MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  n0subs Structured version   Visualization version   GIF version

Theorem n0subs 28360
Description: Subtraction of non-negative surreal integers. (Contributed by Scott Fenton, 26-May-2025.)
Assertion
Ref Expression
n0subs ((𝑀 ∈ ℕ0s𝑁 ∈ ℕ0s) → (𝑀 ≤s 𝑁 ↔ (𝑁 -s 𝑀) ∈ ℕ0s))

Proof of Theorem n0subs
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq2 5147 . . . . . 6 (𝑥 = 0s → (𝑧 ≤s 𝑥𝑧 ≤s 0s ))
2 oveq1 7438 . . . . . . 7 (𝑥 = 0s → (𝑥 -s 𝑧) = ( 0s -s 𝑧))
32eleq1d 2826 . . . . . 6 (𝑥 = 0s → ((𝑥 -s 𝑧) ∈ ℕ0s ↔ ( 0s -s 𝑧) ∈ ℕ0s))
41, 3imbi12d 344 . . . . 5 (𝑥 = 0s → ((𝑧 ≤s 𝑥 → (𝑥 -s 𝑧) ∈ ℕ0s) ↔ (𝑧 ≤s 0s → ( 0s -s 𝑧) ∈ ℕ0s)))
54ralbidv 3178 . . . 4 (𝑥 = 0s → (∀𝑧 ∈ ℕ0s (𝑧 ≤s 𝑥 → (𝑥 -s 𝑧) ∈ ℕ0s) ↔ ∀𝑧 ∈ ℕ0s (𝑧 ≤s 0s → ( 0s -s 𝑧) ∈ ℕ0s)))
6 breq2 5147 . . . . . 6 (𝑥 = 𝑦 → (𝑧 ≤s 𝑥𝑧 ≤s 𝑦))
7 oveq1 7438 . . . . . . 7 (𝑥 = 𝑦 → (𝑥 -s 𝑧) = (𝑦 -s 𝑧))
87eleq1d 2826 . . . . . 6 (𝑥 = 𝑦 → ((𝑥 -s 𝑧) ∈ ℕ0s ↔ (𝑦 -s 𝑧) ∈ ℕ0s))
96, 8imbi12d 344 . . . . 5 (𝑥 = 𝑦 → ((𝑧 ≤s 𝑥 → (𝑥 -s 𝑧) ∈ ℕ0s) ↔ (𝑧 ≤s 𝑦 → (𝑦 -s 𝑧) ∈ ℕ0s)))
109ralbidv 3178 . . . 4 (𝑥 = 𝑦 → (∀𝑧 ∈ ℕ0s (𝑧 ≤s 𝑥 → (𝑥 -s 𝑧) ∈ ℕ0s) ↔ ∀𝑧 ∈ ℕ0s (𝑧 ≤s 𝑦 → (𝑦 -s 𝑧) ∈ ℕ0s)))
11 breq2 5147 . . . . . 6 (𝑥 = (𝑦 +s 1s ) → (𝑧 ≤s 𝑥𝑧 ≤s (𝑦 +s 1s )))
12 oveq1 7438 . . . . . . 7 (𝑥 = (𝑦 +s 1s ) → (𝑥 -s 𝑧) = ((𝑦 +s 1s ) -s 𝑧))
1312eleq1d 2826 . . . . . 6 (𝑥 = (𝑦 +s 1s ) → ((𝑥 -s 𝑧) ∈ ℕ0s ↔ ((𝑦 +s 1s ) -s 𝑧) ∈ ℕ0s))
1411, 13imbi12d 344 . . . . 5 (𝑥 = (𝑦 +s 1s ) → ((𝑧 ≤s 𝑥 → (𝑥 -s 𝑧) ∈ ℕ0s) ↔ (𝑧 ≤s (𝑦 +s 1s ) → ((𝑦 +s 1s ) -s 𝑧) ∈ ℕ0s)))
1514ralbidv 3178 . . . 4 (𝑥 = (𝑦 +s 1s ) → (∀𝑧 ∈ ℕ0s (𝑧 ≤s 𝑥 → (𝑥 -s 𝑧) ∈ ℕ0s) ↔ ∀𝑧 ∈ ℕ0s (𝑧 ≤s (𝑦 +s 1s ) → ((𝑦 +s 1s ) -s 𝑧) ∈ ℕ0s)))
