MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  n0subs Structured version   Visualization version   GIF version

Theorem n0subs 28275
Description: Subtraction of non-negative surreal integers. (Contributed by Scott Fenton, 26-May-2025.)
Assertion
Ref Expression
n0subs ((𝑀 ∈ ℕ0s𝑁 ∈ ℕ0s) → (𝑀 ≤s 𝑁 ↔ (𝑁 -s 𝑀) ∈ ℕ0s))

Proof of Theorem n0subs
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq2 5153 . . . . . 6 (𝑥 = 0s → (𝑧 ≤s 𝑥𝑧 ≤s 0s ))
2 oveq1 7426 . . . . . . 7 (𝑥 = 0s → (𝑥 -s 𝑧) = ( 0s -s 𝑧))
32eleq1d 2810 . . . . . 6 (𝑥 = 0s → ((𝑥 -s 𝑧) ∈ ℕ0s ↔ ( 0s -s 𝑧) ∈ ℕ0s))
41, 3imbi12d 343 . . . . 5 (𝑥 = 0s → ((𝑧 ≤s 𝑥 → (𝑥 -s 𝑧) ∈ ℕ0s) ↔ (𝑧 ≤s 0s → ( 0s -s 𝑧) ∈ ℕ0s)))
54ralbidv 3167 . . . 4 (𝑥 = 0s → (∀𝑧 ∈ ℕ0s (𝑧 ≤s 𝑥 → (𝑥 -s 𝑧) ∈ ℕ0s) ↔ ∀𝑧 ∈ ℕ0s (𝑧 ≤s 0s → ( 0s -s 𝑧) ∈ ℕ0s)))
6 breq2 5153 . . . . . 6 (𝑥 = 𝑦 → (𝑧 ≤s 𝑥𝑧 ≤s 𝑦))
7 oveq1 7426 . . . . . . 7 (𝑥 = 𝑦 → (𝑥 -s 𝑧) = (𝑦 -s 𝑧))
87eleq1d 2810 . . . . . 6 (𝑥 = 𝑦 → ((𝑥 -s 𝑧) ∈ ℕ0s ↔ (𝑦 -s 𝑧) ∈ ℕ0s))
96, 8imbi12d 343 . . . . 5 (𝑥 = 𝑦 → ((𝑧 ≤s 𝑥 → (𝑥 -s 𝑧) ∈ ℕ0s) ↔ (𝑧 ≤s 𝑦 → (𝑦 -s 𝑧) ∈ ℕ0s)))
109ralbidv 3167 . . . 4 (𝑥 = 𝑦 → (∀𝑧 ∈ ℕ0s (𝑧 ≤s 𝑥 → (𝑥 -s 𝑧) ∈ ℕ0s) ↔ ∀𝑧 ∈ ℕ0s (𝑧 ≤s 𝑦 → (𝑦 -s 𝑧) ∈ ℕ0s)))
11 breq2 5153 . . . . . 6 (𝑥 = (𝑦 +s 1s ) → (𝑧 ≤s 𝑥𝑧 ≤s (𝑦 +s 1s )))
12 oveq1 7426 . . . . . . 7 (𝑥 = (𝑦 +s 1s ) → (𝑥 -s 𝑧) = ((𝑦 +s 1s ) -s 𝑧))
1312eleq1d 2810 . . . . . 6 (𝑥 = (𝑦 +s 1s ) → ((𝑥 -s 𝑧) ∈ ℕ0s ↔ ((𝑦 +s 1s ) -s 𝑧) ∈ ℕ0s))
1411, 13imbi12d 343 . . . . 5 (𝑥 = (𝑦 +s 1s ) → ((𝑧 ≤s 𝑥 → (𝑥 -s 𝑧) ∈ ℕ0s) ↔ (𝑧 ≤s (𝑦 +s 1s ) → ((𝑦 +s 1s ) -s 𝑧) ∈ ℕ0s)))
1514ralbidv 3167 . . . 4 (𝑥 = (𝑦 +s 1s ) → (∀𝑧 ∈ ℕ0s (𝑧 ≤s 𝑥 → (𝑥 -s 𝑧) ∈ ℕ0s) ↔ ∀𝑧 ∈ ℕ0s (𝑧 ≤s (𝑦 +s 1s ) → ((𝑦 +s 1s ) -s 𝑧) ∈ ℕ0s)))
16 breq2 5153 . . . . . 6 (𝑥 = 𝑁 → (𝑧 ≤s 𝑥𝑧 ≤s 𝑁))
