MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  n0subs Structured version   Visualization version   GIF version

Theorem n0subs 28378
Description: Subtraction of non-negative surreal integers. (Contributed by Scott Fenton, 26-May-2025.)
Assertion
Ref Expression
n0subs ((𝑀 ∈ ℕ0s𝑁 ∈ ℕ0s) → (𝑀 ≤s 𝑁 ↔ (𝑁 -s 𝑀) ∈ ℕ0s))

Proof of Theorem n0subs
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq2 5170 . . . . . 6 (𝑥 = 0s → (𝑧 ≤s 𝑥𝑧 ≤s 0s ))
2 oveq1 7455 . . . . . . 7 (𝑥 = 0s → (𝑥 -s 𝑧) = ( 0s -s 𝑧))
32eleq1d 2829 . . . . . 6 (𝑥 = 0s → ((𝑥 -s 𝑧) ∈ ℕ0s ↔ ( 0s -s 𝑧) ∈ ℕ0s))
41, 3imbi12d 344 . . . . 5 (𝑥 = 0s → ((𝑧 ≤s 𝑥 → (𝑥 -s 𝑧) ∈ ℕ0s) ↔ (𝑧 ≤s 0s → ( 0s -s 𝑧) ∈ ℕ0s)))
54ralbidv 3184 . . . 4 (𝑥 = 0s → (∀𝑧 ∈ ℕ0s (𝑧 ≤s 𝑥 → (𝑥 -s 𝑧) ∈ ℕ0s) ↔ ∀𝑧 ∈ ℕ0s (𝑧 ≤s 0s → ( 0s -s 𝑧) ∈ ℕ0s)))
6 breq2 5170 . . . . . 6 (𝑥 = 𝑦 → (𝑧 ≤s 𝑥𝑧 ≤s 𝑦))
7 oveq1 7455 . . . . . . 7 (𝑥 = 𝑦 → (𝑥 -s 𝑧) = (𝑦 -s 𝑧))
87eleq1d 2829 . . . . . 6 (𝑥 = 𝑦 → ((𝑥 -s 𝑧) ∈ ℕ0s ↔ (𝑦 -s 𝑧) ∈ ℕ0s))
96, 8imbi12d 344 . . . . 5 (𝑥 = 𝑦 → ((𝑧 ≤s 𝑥 → (𝑥 -s 𝑧) ∈ ℕ0s) ↔ (𝑧 ≤s 𝑦 → (𝑦 -s 𝑧) ∈ ℕ0s)))
109ralbidv 3184 . . . 4 (𝑥 = 𝑦 → (∀𝑧 ∈ ℕ0s (𝑧 ≤s 𝑥 → (𝑥 -s 𝑧) ∈ ℕ0s) ↔ ∀𝑧 ∈ ℕ0s (𝑧 ≤s 𝑦 → (𝑦 -s 𝑧) ∈ ℕ0s)))
11 breq2 5170 . . . . . 6 (𝑥 = (𝑦 +s 1s ) → (𝑧 ≤s 𝑥𝑧 ≤s (𝑦 +s 1s )))
12 oveq1 7455 . . . . . . 7 (𝑥 = (𝑦 +s 1s ) → (𝑥 -s 𝑧) = ((𝑦 +s 1s ) -s 𝑧))
1312eleq1d 2829 . . . . . 6 (𝑥 = (𝑦 +s 1s ) → ((𝑥 -s 𝑧) ∈ ℕ0s ↔ ((𝑦 +s 1s ) -s 𝑧) ∈ ℕ0s))
1411, 13imbi12d 344 . . . . 5 (𝑥 = (𝑦 +s 1s ) → ((𝑧 ≤s 𝑥 → (𝑥 -s 𝑧) ∈ ℕ0s) ↔ (𝑧 ≤s (𝑦 +s 1s ) → ((𝑦 +s 1s ) -s 𝑧) ∈ ℕ0s)))
1514ralbidv 3184 . . . 4 (𝑥 = (𝑦 +s 1s ) → (∀𝑧 ∈ ℕ0s (𝑧 ≤s 𝑥 → (𝑥 -s 𝑧) ∈ ℕ0s) ↔ ∀𝑧 ∈ ℕ0s (𝑧 ≤s (𝑦 +s 1s ) → ((𝑦 +s 1s ) -s 𝑧) ∈ ℕ0s)))
