassd 27985 . . . . . . . . . . . 12 ((𝑦 ∈ ℕ0s𝑧 ∈ ℕ0s) → ((𝑦 +s 1s ) -s 𝑧) = (𝑦 +s ( 1s -s 𝑧)))
6462, 63eqtr4d 2767 . . . . . . . . . . 11 ((𝑦 ∈ ℕ0s𝑧 ∈ ℕ0s) → (𝑦 -s (𝑧 -s 1s )) = ((𝑦 +s 1s ) -s 𝑧))
6564eleq1d 2813 . . . . . . . . . 10 ((𝑦 ∈ ℕ0s𝑧 ∈ ℕ0s) → ((𝑦 -s (𝑧 -s 1s )) ∈ ℕ0s ↔ ((𝑦 +s 1s ) -s 𝑧) ∈ ℕ0s))
6661, 65imbi12d 344 . . . . . . . . 9 ((𝑦 ∈ ℕ0s𝑧 ∈ ℕ0s) → (((𝑧 -s 1s ) ≤s 𝑦 → (𝑦 -s (𝑧 -s 1s )) ∈ ℕ0s) ↔ (𝑧 ≤s (𝑦 +s 1s ) → ((𝑦 +s 1s ) -s 𝑧) ∈ ℕ0s)))
6766biimpd 229 . . . . . . . 8 ((𝑦 ∈ ℕ0s𝑧 ∈ ℕ0s) → (((𝑧 -s 1s ) ≤s 𝑦 → (𝑦 -s (𝑧 -s 1s )) ∈ ℕ0s) → (𝑧 ≤s (𝑦 +s 1s ) → ((𝑦 +s 1s ) -s 𝑧) ∈ ℕ0s)))
6856, 67syl9r 78 . . . . . . 7 ((𝑦 ∈ ℕ0s𝑧 ∈ ℕ0s) → ((𝑧 -s 1s ) ∈ ℕ0s → (∀𝑥 ∈ ℕ0s (𝑥 ≤s 𝑦 → (𝑦 -s 𝑥) ∈ ℕ0s) → (𝑧 ≤s (𝑦 +s 1s ) → ((𝑦 +s 1s ) -s 𝑧) ∈ ℕ0s))))
69 n0s0m1 28252 . . . . . . . 8 (𝑧 ∈ ℕ0s → (𝑧 = 0s ∨ (𝑧 -s 1s ) ∈ ℕ0s))
7069adantl 481 . . . . . . 7 ((𝑦 ∈ ℕ0s𝑧 ∈ ℕ0s) → (𝑧 = 0s ∨ (𝑧 -s 1s ) ∈ ℕ0s))
7151, 68, 70mpjaod 860 . . . . . 6 ((𝑦 ∈ ℕ0s𝑧 ∈ ℕ0s) → (∀𝑥 ∈ ℕ0s (𝑥 ≤s 𝑦 → (𝑦 -s 𝑥) ∈ ℕ0s) → (𝑧 ≤s (𝑦 +s 1s ) → ((𝑦 +s 1s ) -s 𝑧) ∈ ℕ0s)))
7271ralrimdva 3133 . . . . 5 (𝑦 ∈ ℕ0s → (∀𝑥 ∈ ℕ0s (𝑥 ≤s 𝑦 → (𝑦 -s 𝑥) ∈ ℕ0s) → ∀𝑧 ∈ ℕ0s (𝑧 ≤s (𝑦 +s 1s ) → ((𝑦 +s 1s ) -s 𝑧) ∈ ℕ0s)))
7340, 72biimtrid 242 . . . 4 (𝑦 ∈ ℕ0s → (∀𝑧 ∈ ℕ0s (𝑧 ≤s 𝑦 → (𝑦 -s 𝑧) ∈ ℕ0s) → ∀𝑧 ∈ ℕ0s (𝑧 ≤s (𝑦 +s 1s ) → ((𝑦 +s 1s ) -s 𝑧) ∈ ℕ0s)))
745, 10, 15, 20, 35, 73n0sind 28225 . . 3 (𝑁 ∈ ℕ0s → ∀𝑧 ∈ ℕ0s (𝑧 ≤s 𝑁 → (𝑁 -s 𝑧) ∈ ℕ0s))
75 breq1 5110 . . . . 5 (𝑧 = 𝑀 → (𝑧 ≤s 𝑁𝑀 ≤s 𝑁))
76 oveq2 7395 . . . . . 6 (𝑧 = 𝑀 → (𝑁 -s 𝑧) = (𝑁 -s 𝑀))