17 oveq1 7426 . . . . . . 7 (𝑥 = 𝑁 → (𝑥 -s 𝑧) = (𝑁 -s 𝑧))
1817eleq1d 2810 . . . . . 6 (𝑥 = 𝑁 → ((𝑥 -s 𝑧) ∈ ℕ0s ↔ (𝑁 -s 𝑧) ∈ ℕ0s))
1916, 18imbi12d 343 . . . . 5 (𝑥 = 𝑁 → ((𝑧 ≤s 𝑥 → (𝑥 -s 𝑧) ∈ ℕ0s) ↔ (𝑧 ≤s 𝑁 → (𝑁 -s 𝑧) ∈ ℕ0s)))
2019ralbidv 3167 . . . 4 (𝑥 = 𝑁 → (∀𝑧 ∈ ℕ0s (𝑧 ≤s 𝑥 → (𝑥 -s 𝑧) ∈ ℕ0s) ↔ ∀𝑧 ∈ ℕ0s (𝑧 ≤s 𝑁 → (𝑁 -s 𝑧) ∈ ℕ0s)))
21 n0sge0 28258 . . . . . . . 8 (𝑧 ∈ ℕ0s → 0s ≤s 𝑧)
2221biantrud 530 . . . . . . 7 (𝑧 ∈ ℕ0s → (𝑧 ≤s 0s ↔ (𝑧 ≤s 0s ∧ 0s ≤s 𝑧)))
23 n0sno 28245 . . . . . . . 8 (𝑧 ∈ ℕ0s𝑧 No )
24 0sno 27805 . . . . . . . 8 0s No
25 sletri3 27734 . . . . . . . 8 ((𝑧 No ∧ 0s No ) → (𝑧 = 0s ↔ (𝑧 ≤s 0s ∧ 0s ≤s 𝑧)))
2623, 24, 25sylancl 584 . . . . . . 7 (𝑧 ∈ ℕ0s → (𝑧 = 0s ↔ (𝑧 ≤s 0s ∧ 0s ≤s 𝑧)))
2722, 26bitr4d 281 . . . . . 6 (𝑧 ∈ ℕ0s → (𝑧 ≤s 0s𝑧 = 0s ))
28 oveq2 7427 . . . . . . 7 (𝑧 = 0s → ( 0s -s 𝑧) = ( 0s -s 0s ))
29 subsid 28025 . . . . . . . . 9 ( 0s No → ( 0s -s 0s ) = 0s )
3024, 29ax-mp 5 . . . . . . . 8 ( 0s -s 0s ) = 0s
31 0n0s 28251 . . . . . . . 8 0s ∈ ℕ0s
3230, 31eqeltri 2821 . . . . . . 7 ( 0s -s 0s ) ∈ ℕ0s
3328, 32eqeltrdi 2833 . . . . . 6 (𝑧 = 0s → ( 0s -s 𝑧) ∈ ℕ0s)
3427, 33biimtrdi 252 . . . . 5 (𝑧 ∈ ℕ0s → (𝑧 ≤s 0s → ( 0s -s 𝑧) ∈ ℕ0s))
3534rgen 3052 . . . 4 𝑧 ∈ ℕ0s (𝑧 ≤s 0s → ( 0s -s 𝑧) ∈ ℕ0s)
36 breq1 5152 . . . . . . 7 (𝑧 = 𝑥 → (𝑧 ≤s 𝑦𝑥 ≤s 𝑦))
37 oveq2 7427 . . . . . . . 8 (𝑧 = 𝑥 → (𝑦 -s 𝑧) = (𝑦 -s 𝑥))
3837eleq1d 2810 . . . . . . 7 (𝑧 = 𝑥 → ((𝑦 -s 𝑧) ∈ ℕ0s ↔ (𝑦 -s 𝑥) ∈ ℕ0s))
3936, 38imbi12d 343 . . . . . 6 (𝑧 = 𝑥 → ((𝑧 ≤s 𝑦 → (𝑦 -s 𝑧) ∈ ℕ0s) ↔ (𝑥 ≤s 𝑦 → (𝑦 -s 𝑥) ∈ ℕ0s)))
4039cbvralvw 3224 . . . . 5 (∀𝑧 ∈ ℕ0s (𝑧 ≤s 𝑦 → (𝑦 -s 𝑧) ∈ ℕ0s) ↔ ∀𝑥 ∈ ℕ0s (𝑥 ≤s 𝑦 → (𝑦 -s 𝑥) ∈ ℕ0s))
41 n0sno 28245 . . . . . . . . . . . 12 (𝑦 ∈ ℕ0s𝑦 No )
42 peano2no 27947 . . . . . . . . . . . 12 (𝑦 No → (𝑦 +s 1s ) ∈ No )