16 breq2 5170 . . . . . 6 (𝑥 = 𝑁 → (𝑧 ≤s 𝑥𝑧 ≤s 𝑁))
17 oveq1 7455 . . . . . . 7 (𝑥 = 𝑁 → (𝑥 -s 𝑧) = (𝑁 -s 𝑧))
1817eleq1d 2829 . . . . . 6 (𝑥 = 𝑁 → ((𝑥 -s 𝑧) ∈ ℕ0s ↔ (𝑁 -s 𝑧) ∈ ℕ0s))
1916, 18imbi12d 344 . . . . 5 (𝑥 = 𝑁 → ((𝑧 ≤s 𝑥 → (𝑥 -s 𝑧) ∈ ℕ0s) ↔ (𝑧 ≤s 𝑁 → (𝑁 -s 𝑧) ∈ ℕ0s)))
2019ralbidv 3184 . . . 4 (𝑥 = 𝑁 → (∀𝑧 ∈ ℕ0s (𝑧 ≤s 𝑥 → (𝑥 -s 𝑧) ∈ ℕ0s) ↔ ∀𝑧 ∈ ℕ0s (𝑧 ≤s 𝑁 → (𝑁 -s 𝑧) ∈ ℕ0s)))
21 n0sge0 28359 . . . . . . . 8 (𝑧 ∈ ℕ0s → 0s ≤s 𝑧)
2221biantrud 531 . . . . . . 7 (𝑧 ∈ ℕ0s → (𝑧 ≤s 0s ↔ (𝑧 ≤s 0s ∧ 0s ≤s 𝑧)))
23 n0sno 28346 . . . . . . . 8 (𝑧 ∈ ℕ0s𝑧 No )
24 0sno 27889 . . . . . . . 8 0s No
25 sletri3 27818 . . . . . . . 8 ((𝑧 No ∧ 0s No ) → (𝑧 = 0s ↔ (𝑧 ≤s 0s ∧ 0s ≤s 𝑧)))
2623, 24, 25sylancl 585 . . . . . . 7 (𝑧 ∈ ℕ0s → (𝑧 = 0s ↔ (𝑧 ≤s 0s ∧ 0s ≤s 𝑧)))
2722, 26bitr4d 282 . . . . . 6 (𝑧 ∈ ℕ0s → (𝑧 ≤s 0s𝑧 = 0s ))
28 oveq2 7456 . . . . . . 7 (𝑧 = 0s → ( 0s -s 𝑧) = ( 0s -s 0s ))
29 subsid 28117 . . . . . . . . 9 ( 0s No → ( 0s -s 0s ) = 0s )
3024, 29ax-mp 5 . . . . . . . 8 ( 0s -s 0s ) = 0s
31 0n0s 28352 . . . . . . . 8 0s ∈ ℕ0s
3230, 31eqeltri 2840 . . . . . . 7 ( 0s -s 0s ) ∈ ℕ0s
3328, 32eqeltrdi 2852 . . . . . 6 (𝑧 = 0s → ( 0s -s 𝑧) ∈ ℕ0s)
3427, 33biimtrdi 253 . . . . 5 (𝑧 ∈ ℕ0s → (𝑧 ≤s 0s → ( 0s -s 𝑧) ∈ ℕ0s))
3534rgen 3069 . . . 4 𝑧 ∈ ℕ0s (𝑧 ≤s 0s → ( 0s -s 𝑧) ∈ ℕ0s)
36 breq1 5169 . . . . . . 7 (𝑧 = 𝑥 → (𝑧 ≤s 𝑦𝑥 ≤s 𝑦))
37 oveq2 7456 . . . . . . . 8 (𝑧 = 𝑥 → (𝑦 -s 𝑧) = (𝑦 -s 𝑥))
3837eleq1d 2829 . . . . . . 7 (𝑧 = 𝑥 → ((𝑦 -s 𝑧) ∈ ℕ0s ↔ (𝑦 -s 𝑥) ∈ ℕ0s))
3936, 38imbi12d 344 . . . . . 6 (𝑧 = 𝑥 → ((𝑧 ≤s 𝑦 → (𝑦 -s 𝑧) ∈ ℕ0s) ↔ (𝑥 ≤s 𝑦 → (𝑦 -s 𝑥) ∈ ℕ0s)))
4039cbvralvw 3243 . . . . 5 (∀𝑧 ∈ ℕ0s (𝑧 ≤s 𝑦 → (𝑦 -s 𝑧) ∈ ℕ0s) ↔ ∀𝑥 ∈ ℕ0s (𝑥 ≤s 𝑦 → (𝑦 -s 𝑥) ∈ ℕ0s))
41 n0sno 28346 . . . . . . . . . . . 12 (𝑦 ∈ ℕ0s𝑦 No )
