MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  n0subs Structured version   Visualization version   GIF version

Theorem n0subs 28260
Description: Subtraction of non-negative surreal integers. (Contributed by Scott Fenton, 26-May-2025.)
Assertion
Ref Expression
n0subs ((𝑀 ∈ ℕ0s𝑁 ∈ ℕ0s) → (𝑀 ≤s 𝑁 ↔ (𝑁 -s 𝑀) ∈ ℕ0s))

Proof of Theorem n0subs
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq2 5114 . . . . . 6 (𝑥 = 0s → (𝑧 ≤s 𝑥𝑧 ≤s 0s ))
2 oveq1 7397 . . . . . . 7 (𝑥 = 0s → (𝑥 -s 𝑧) = ( 0s -s 𝑧))
32eleq1d 2814 . . . . . 6 (𝑥 = 0s → ((𝑥 -s 𝑧) ∈ ℕ0s ↔ ( 0s -s 𝑧) ∈ ℕ0s))
41, 3imbi12d 344 . . . . 5 (𝑥 = 0s → ((𝑧 ≤s 𝑥 → (𝑥 -s 𝑧) ∈ ℕ0s) ↔ (𝑧 ≤s 0s → ( 0s -s 𝑧) ∈ ℕ0s)))
54ralbidv 3157 . . . 4 (𝑥 = 0s → (∀𝑧 ∈ ℕ0s (𝑧 ≤s 𝑥 → (𝑥 -s 𝑧) ∈ ℕ0s) ↔ ∀𝑧 ∈ ℕ0s (𝑧 ≤s 0s → ( 0s -s 𝑧) ∈ ℕ0s)))
6 breq2 5114 . . . . . 6 (𝑥 = 𝑦 → (𝑧 ≤s 𝑥𝑧 ≤s 𝑦))
7 oveq1 7397 . . . . . . 7 (𝑥 = 𝑦 → (𝑥 -s 𝑧) = (𝑦 -s 𝑧))
87eleq1d 2814 . . . . . 6 (𝑥 = 𝑦 → ((𝑥 -s 𝑧) ∈ ℕ0s ↔ (𝑦 -s 𝑧) ∈ ℕ0s))
96, 8imbi12d 344 . . . . 5 (𝑥 = 𝑦 → ((𝑧 ≤s 𝑥 → (𝑥 -s 𝑧) ∈ ℕ0s) ↔ (𝑧 ≤s 𝑦 → (𝑦 -s 𝑧) ∈ ℕ0s)))
109ralbidv 3157 . . . 4 (𝑥 = 𝑦 → (∀𝑧 ∈ ℕ0s (𝑧 ≤s 𝑥 → (𝑥 -s 𝑧) ∈ ℕ0s) ↔ ∀𝑧 ∈ ℕ0s (𝑧 ≤s 𝑦 → (𝑦 -s 𝑧) ∈ ℕ0s)))
11 breq2 5114 . . . . . 6 (𝑥 = (𝑦 +s 1s ) → (𝑧 ≤s 𝑥𝑧 ≤s (𝑦 +s 1s )))
12 oveq1 7397 . . . . . . 7 (𝑥 = (𝑦 +s 1s ) → (𝑥 -s 𝑧) = ((𝑦 +s 1s ) -s 𝑧))
1312eleq1d 2814 . . . . . 6 (𝑥 = (𝑦 +s 1s ) → ((𝑥 -s 𝑧) ∈ ℕ0s ↔ ((𝑦 +s 1s ) -s 𝑧) ∈ ℕ0s))
1411, 13imbi12d 344 . . . . 5 (𝑥 = (𝑦 +s 1s ) → ((𝑧 ≤s 𝑥 → (𝑥 -s 𝑧) ∈ ℕ0s) ↔ (𝑧 ≤s (𝑦 +s 1s ) → ((𝑦 +s 1s ) -s 𝑧) ∈ ℕ0s)))
1514ralbidv 3157 . . . 4 (𝑥 = (𝑦 +s 1s ) → (∀𝑧 ∈ ℕ0s (𝑧 ≤s 𝑥 → (𝑥 -s 𝑧) ∈ ℕ0s) ↔ ∀𝑧 ∈ ℕ0s (𝑧 ≤s (𝑦 +s 1s ) → ((𝑦 +s 1s ) -s 𝑧) ∈ ℕ0s)))