16 breq2 5147 . . . . . 6 (𝑥 = 𝑁 → (𝑧 ≤s 𝑥𝑧 ≤s 𝑁))
17 oveq1 7438 . . . . . . 7 (𝑥 = 𝑁 → (𝑥 -s 𝑧) = (𝑁 -s 𝑧))
1817eleq1d 2826 . . . . . 6 (𝑥 = 𝑁 → ((𝑥 -s 𝑧) ∈ ℕ0s ↔ (𝑁 -s 𝑧) ∈ ℕ0s))
1916, 18imbi12d 344 . . . . 5 (𝑥 = 𝑁 → ((𝑧 ≤s 𝑥 → (𝑥 -s 𝑧) ∈ ℕ0s) ↔ (𝑧 ≤s 𝑁 → (𝑁 -s 𝑧) ∈ ℕ0s)))
2019ralbidv 3178 . . . 4 (𝑥 = 𝑁 → (∀𝑧 ∈ ℕ0s (𝑧 ≤s 𝑥 → (𝑥 -s 𝑧) ∈ ℕ0s) ↔ ∀𝑧 ∈ ℕ0s (𝑧 ≤s 𝑁 → (𝑁 -s 𝑧) ∈ ℕ0s)))
21 n0sge0 28341 . . . . . . . 8 (𝑧 ∈ ℕ0s → 0s ≤s 𝑧)
2221biantrud 531 . . . . . . 7 (𝑧 ∈ ℕ0s → (𝑧 ≤s 0s ↔ (𝑧 ≤s 0s ∧ 0s ≤s 𝑧)))
23 n0sno 28328 . . . . . . . 8 (𝑧 ∈ ℕ0s𝑧 No )
24 0sno 27871 . . . . . . . 8 0s No
25 sletri3 27800 . . . . . . . 8 ((𝑧 No ∧ 0s No ) → (𝑧 = 0s ↔ (𝑧 ≤s 0s ∧ 0s ≤s 𝑧)))
2623, 24, 25sylancl 586 . . . . . . 7 (𝑧 ∈ ℕ0s → (𝑧 = 0s ↔ (𝑧 ≤s 0s ∧ 0s ≤s 𝑧)))
2722, 26bitr4d 282 . . . . . 6 (𝑧 ∈ ℕ0s → (𝑧 ≤s 0s𝑧 = 0s ))
28 oveq2 7439 . . . . . . 7 (𝑧 = 0s → ( 0s -s 𝑧) = ( 0s -s 0s ))
29 subsid 28099 . . . . . . . . 9 ( 0s No → ( 0s -s 0s ) = 0s )
3024, 29ax-mp 5 . . . . . . . 8 ( 0s -s 0s ) = 0s
31 0n0s 28334 . . . . . . . 8 0s ∈ ℕ0s
3230, 31eqeltri 2837 . . . . . . 7 ( 0s -s 0s ) ∈ ℕ0s
3328, 32eqeltrdi 2849 . . . . . 6 (𝑧 = 0s → ( 0s -s 𝑧) ∈ ℕ0s)
3427, 33biimtrdi 253 . . . . 5 (𝑧 ∈ ℕ0s → (𝑧 ≤s 0s → ( 0s -s 𝑧) ∈ ℕ0s))
3534rgen 3063 . . . 4 𝑧 ∈ ℕ0s (𝑧 ≤s 0s → ( 0s -s 𝑧) ∈ ℕ0s)
36 breq1 5146 . . . . . . 7 (𝑧 = 𝑥 → (𝑧 ≤s 𝑦𝑥 ≤s 𝑦))
37 oveq2 7439 . . . . . . . 8 (𝑧 = 𝑥 → (𝑦 -s 𝑧) = (𝑦 -s 𝑥))
3837eleq1d 2826 . . . . . . 7 (𝑧 = 𝑥 → ((𝑦 -s 𝑧) ∈ ℕ0s ↔ (𝑦 -s 𝑥) ∈ ℕ0s))
3936, 38imbi12d 344 . . . . . 6 (𝑧 = 𝑥 → ((𝑧 ≤s 𝑦 → (𝑦 -s 𝑧) ∈ ℕ0s) ↔ (𝑥 ≤s 𝑦 → (𝑦 -s 𝑥) ∈ ℕ0s)))
4039cbvralvw 3237 . . . . 5 (∀𝑧 ∈ ℕ0s (𝑧 ≤s 𝑦 → (𝑦 -s 𝑧) ∈ ℕ0s) ↔ ∀𝑥 ∈ ℕ0s (𝑥 ≤s 𝑦 → (𝑦 -s 𝑥) ∈ ℕ0s))