43 subsid1 28024 . . . . . . . . . . . 12 ((𝑦 +s 1s ) ∈ No → ((𝑦 +s 1s ) -s 0s ) = (𝑦 +s 1s ))
4441, 42, 433syl 18 . . . . . . . . . . 11 (𝑦 ∈ ℕ0s → ((𝑦 +s 1s ) -s 0s ) = (𝑦 +s 1s ))
45 peano2n0s 28252 . . . . . . . . . . 11 (𝑦 ∈ ℕ0s → (𝑦 +s 1s ) ∈ ℕ0s)
4644, 45eqeltrd 2825 . . . . . . . . . 10 (𝑦 ∈ ℕ0s → ((𝑦 +s 1s ) -s 0s ) ∈ ℕ0s)
47 oveq2 7427 . . . . . . . . . . 11 (𝑧 = 0s → ((𝑦 +s 1s ) -s 𝑧) = ((𝑦 +s 1s ) -s 0s ))
4847eleq1d 2810 . . . . . . . . . 10 (𝑧 = 0s → (((𝑦 +s 1s ) -s 𝑧) ∈ ℕ0s ↔ ((𝑦 +s 1s ) -s 0s ) ∈ ℕ0s))
4946, 48syl5ibrcom 246 . . . . . . . . 9 (𝑦 ∈ ℕ0s → (𝑧 = 0s → ((𝑦 +s 1s ) -s 𝑧) ∈ ℕ0s))
50492a1dd 51 . . . . . . . 8 (𝑦 ∈ ℕ0s → (𝑧 = 0s → (∀𝑥 ∈ ℕ0s (𝑥 ≤s 𝑦 → (𝑦 -s 𝑥) ∈ ℕ0s) → (𝑧 ≤s (𝑦 +s 1s ) → ((𝑦 +s 1s ) -s 𝑧) ∈ ℕ0s))))
5150adantr 479 . . . . . . 7 ((𝑦 ∈ ℕ0s𝑧 ∈ ℕ0s) → (𝑧 = 0s → (∀𝑥 ∈ ℕ0s (𝑥 ≤s 𝑦 → (𝑦 -s 𝑥) ∈ ℕ0s) → (𝑧 ≤s (𝑦 +s 1s ) → ((𝑦 +s 1s ) -s 𝑧) ∈ ℕ0s))))
52 breq1 5152 . . . . . . . . . 10 (𝑥 = (𝑧 -s 1s ) → (𝑥 ≤s 𝑦 ↔ (𝑧 -s 1s ) ≤s 𝑦))
53 oveq2 7427 . . . . . . . . . . 11 (𝑥 = (𝑧 -s 1s ) → (𝑦 -s 𝑥) = (𝑦 -s (𝑧 -s 1s )))
5453eleq1d 2810 . . . . . . . . . 10 (𝑥 = (𝑧 -s 1s ) → ((𝑦 -s 𝑥) ∈ ℕ0s ↔ (𝑦 -s (𝑧 -s 1s )) ∈ ℕ0s))
5552, 54imbi12d 343 . . . . . . . . 9 (𝑥 = (𝑧 -s 1s ) → ((𝑥 ≤s 𝑦 → (𝑦 -s 𝑥) ∈ ℕ0s) ↔ ((𝑧 -s 1s ) ≤s 𝑦 → (𝑦 -s (𝑧 -s 1s )) ∈ ℕ0s)))
5655rspcv 3602 . . . . . . . 8 ((𝑧 -s 1s ) ∈ ℕ0s → (∀𝑥 ∈ ℕ0s (𝑥 ≤s 𝑦 → (𝑦 -s 𝑥) ∈ ℕ0s) → ((𝑧 -s 1s ) ≤s 𝑦 → (𝑦 -s (𝑧 -s 1s )) ∈ ℕ0s)))
5723adantl 480 . . . . . . . . . . 11 ((𝑦 ∈ ℕ0s𝑧 ∈ ℕ0s) → 𝑧 No )
58 1sno 27806 . . . . . . . . . . . 12 1s No
5958a1i 11 . . . . . . . . . . 11 ((𝑦 ∈ ℕ0s𝑧 ∈ ℕ0s) → 1s No )
6041adantr 479 . . . . . . . . . . 11 ((𝑦 ∈ ℕ0s𝑧 ∈ ℕ0s) → 𝑦 No )