16 breq2 5114 . . . . . 6 (𝑥 = 𝑁 → (𝑧 ≤s 𝑥𝑧 ≤s 𝑁))
17 oveq1 7397 . . . . . . 7 (𝑥 = 𝑁 → (𝑥 -s 𝑧) = (𝑁 -s 𝑧))
1817eleq1d 2814 . . . . . 6 (𝑥 = 𝑁 → ((𝑥 -s 𝑧) ∈ ℕ0s ↔ (𝑁 -s 𝑧) ∈ ℕ0s))
1916, 18imbi12d 344 . . . . 5 (𝑥 = 𝑁 → ((𝑧 ≤s 𝑥 → (𝑥 -s 𝑧) ∈ ℕ0s) ↔ (𝑧 ≤s 𝑁 → (𝑁 -s 𝑧) ∈ ℕ0s)))
2019ralbidv 3157 . . . 4 (𝑥 = 𝑁 → (∀𝑧 ∈ ℕ0s (𝑧 ≤s 𝑥 → (𝑥 -s 𝑧) ∈ ℕ0s) ↔ ∀𝑧 ∈ ℕ0s (𝑧 ≤s 𝑁 → (𝑁 -s 𝑧) ∈ ℕ0s)))
21 n0sge0 28237 . . . . . . . 8 (𝑧 ∈ ℕ0s → 0s ≤s 𝑧)
2221biantrud 531 . . . . . . 7 (𝑧 ∈ ℕ0s → (𝑧 ≤s 0s ↔ (𝑧 ≤s 0s ∧ 0s ≤s 𝑧)))
23 n0sno 28223 . . . . . . . 8 (𝑧 ∈ ℕ0s𝑧 No )
24 0sno 27745 . . . . . . . 8 0s No
25 sletri3 27674 . . . . . . . 8 ((𝑧 No ∧ 0s No ) → (𝑧 = 0s ↔ (𝑧 ≤s 0s ∧ 0s ≤s 𝑧)))
2623, 24, 25sylancl 586 . . . . . . 7 (𝑧 ∈ ℕ0s → (𝑧 = 0s ↔ (𝑧 ≤s 0s ∧ 0s ≤s 𝑧)))
2722, 26bitr4d 282 . . . . . 6 (𝑧 ∈ ℕ0s → (𝑧 ≤s 0s𝑧 = 0s ))
28 oveq2 7398 . . . . . . 7 (𝑧 = 0s → ( 0s -s 𝑧) = ( 0s -s 0s ))
29 subsid 27980 . . . . . . . . 9 ( 0s No → ( 0s -s 0s ) = 0s )
3024, 29ax-mp 5 . . . . . . . 8 ( 0s -s 0s ) = 0s
31 0n0s 28229 . . . . . . . 8 0s ∈ ℕ0s
3230, 31eqeltri 2825 . . . . . . 7 ( 0s -s 0s ) ∈ ℕ0s
3328, 32eqeltrdi 2837 . . . . . 6 (𝑧 = 0s → ( 0s -s 𝑧) ∈ ℕ0s)
3427, 33biimtrdi 253 . . . . 5 (𝑧 ∈ ℕ0s → (𝑧 ≤s 0s → ( 0s -s 𝑧) ∈ ℕ0s))
3534rgen 3047 . . . 4 𝑧 ∈ ℕ0s (𝑧 ≤s 0s → ( 0s -s 𝑧) ∈ ℕ0s)
36 breq1 5113 . . . . . . 7 (𝑧 = 𝑥 → (𝑧 ≤s 𝑦𝑥 ≤s 𝑦))
37 oveq2 7398 . . . . . . . 8 (𝑧 = 𝑥 → (𝑦 -s 𝑧) = (𝑦 -s 𝑥))
3837eleq1d 2814 . . . . . . 7 (𝑧 = 𝑥 → ((𝑦 -s 𝑧) ∈ ℕ0s ↔ (𝑦 -s 𝑥) ∈ ℕ0s))
3936, 38imbi12d 344 . . . . . 6 (𝑧 = 𝑥 → ((𝑧 ≤s 𝑦 → (𝑦 -s 𝑧) ∈ ℕ0s) ↔ (𝑥 ≤s 𝑦 → (𝑦 -s 𝑥) ∈ ℕ0s)))
4039cbvralvw 3216 . . . . 5 (∀𝑧 ∈ ℕ0s (𝑧 ≤s 𝑦 → (𝑦 -s 𝑧) ∈ ℕ0s) ↔ ∀𝑥 ∈ ℕ0s (𝑥 ≤s 𝑦 → (𝑦 -s 𝑥) ∈ ℕ0s))