41 n0sno 28328 . . . . . . . . . . . 12 (𝑦 ∈ ℕ0s𝑦 No )
42 peano2no 28017 . . . . . . . . . . . 12 (𝑦 No → (𝑦 +s 1s ) ∈ No )
43 subsid1 28098 . . . . . . . . . . . 12 ((𝑦 +s 1s ) ∈ No → ((𝑦 +s 1s ) -s 0s ) = (𝑦 +s 1s ))
4441, 42, 433syl 18 . . . . . . . . . . 11 (𝑦 ∈ ℕ0s → ((𝑦 +s 1s ) -s 0s ) = (𝑦 +s 1s ))
45 peano2n0s 28335 . . . . . . . . . . 11 (𝑦 ∈ ℕ0s → (𝑦 +s 1s ) ∈ ℕ0s)
4644, 45eqeltrd 2841 . . . . . . . . . 10 (𝑦 ∈ ℕ0s → ((𝑦 +s 1s ) -s 0s ) ∈ ℕ0s)
47 oveq2 7439 . . . . . . . . . . 11 (𝑧 = 0s → ((𝑦 +s 1s ) -s 𝑧) = ((𝑦 +s 1s ) -s 0s ))
4847eleq1d 2826 . . . . . . . . . 10 (𝑧 = 0s → (((𝑦 +s 1s ) -s 𝑧) ∈ ℕ0s ↔ ((𝑦 +s 1s ) -s 0s ) ∈ ℕ0s))
4946, 48syl5ibrcom 247 . . . . . . . . 9 (𝑦 ∈ ℕ0s → (𝑧 = 0s → ((𝑦 +s 1s ) -s 𝑧) ∈ ℕ0s))
50492a1dd 51 . . . . . . . 8 (𝑦 ∈ ℕ0s → (𝑧 = 0s → (∀𝑥 ∈ ℕ0s (𝑥 ≤s 𝑦 → (𝑦 -s 𝑥) ∈ ℕ0s) → (𝑧 ≤s (𝑦 +s 1s ) → ((𝑦 +s 1s ) -s 𝑧) ∈ ℕ0s))))
5150adantr 480 . . . . . . 7 ((𝑦 ∈ ℕ0s𝑧 ∈ ℕ0s) → (𝑧 = 0s → (∀𝑥 ∈ ℕ0s (𝑥 ≤s 𝑦 → (𝑦 -s 𝑥) ∈ ℕ0s) → (𝑧 ≤s (𝑦 +s 1s ) → ((𝑦 +s 1s ) -s 𝑧) ∈ ℕ0s))))
52 breq1 5146 . . . . . . . . . 10 (𝑥 = (𝑧 -s 1s ) → (𝑥 ≤s 𝑦 ↔ (𝑧 -s 1s ) ≤s 𝑦))
53 oveq2 7439 . . . . . . . . . . 11 (𝑥 = (𝑧 -s 1s ) → (𝑦 -s 𝑥) = (𝑦 -s (𝑧 -s 1s )))
5453eleq1d 2826 . . . . . . . . . 10 (𝑥 = (𝑧 -s 1s ) → ((𝑦 -s 𝑥) ∈ ℕ0s ↔ (𝑦 -s (𝑧 -s 1s )) ∈ ℕ0s))
5552, 54imbi12d 344 . . . . . . . . 9 (𝑥 = (𝑧 -s 1s ) → ((𝑥 ≤s 𝑦 → (𝑦 -s 𝑥) ∈ ℕ0s) ↔ ((𝑧 -s 1s ) ≤s 𝑦 → (𝑦 -s (𝑧 -s 1s )) ∈ ℕ0s)))
5655rspcv 3618 . . . . . . . 8 ((𝑧 -s 1s ) ∈ ℕ0s → (∀𝑥 ∈ ℕ0s (𝑥 ≤s 𝑦 → (𝑦 -s 𝑥) ∈ ℕ0s) → ((𝑧 -s 1s ) ≤s 𝑦 → (𝑦 -s (𝑧 -s 1s )) ∈ ℕ0s)))
5723adantl 481 . . . . . . . . . . 11 ((𝑦 ∈ ℕ0s𝑧 ∈ ℕ0s) → 𝑧 No )
58 1sno 27872 . . . . . . . . . . . 12 1s No
5958a1i 11 . . . . . . . . . . 11 ((𝑦 ∈ ℕ0s𝑧 ∈ ℕ0s) → 1s No )