42 peano2no 28035 . . . . . . . . . . . 12 (𝑦 No → (𝑦 +s 1s ) ∈ No )
43 subsid1 28116 . . . . . . . . . . . 12 ((𝑦 +s 1s ) ∈ No → ((𝑦 +s 1s ) -s 0s ) = (𝑦 +s 1s ))
4441, 42, 433syl 18 . . . . . . . . . . 11 (𝑦 ∈ ℕ0s → ((𝑦 +s 1s ) -s 0s ) = (𝑦 +s 1s ))
45 peano2n0s 28353 . . . . . . . . . . 11 (𝑦 ∈ ℕ0s → (𝑦 +s 1s ) ∈ ℕ0s)
4644, 45eqeltrd 2844 . . . . . . . . . 10 (𝑦 ∈ ℕ0s → ((𝑦 +s 1s ) -s 0s ) ∈ ℕ0s)
47 oveq2 7456 . . . . . . . . . . 11 (𝑧 = 0s → ((𝑦 +s 1s ) -s 𝑧) = ((𝑦 +s 1s ) -s 0s ))
4847eleq1d 2829 . . . . . . . . . 10 (𝑧 = 0s → (((𝑦 +s 1s ) -s 𝑧) ∈ ℕ0s ↔ ((𝑦 +s 1s ) -s 0s ) ∈ ℕ0s))
4946, 48syl5ibrcom 247 . . . . . . . . 9 (𝑦 ∈ ℕ0s → (𝑧 = 0s → ((𝑦 +s 1s ) -s 𝑧) ∈ ℕ0s))
50492a1dd 51 . . . . . . . 8 (𝑦 ∈ ℕ0s → (𝑧 = 0s → (∀𝑥 ∈ ℕ0s (𝑥 ≤s 𝑦 → (𝑦 -s 𝑥) ∈ ℕ0s) → (𝑧 ≤s (𝑦 +s 1s ) → ((𝑦 +s 1s ) -s 𝑧) ∈ ℕ0s))))
5150adantr 480 . . . . . . 7 ((𝑦 ∈ ℕ0s𝑧 ∈ ℕ0s) → (𝑧 = 0s → (∀𝑥 ∈ ℕ0s (𝑥 ≤s 𝑦 → (𝑦 -s 𝑥) ∈ ℕ0s) → (𝑧 ≤s (𝑦 +s 1s ) → ((𝑦 +s 1s ) -s 𝑧) ∈ ℕ0s))))
52 breq1 5169 . . . . . . . . . 10 (𝑥 = (𝑧 -s 1s ) → (𝑥 ≤s 𝑦 ↔ (𝑧 -s 1s ) ≤s 𝑦))
53 oveq2 7456 . . . . . . . . . . 11 (𝑥 = (𝑧 -s 1s ) → (𝑦 -s 𝑥) = (𝑦 -s (𝑧 -s 1s )))
5453eleq1d 2829 . . . . . . . . . 10 (𝑥 = (𝑧 -s 1s ) → ((𝑦 -s 𝑥) ∈ ℕ0s ↔ (𝑦 -s (𝑧 -s 1s )) ∈ ℕ0s))
5552, 54imbi12d 344 . . . . . . . . 9 (𝑥 = (𝑧 -s 1s ) → ((𝑥 ≤s 𝑦 → (𝑦 -s 𝑥) ∈ ℕ0s) ↔ ((𝑧 -s 1s ) ≤s 𝑦 → (𝑦 -s (𝑧 -s 1s )) ∈ ℕ0s)))
5655rspcv 3631 . . . . . . . 8 ((𝑧 -s 1s ) ∈ ℕ0s → (∀𝑥 ∈ ℕ0s (𝑥 ≤s 𝑦 → (𝑦 -s 𝑥) ∈ ℕ0s) → ((𝑧 -s 1s ) ≤s 𝑦 → (𝑦 -s (𝑧 -s 1s )) ∈ ℕ0s)))
5723adantl 481 . . . . . . . . . . 11 ((𝑦 ∈ ℕ0s𝑧 ∈ ℕ0s) → 𝑧 No )
58 1sno 27890 . . . . . . . . . . . 12 1s No
5958a1i 11 . . . . . . . . . . 11 ((𝑦 ∈ ℕ0s𝑧 ∈ ℕ0s) → 1s No )