41 n0sno 28223 . . . . . . . . . . . 12 (𝑦 ∈ ℕ0s𝑦 No )
42 peano2no 27898 . . . . . . . . . . . 12 (𝑦 No → (𝑦 +s 1s ) ∈ No )
43 subsid1 27979 . . . . . . . . . . . 12 ((𝑦 +s 1s ) ∈ No → ((𝑦 +s 1s ) -s 0s ) = (𝑦 +s 1s ))
4441, 42, 433syl 18 . . . . . . . . . . 11 (𝑦 ∈ ℕ0s → ((𝑦 +s 1s ) -s 0s ) = (𝑦 +s 1s ))
45 peano2n0s 28230 . . . . . . . . . . 11 (𝑦 ∈ ℕ0s → (𝑦 +s 1s ) ∈ ℕ0s)
4644, 45eqeltrd 2829 . . . . . . . . . 10 (𝑦 ∈ ℕ0s → ((𝑦 +s 1s ) -s 0s ) ∈ ℕ0s)
47 oveq2 7398 . . . . . . . . . . 11 (𝑧 = 0s → ((𝑦 +s 1s ) -s 𝑧) = ((𝑦 +s 1s ) -s 0s ))
4847eleq1d 2814 . . . . . . . . . 10 (𝑧 = 0s → (((𝑦 +s 1s ) -s 𝑧) ∈ ℕ0s ↔ ((𝑦 +s 1s ) -s 0s ) ∈ ℕ0s))
4946, 48syl5ibrcom 247 . . . . . . . . 9 (𝑦 ∈ ℕ0s → (𝑧 = 0s → ((𝑦 +s 1s ) -s 𝑧) ∈ ℕ0s))
50492a1dd 51 . . . . . . . 8 (𝑦 ∈ ℕ0s → (𝑧 = 0s → (∀𝑥 ∈ ℕ0s (𝑥 ≤s 𝑦 → (𝑦 -s 𝑥) ∈ ℕ0s) → (𝑧 ≤s (𝑦 +s 1s ) → ((𝑦 +s 1s ) -s 𝑧) ∈ ℕ0s))))
5150adantr 480 . . . . . . 7 ((𝑦 ∈ ℕ0s𝑧 ∈ ℕ0s) → (𝑧 = 0s → (∀𝑥 ∈ ℕ0s (𝑥 ≤s 𝑦 → (𝑦 -s 𝑥) ∈ ℕ0s) → (𝑧 ≤s (𝑦 +s 1s ) → ((𝑦 +s 1s ) -s 𝑧) ∈ ℕ0s))))
52 breq1 5113 . . . . . . . . . 10 (𝑥 = (𝑧 -s 1s ) → (𝑥 ≤s 𝑦 ↔ (𝑧 -s 1s ) ≤s 𝑦))
53 oveq2 7398 . . . . . . . . . . 11 (𝑥 = (𝑧 -s 1s ) → (𝑦 -s 𝑥) = (𝑦 -s (𝑧 -s 1s )))
5453eleq1d 2814 . . . . . . . . . 10 (𝑥 = (𝑧 -s 1s ) → ((𝑦 -s 𝑥) ∈ ℕ0s ↔ (𝑦 -s (𝑧 -s 1s )) ∈ ℕ0s))
5552, 54imbi12d 344 . . . . . . . . 9 (𝑥 = (𝑧 -s 1s ) → ((𝑥 ≤s 𝑦 → (𝑦 -s 𝑥) ∈ ℕ0s) ↔ ((𝑧 -s 1s ) ≤s 𝑦 → (𝑦 -s (𝑧 -s 1s )) ∈ ℕ0s)))
5655rspcv 3587 . . . . . . . 8 ((𝑧 -s 1s ) ∈ ℕ0s → (∀𝑥 ∈ ℕ0s (𝑥 ≤s 𝑦 → (𝑦 -s 𝑥) ∈ ℕ0s) → ((𝑧 -s 1s ) ≤s 𝑦 → (𝑦 -s (𝑧 -s 1s )) ∈ ℕ0s)))
5723adantl 481 . . . . . . . . . . 11 ((𝑦 ∈ ℕ0s𝑧 ∈ ℕ0s) → 𝑧 No )
58 1sno 27746 . . . . . . . . . . . 12 1s No
5958a1i 11 . . . . . . . . . . 11 ((𝑦 ∈ ℕ0s𝑧 ∈ ℕ0s) → 1s No )