6041adantr 480 . . . . . . . . . . 11 ((𝑦 ∈ ℕ0s𝑧 ∈ ℕ0s) → 𝑦 No )
6157, 59, 60slesubaddd 28123 . . . . . . . . . 10 ((𝑦 ∈ ℕ0s𝑧 ∈ ℕ0s) → ((𝑧 -s 1s ) ≤s 𝑦𝑧 ≤s (𝑦 +s 1s )))
6260, 57, 59subsubs2d 28125 . . . . . . . . . . . 12 ((𝑦 ∈ ℕ0s𝑧 ∈ ℕ0s) → (𝑦 -s (𝑧 -s 1s )) = (𝑦 +s ( 1s -s 𝑧)))
6360, 59, 57addsubsassd 28111 . . . . . . . . . . . 12 ((𝑦 ∈ ℕ0s𝑧 ∈ ℕ0s) → ((𝑦 +s 1s ) -s 𝑧) = (𝑦 +s ( 1s -s 𝑧)))
6462, 63eqtr4d 2780 . . . . . . . . . . 11 ((𝑦 ∈ ℕ0s𝑧 ∈ ℕ0s) → (𝑦 -s (𝑧 -s 1s )) = ((𝑦 +s 1s ) -s 𝑧))
6564eleq1d 2826 . . . . . . . . . 10 ((𝑦 ∈ ℕ0s𝑧 ∈ ℕ0s) → ((𝑦 -s (𝑧 -s 1s )) ∈ ℕ0s ↔ ((𝑦 +s 1s ) -s 𝑧) ∈ ℕ0s))
6661, 65imbi12d 344 . . . . . . . . 9 ((𝑦 ∈ ℕ0s𝑧 ∈ ℕ0s) → (((𝑧 -s 1s ) ≤s 𝑦 → (𝑦 -s (𝑧 -s 1s )) ∈ ℕ0s) ↔ (𝑧 ≤s (𝑦 +s 1s ) → ((𝑦 +s 1s ) -s 𝑧) ∈ ℕ0s)))
6766biimpd 229 . . . . . . . 8 ((𝑦 ∈ ℕ0s𝑧 ∈ ℕ0s) → (((𝑧 -s 1s ) ≤s 𝑦 → (𝑦 -s (𝑧 -s 1s )) ∈ ℕ0s) → (𝑧 ≤s (𝑦 +s 1s ) → ((𝑦 +s 1s ) -s 𝑧) ∈ ℕ0s)))
6856, 67syl9r 78 . . . . . . 7 ((𝑦 ∈ ℕ0s𝑧 ∈ ℕ0s) → ((𝑧 -s 1s ) ∈ ℕ0s → (∀𝑥 ∈ ℕ0s (𝑥 ≤s 𝑦 → (𝑦 -s 𝑥) ∈ ℕ0s) → (𝑧 ≤s (𝑦 +s 1s ) → ((𝑦 +s 1s ) -s 𝑧) ∈ ℕ0s))))
69 n0s0m1 28359 . . . . . . . 8 (𝑧 ∈ ℕ0s → (𝑧 = 0s ∨ (𝑧 -s 1s ) ∈ ℕ0s))
7069adantl 481 . . . . . . 7 ((𝑦 ∈ ℕ0s𝑧 ∈ ℕ0s) → (𝑧 = 0s ∨ (𝑧 -s 1s ) ∈ ℕ0s))
7151, 68, 70mpjaod 861 . . . . . 6 ((𝑦 ∈ ℕ0s𝑧 ∈ ℕ0s) → (∀𝑥 ∈ ℕ0s (𝑥 ≤s 𝑦 → (𝑦 -s 𝑥) ∈ ℕ0s) → (𝑧 ≤s (𝑦 +s 1s ) → ((𝑦 +s 1s ) -s 𝑧) ∈ ℕ0s)))
7271ralrimdva 3154 . . . . 5 (𝑦 ∈ ℕ0s → (∀𝑥 ∈ ℕ0s (𝑥 ≤s 𝑦 → (𝑦 -s 𝑥) ∈ ℕ0s) → ∀𝑧 ∈ ℕ0s (𝑧 ≤s (𝑦 +s 1s ) → ((𝑦 +s 1s ) -s 𝑧) ∈ ℕ0s)))
7340, 72biimtrid 242 . . . 4 (𝑦 ∈ ℕ0s → (∀𝑧 ∈ ℕ0s (𝑧 ≤s 𝑦 → (𝑦 -s 𝑧) ∈ ℕ0s) → ∀𝑧 ∈ ℕ0s (𝑧 ≤s (𝑦 +s 1s ) → ((𝑦 +s 1s ) -s 𝑧) ∈ ℕ0s)))
745, 10, 15, 20, 35, 73n0sind 28337 . . 3 (𝑁 ∈ ℕ0s → ∀𝑧 ∈ ℕ0s (𝑧 ≤s 𝑁 → (𝑁 -s 𝑧) ∈ ℕ0s))