6157, 59, 60slesubaddd 28049 . . . . . . . . . 10 ((𝑦 ∈ ℕ0s𝑧 ∈ ℕ0s) → ((𝑧 -s 1s ) ≤s 𝑦𝑧 ≤s (𝑦 +s 1s )))
6260, 57, 59subsubs2d 28051 . . . . . . . . . . . 12 ((𝑦 ∈ ℕ0s𝑧 ∈ ℕ0s) → (𝑦 -s (𝑧 -s 1s )) = (𝑦 +s ( 1s -s 𝑧)))
6360, 59, 57addsubsassd 28037 . . . . . . . . . . . 12 ((𝑦 ∈ ℕ0s𝑧 ∈ ℕ0s) → ((𝑦 +s 1s ) -s 𝑧) = (𝑦 +s ( 1s -s 𝑧)))
6462, 63eqtr4d 2768 . . . . . . . . . . 11 ((𝑦 ∈ ℕ0s𝑧 ∈ ℕ0s) → (𝑦 -s (𝑧 -s 1s )) = ((𝑦 +s 1s ) -s 𝑧))
6564eleq1d 2810 . . . . . . . . . 10 ((𝑦 ∈ ℕ0s𝑧 ∈ ℕ0s) → ((𝑦 -s (𝑧 -s 1s )) ∈ ℕ0s ↔ ((𝑦 +s 1s ) -s 𝑧) ∈ ℕ0s))
6661, 65imbi12d 343 . . . . . . . . 9 ((𝑦 ∈ ℕ0s𝑧 ∈ ℕ0s) → (((𝑧 -s 1s ) ≤s 𝑦 → (𝑦 -s (𝑧 -s 1s )) ∈ ℕ0s) ↔ (𝑧 ≤s (𝑦 +s 1s ) → ((𝑦 +s 1s ) -s 𝑧) ∈ ℕ0s)))
6766biimpd 228 . . . . . . . 8 ((𝑦 ∈ ℕ0s𝑧 ∈ ℕ0s) → (((𝑧 -s 1s ) ≤s 𝑦 → (𝑦 -s (𝑧 -s 1s )) ∈ ℕ0s) → (𝑧 ≤s (𝑦 +s 1s ) → ((𝑦 +s 1s ) -s 𝑧) ∈ ℕ0s)))
6856, 67syl9r 78 . . . . . . 7 ((𝑦 ∈ ℕ0s𝑧 ∈ ℕ0s) → ((𝑧 -s 1s ) ∈ ℕ0s → (∀𝑥 ∈ ℕ0s (𝑥 ≤s 𝑦 → (𝑦 -s 𝑥) ∈ ℕ0s) → (𝑧 ≤s (𝑦 +s 1s ) → ((𝑦 +s 1s ) -s 𝑧) ∈ ℕ0s))))
69 n0s0m1 28274 . . . . . . . 8 (𝑧 ∈ ℕ0s → (𝑧 = 0s ∨ (𝑧 -s 1s ) ∈ ℕ0s))
7069adantl 480 . . . . . . 7 ((𝑦 ∈ ℕ0s𝑧 ∈ ℕ0s) → (𝑧 = 0s ∨ (𝑧 -s 1s ) ∈ ℕ0s))
7151, 68, 70mpjaod 858 . . . . . 6 ((𝑦 ∈ ℕ0s𝑧 ∈ ℕ0s) → (∀𝑥 ∈ ℕ0s (𝑥 ≤s 𝑦 → (𝑦 -s 𝑥) ∈ ℕ0s) → (𝑧 ≤s (𝑦 +s 1s ) → ((𝑦 +s 1s ) -s 𝑧) ∈ ℕ0s)))
7271ralrimdva 3143 . . . . 5 (𝑦 ∈ ℕ0s → (∀𝑥 ∈ ℕ0s (𝑥 ≤s 𝑦 → (𝑦 -s 𝑥) ∈ ℕ0s) → ∀𝑧 ∈ ℕ0s (𝑧 ≤s (𝑦 +s 1s ) → ((𝑦 +s 1s ) -s 𝑧) ∈ ℕ0s)))
7340, 72biimtrid 241 . . . 4 (𝑦 ∈ ℕ0s → (∀𝑧 ∈ ℕ0s (𝑧 ≤s 𝑦 → (𝑦 -s 𝑧) ∈ ℕ0s) → ∀𝑧 ∈ ℕ0s (𝑧 ≤s (𝑦 +s 1s ) → ((𝑦 +s 1s ) -s 𝑧) ∈ ℕ0s)))
745, 10, 15, 20, 35, 73n0sind 28254 . . 3 (𝑁 ∈ ℕ0s → ∀𝑧 ∈ ℕ0s (𝑧 ≤s 𝑁 → (𝑁 -s 𝑧) ∈ ℕ0s))
75 breq1 5152 . . . . 5 (𝑧 = 𝑀 → (𝑧 ≤s 𝑁𝑀 ≤s 𝑁))
76 oveq2 7427 . . . . . 6 (𝑧 = 𝑀 → (𝑁 -s 𝑧) = (𝑁 -s 𝑀))