6041adantr 480 . . . . . . . . . . 11 ((𝑦 ∈ ℕ0s𝑧 ∈ ℕ0s) → 𝑦 No )
6157, 59, 60slesubaddd 28004 . . . . . . . . . 10 ((𝑦 ∈ ℕ0s𝑧 ∈ ℕ0s) → ((𝑧 -s 1s ) ≤s 𝑦𝑧 ≤s (𝑦 +s 1s )))
6260, 57, 59subsubs2d 28006 . . . . . . . . . . . 12 ((𝑦 ∈ ℕ0s𝑧 ∈ ℕ0s) → (𝑦 -s (𝑧 -s 1s )) = (𝑦 +s ( 1s -s 𝑧)))
6360, 59, 57addsubsassd 27992 . . . . . . . . . . . 12 ((𝑦 ∈ ℕ0s𝑧 ∈ ℕ0s) → ((𝑦 +s 1s ) -s 𝑧) = (𝑦 +s ( 1s -s 𝑧)))
6462, 63eqtr4d 2768 . . . . . . . . . . 11 ((𝑦 ∈ ℕ0s𝑧 ∈ ℕ0s) → (𝑦 -s (𝑧 -s 1s )) = ((𝑦 +s 1s ) -s 𝑧))
6564eleq1d 2814 . . . . . . . . . 10 ((𝑦 ∈ ℕ0s𝑧 ∈ ℕ0s) → ((𝑦 -s (𝑧 -s 1s )) ∈ ℕ0s ↔ ((𝑦 +s 1s ) -s 𝑧) ∈ ℕ0s))
6661, 65imbi12d 344 . . . . . . . . 9 ((𝑦 ∈ ℕ0s𝑧 ∈ ℕ0s) → (((𝑧 -s 1s ) ≤s 𝑦 → (𝑦 -s (𝑧 -s 1s )) ∈ ℕ0s) ↔ (𝑧 ≤s (𝑦 +s 1s ) → ((𝑦 +s 1s ) -s 𝑧) ∈ ℕ0s)))
6766biimpd 229 . . . . . . . 8 ((𝑦 ∈ ℕ0s𝑧 ∈ ℕ0s) → (((𝑧 -s 1s ) ≤s 𝑦 → (𝑦 -s (𝑧 -s 1s )) ∈ ℕ0s) → (𝑧 ≤s (𝑦 +s 1s ) → ((𝑦 +s 1s ) -s 𝑧) ∈ ℕ0s)))
6856, 67syl9r 78 . . . . . . 7 ((𝑦 ∈ ℕ0s𝑧 ∈ ℕ0s) → ((𝑧 -s 1s ) ∈ ℕ0s → (∀𝑥 ∈ ℕ0s (𝑥 ≤s 𝑦 → (𝑦 -s 𝑥) ∈ ℕ0s) → (𝑧 ≤s (𝑦 +s 1s ) → ((𝑦 +s 1s ) -s 𝑧) ∈ ℕ0s))))
69 n0s0m1 28259 . . . . . . . 8 (𝑧 ∈ ℕ0s → (𝑧 = 0s ∨ (𝑧 -s 1s ) ∈ ℕ0s))
7069adantl 481 . . . . . . 7 ((𝑦 ∈ ℕ0s𝑧 ∈ ℕ0s) → (𝑧 = 0s ∨ (𝑧 -s 1s ) ∈ ℕ0s))
7151, 68, 70mpjaod 860 . . . . . 6 ((𝑦 ∈ ℕ0s𝑧 ∈ ℕ0s) → (∀𝑥 ∈ ℕ0s (𝑥 ≤s 𝑦 → (𝑦 -s 𝑥) ∈ ℕ0s) → (𝑧 ≤s (𝑦 +s 1s ) → ((𝑦 +s 1s ) -s 𝑧) ∈ ℕ0s)))
7271ralrimdva 3134 . . . . 5 (𝑦 ∈ ℕ0s → (∀𝑥 ∈ ℕ0s (𝑥 ≤s 𝑦 → (𝑦 -s 𝑥) ∈ ℕ0s) → ∀𝑧 ∈ ℕ0s (𝑧 ≤s (𝑦 +s 1s ) → ((𝑦 +s 1s ) -s 𝑧) ∈ ℕ0s)))
7340, 72biimtrid 242 . . . 4 (𝑦 ∈ ℕ0s → (∀𝑧 ∈ ℕ0s (𝑧 ≤s 𝑦 → (𝑦 -s 𝑧) ∈ ℕ0s) → ∀𝑧 ∈ ℕ0s (𝑧 ≤s (𝑦 +s 1s ) → ((𝑦 +s 1s ) -s 𝑧) ∈ ℕ0s)))