7776eleq1d 2813 . . . . 5 (𝑧 = 𝑀 → ((𝑁 -s 𝑧) ∈ ℕ0s ↔ (𝑁 -s 𝑀) ∈ ℕ0s))
7875, 77imbi12d 344 . . . 4 (𝑧 = 𝑀 → ((𝑧 ≤s 𝑁 → (𝑁 -s 𝑧) ∈ ℕ0s) ↔ (𝑀 ≤s 𝑁 → (𝑁 -s 𝑀) ∈ ℕ0s)))
7978rspcva 3586 . . 3 ((𝑀 ∈ ℕ0s ∧ ∀𝑧 ∈ ℕ0s (𝑧 ≤s 𝑁 → (𝑁 -s 𝑧) ∈ ℕ0s)) → (𝑀 ≤s 𝑁 → (𝑁 -s 𝑀) ∈ ℕ0s))
8074, 79sylan2 593 . 2 ((𝑀 ∈ ℕ0s𝑁 ∈ ℕ0s) → (𝑀 ≤s 𝑁 → (𝑁 -s 𝑀) ∈ ℕ0s))
81 n0sge0 28230 . . 3 ((𝑁 -s 𝑀) ∈ ℕ0s → 0s ≤s (𝑁 -s 𝑀))
82 n0sno 28216 . . . . 5 (𝑁 ∈ ℕ0s𝑁 No )
8382adantl 481 . . . 4 ((𝑀 ∈ ℕ0s𝑁 ∈ ℕ0s) → 𝑁 No )
84 n0sno 28216 . . . . 5 (𝑀 ∈ ℕ0s𝑀 No )
8584adantr 480 . . . 4 ((𝑀 ∈ ℕ0s𝑁 ∈ ℕ0s) → 𝑀 No )
8683, 85subsge0d 28003 . . 3 ((𝑀 ∈ ℕ0s𝑁 ∈ ℕ0s) → ( 0s ≤s (𝑁 -s 𝑀) ↔ 𝑀 ≤s 𝑁))
8781, 86imbitrid 244 . 2 ((𝑀 ∈ ℕ0s𝑁 ∈ ℕ0s) → ((𝑁 -s 𝑀) ∈ ℕ0s𝑀 ≤s 𝑁))
8880, 87impbid 212 1 ((𝑀 ∈ ℕ0s𝑁 ∈ ℕ0s) → (𝑀 ≤s 𝑁 ↔ (𝑁 -s 𝑀) ∈ ℕ0s))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wral 3044   class class class wbr 5107  (class class class)co 7387   No csur 27551   ≤s csle 27656   0s c0s 27734   1s c1s 27735   +s cadds 27866   -s csubs 27926  0scnn0s 28206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-ot 4598  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-nadd 8630  df-no 27554  df-slt 27555  df-bday 27556  df-sle 27657  df-sslt 27693  df-scut 27695  df-0s 27736  df-1s 27737  df-made 27755  df-old 27756  df-left 27758  df-right 27759  df-norec 27845  df-norec2 27856  df-adds 27867  df-negs 27927  df-subs 27928  df-n0s 28208
This theorem is referenced by:  n0subs2  28254  elzn0s  28286  eln0zs  28288
  Copyright terms: Public domain W3C validator