75 breq1 5146 . . . . 5 (𝑧 = 𝑀 → (𝑧 ≤s 𝑁𝑀 ≤s 𝑁))
76 oveq2 7439 . . . . . 6 (𝑧 = 𝑀 → (𝑁 -s 𝑧) = (𝑁 -s 𝑀))
7776eleq1d 2826 . . . . 5 (𝑧 = 𝑀 → ((𝑁 -s 𝑧) ∈ ℕ0s ↔ (𝑁 -s 𝑀) ∈ ℕ0s))
7875, 77imbi12d 344 . . . 4 (𝑧 = 𝑀 → ((𝑧 ≤s 𝑁 → (𝑁 -s 𝑧) ∈ ℕ0s) ↔ (𝑀 ≤s 𝑁 → (𝑁 -s 𝑀) ∈ ℕ0s)))
7978rspcva 3620 . . 3 ((𝑀 ∈ ℕ0s ∧ ∀𝑧 ∈ ℕ0s (𝑧 ≤s 𝑁 → (𝑁 -s 𝑧) ∈ ℕ0s)) → (𝑀 ≤s 𝑁 → (𝑁 -s 𝑀) ∈ ℕ0s))
8074, 79sylan2 593 . 2 ((𝑀 ∈ ℕ0s𝑁 ∈ ℕ0s) → (𝑀 ≤s 𝑁 → (𝑁 -s 𝑀) ∈ ℕ0s))
81 n0sge0 28341 . . 3 ((𝑁 -s 𝑀) ∈ ℕ0s → 0s ≤s (𝑁 -s 𝑀))
82 n0sno 28328 . . . . 5 (𝑁 ∈ ℕ0s𝑁 No )
8382adantl 481 . . . 4 ((𝑀 ∈ ℕ0s𝑁 ∈ ℕ0s) → 𝑁 No )
84 n0sno 28328 . . . . 5 (𝑀 ∈ ℕ0s𝑀 No )
8584adantr 480 . . . 4 ((𝑀 ∈ ℕ0s𝑁 ∈ ℕ0s) → 𝑀 No )
8683, 85subsge0d 28129 . . 3 ((𝑀 ∈ ℕ0s𝑁 ∈ ℕ0s) → ( 0s ≤s (𝑁 -s 𝑀) ↔ 𝑀 ≤s 𝑁))
8781, 86imbitrid 244 . 2 ((𝑀 ∈ ℕ0s𝑁 ∈ ℕ0s) → ((𝑁 -s 𝑀) ∈ ℕ0s𝑀 ≤s 𝑁))
8880, 87impbid 212 1 ((𝑀 ∈ ℕ0s𝑁 ∈ ℕ0s) → (𝑀 ≤s 𝑁 ↔ (𝑁 -s 𝑀) ∈ ℕ0s))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 848   = wceq 1540  wcel 2108  wral 3061   class class class wbr 5143  (class class class)co 7431   No csur 27684   ≤s csle 27789   0s c0s 27867   1s c1s 27868   +s cadds 27992   -s csubs 28052  0scnn0s 28318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-ot 4635  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-nadd 8704  df-no 27687  df-slt 27688  df-bday 27689  df-sle 27790  df-sslt 27826  df-scut 27828  df-0s 27869  df-1s 27870  df-made 27886  df-old 27887  df-left 27889  df-right 27890  df-norec 27971  df-norec2 27982  df-adds 27993  df-negs 28053  df-subs 28054  df-n0s 28320
This theorem is referenced by:  elzn0s  28384  eln0zs  28386
  Copyright terms: Public domain W3C validator