745, 10, 15, 20, 35, 73n0sind 28232 . . 3 (𝑁 ∈ ℕ0s → ∀𝑧 ∈ ℕ0s (𝑧 ≤s 𝑁 → (𝑁 -s 𝑧) ∈ ℕ0s))
75 breq1 5113 . . . . 5 (𝑧 = 𝑀 → (𝑧 ≤s 𝑁𝑀 ≤s 𝑁))
76 oveq2 7398 . . . . . 6 (𝑧 = 𝑀 → (𝑁 -s 𝑧) = (𝑁 -s 𝑀))
7776eleq1d 2814 . . . . 5 (𝑧 = 𝑀 → ((𝑁 -s 𝑧) ∈ ℕ0s ↔ (𝑁 -s 𝑀) ∈ ℕ0s))
7875, 77imbi12d 344 . . . 4 (𝑧 = 𝑀 → ((𝑧 ≤s 𝑁 → (𝑁 -s 𝑧) ∈ ℕ0s) ↔ (𝑀 ≤s 𝑁 → (𝑁 -s 𝑀) ∈ ℕ0s)))
7978rspcva 3589 . . 3 ((𝑀 ∈ ℕ0s ∧ ∀𝑧 ∈ ℕ0s (𝑧 ≤s 𝑁 → (𝑁 -s 𝑧) ∈ ℕ0s)) → (𝑀 ≤s 𝑁 → (𝑁 -s 𝑀) ∈ ℕ0s))
8074, 79sylan2 593 . 2 ((𝑀 ∈ ℕ0s𝑁 ∈ ℕ0s) → (𝑀 ≤s 𝑁 → (𝑁 -s 𝑀) ∈ ℕ0s))
81 n0sge0 28237 . . 3 ((𝑁 -s 𝑀) ∈ ℕ0s → 0s ≤s (𝑁 -s 𝑀))
82 n0sno 28223 . . . . 5 (𝑁 ∈ ℕ0s𝑁 No )
8382adantl 481 . . . 4 ((𝑀 ∈ ℕ0s𝑁 ∈ ℕ0s) → 𝑁 No )
84 n0sno 28223 . . . . 5 (𝑀 ∈ ℕ0s𝑀 No )
8584adantr 480 . . . 4 ((𝑀 ∈ ℕ0s𝑁 ∈ ℕ0s) → 𝑀 No )
8683, 85subsge0d 28010 . . 3 ((𝑀 ∈ ℕ0s𝑁 ∈ ℕ0s) → ( 0s ≤s (𝑁 -s 𝑀) ↔ 𝑀 ≤s 𝑁))
8781, 86imbitrid 244 . 2 ((𝑀 ∈ ℕ0s𝑁 ∈ ℕ0s) → ((𝑁 -s 𝑀) ∈ ℕ0s𝑀 ≤s 𝑁))
8880, 87impbid 212 1 ((𝑀 ∈ ℕ0s𝑁 ∈ ℕ0s) → (𝑀 ≤s 𝑁 ↔ (𝑁 -s 𝑀) ∈ ℕ0s))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wral 3045   class class class wbr 5110  (class class class)co 7390   No csur 27558   ≤s csle 27663   0s c0s 27741   1s c1s 27742   +s cadds 27873   -s csubs 27933  0scnn0s 28213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-ot 4601  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-nadd 8633  df-no 27561  df-slt 27562  df-bday 27563  df-sle 27664  df-sslt 27700  df-scut 27702  df-0s 27743  df-1s 27744  df-made 27762  df-old 27763  df-left 27765  df-right 27766  df-norec 27852  df-norec2 27863  df-adds 27874  df-negs 27934  df-subs 27935  df-n0s 28215
This theorem is referenced by:  n0subs2  28261  elzn0s  28293  eln0zs  28295
  Copyright terms: Public domain W3C validator