7776eleq1d 2810 . . . . 5 (𝑧 = 𝑀 → ((𝑁 -s 𝑧) ∈ ℕ0s ↔ (𝑁 -s 𝑀) ∈ ℕ0s))
7875, 77imbi12d 343 . . . 4 (𝑧 = 𝑀 → ((𝑧 ≤s 𝑁 → (𝑁 -s 𝑧) ∈ ℕ0s) ↔ (𝑀 ≤s 𝑁 → (𝑁 -s 𝑀) ∈ ℕ0s)))
7978rspcva 3604 . . 3 ((𝑀 ∈ ℕ0s ∧ ∀𝑧 ∈ ℕ0s (𝑧 ≤s 𝑁 → (𝑁 -s 𝑧) ∈ ℕ0s)) → (𝑀 ≤s 𝑁 → (𝑁 -s 𝑀) ∈ ℕ0s))
8074, 79sylan2 591 . 2 ((𝑀 ∈ ℕ0s𝑁 ∈ ℕ0s) → (𝑀 ≤s 𝑁 → (𝑁 -s 𝑀) ∈ ℕ0s))
81 n0sge0 28258 . . 3 ((𝑁 -s 𝑀) ∈ ℕ0s → 0s ≤s (𝑁 -s 𝑀))
82 n0sno 28245 . . . . 5 (𝑁 ∈ ℕ0s𝑁 No )
8382adantl 480 . . . 4 ((𝑀 ∈ ℕ0s𝑁 ∈ ℕ0s) → 𝑁 No )
84 n0sno 28245 . . . . 5 (𝑀 ∈ ℕ0s𝑀 No )
8584adantr 479 . . . 4 ((𝑀 ∈ ℕ0s𝑁 ∈ ℕ0s) → 𝑀 No )
8683, 85subsge0d 28055 . . 3 ((𝑀 ∈ ℕ0s𝑁 ∈ ℕ0s) → ( 0s ≤s (𝑁 -s 𝑀) ↔ 𝑀 ≤s 𝑁))
8781, 86imbitrid 243 . 2 ((𝑀 ∈ ℕ0s𝑁 ∈ ℕ0s) → ((𝑁 -s 𝑀) ∈ ℕ0s𝑀 ≤s 𝑁))
8880, 87impbid 211 1 ((𝑀 ∈ ℕ0s𝑁 ∈ ℕ0s) → (𝑀 ≤s 𝑁 ↔ (𝑁 -s 𝑀) ∈ ℕ0s))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  wo 845   = wceq 1533  wcel 2098  wral 3050   class class class wbr 5149  (class class class)co 7419   No csur 27618   ≤s csle 27723   0s c0s 27801   1s c1s 27802   +s cadds 27922   -s csubs 27979  0scnn0s 28235
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-ot 4639  df-uni 4910  df-int 4951  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-se 5634  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-om 7872  df-1st 7994  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-2o 8488  df-nadd 8687  df-no 27621  df-slt 27622  df-bday 27623  df-sle 27724  df-sslt 27760  df-scut 27762  df-0s 27803  df-1s 27804  df-made 27820  df-old 27821  df-left 27823  df-right 27824  df-norec 27901  df-norec2 27912  df-adds 27923  df-negs 27980  df-subs 27981  df-n0s 28237
This theorem is referenced by:  elzn0s  28291
  Copyright terms: Public domain W3C validator