6041adantr 480 . . . . . . . . . . 11 ((𝑦 ∈ ℕ0s𝑧 ∈ ℕ0s) → 𝑦 No )
6157, 59, 60slesubaddd 28141 . . . . . . . . . 10 ((𝑦 ∈ ℕ0s𝑧 ∈ ℕ0s) → ((𝑧 -s 1s ) ≤s 𝑦𝑧 ≤s (𝑦 +s 1s )))
6260, 57, 59subsubs2d 28143 . . . . . . . . . . . 12 ((𝑦 ∈ ℕ0s𝑧 ∈ ℕ0s) → (𝑦 -s (𝑧 -s 1s )) = (𝑦 +s ( 1s -s 𝑧)))
6360, 59, 57addsubsassd 28129 . . . . . . . . . . . 12 ((𝑦 ∈ ℕ0s𝑧 ∈ ℕ0s) → ((𝑦 +s 1s ) -s 𝑧) = (𝑦 +s ( 1s -s 𝑧)))
6462, 63eqtr4d 2783 . . . . . . . . . . 11 ((𝑦 ∈ ℕ0s𝑧 ∈ ℕ0s) → (𝑦 -s (𝑧 -s 1s )) = ((𝑦 +s 1s ) -s 𝑧))
6564eleq1d 2829 . . . . . . . . . 10 ((𝑦 ∈ ℕ0s𝑧 ∈ ℕ0s) → ((𝑦 -s (𝑧 -s 1s )) ∈ ℕ0s ↔ ((𝑦 +s 1s ) -s 𝑧) ∈ ℕ0s))
6661, 65imbi12d 344 . . . . . . . . 9 ((𝑦 ∈ ℕ0s𝑧 ∈ ℕ0s) → (((𝑧 -s 1s ) ≤s 𝑦 → (𝑦 -s (𝑧 -s 1s )) ∈ ℕ0s) ↔ (𝑧 ≤s (𝑦 +s 1s ) → ((𝑦 +s 1s ) -s 𝑧) ∈ ℕ0s)))
6766biimpd 229 . . . . . . . 8 ((𝑦 ∈ ℕ0s𝑧 ∈ ℕ0s) → (((𝑧 -s 1s ) ≤s 𝑦 → (𝑦 -s (𝑧 -s 1s )) ∈ ℕ0s) → (𝑧 ≤s (𝑦 +s 1s ) → ((𝑦 +s 1s ) -s 𝑧) ∈ ℕ0s)))
6856, 67syl9r 78 . . . . . . 7 ((𝑦 ∈ ℕ0s𝑧 ∈ ℕ0s) → ((𝑧 -s 1s ) ∈ ℕ0s → (∀𝑥 ∈ ℕ0s (𝑥 ≤s 𝑦 → (𝑦 -s 𝑥) ∈ ℕ0s) → (𝑧 ≤s (𝑦 +s 1s ) → ((𝑦 +s 1s ) -s 𝑧) ∈ ℕ0s))))
69 n0s0m1 28377 . . . . . . . 8 (𝑧 ∈ ℕ0s → (𝑧 = 0s ∨ (𝑧 -s 1s ) ∈ ℕ0s))
7069adantl 481 . . . . . . 7 ((𝑦 ∈ ℕ0s𝑧 ∈ ℕ0s) → (𝑧 = 0s ∨ (𝑧 -s 1s ) ∈ ℕ0s))
7151, 68, 70mpjaod 859 . . . . . 6 ((𝑦 ∈ ℕ0s𝑧 ∈ ℕ0s) → (∀𝑥 ∈ ℕ0s (𝑥 ≤s 𝑦 → (𝑦 -s 𝑥) ∈ ℕ0s) → (𝑧 ≤s (𝑦 +s 1s ) → ((𝑦 +s 1s ) -s 𝑧) ∈ ℕ0s)))
7271ralrimdva 3160 . . . . 5 (𝑦 ∈ ℕ0s → (∀𝑥 ∈ ℕ0s (𝑥 ≤s 𝑦 → (𝑦 -s 𝑥) ∈ ℕ0s) → ∀𝑧 ∈ ℕ0s (𝑧 ≤s (𝑦 +s 1s ) → ((𝑦 +s 1s ) -s 𝑧) ∈ ℕ0s)))
7340, 72biimtrid 242 . . . 4 (𝑦 ∈ ℕ0s → (∀𝑧 ∈ ℕ0s (𝑧 ≤s 𝑦 → (𝑦 -s 𝑧) ∈ ℕ0s) → ∀𝑧 ∈ ℕ0s (𝑧 ≤s (𝑦 +s 1s ) → ((𝑦 +s 1s ) -s 𝑧) ∈ ℕ0s)))
745, 10, 15, 20, 35, 73n0sind 28355 . . 3 (𝑁 ∈ ℕ0s → ∀𝑧 ∈ ℕ0s (𝑧 ≤s 𝑁 → (𝑁 -s 𝑧) ∈ ℕ0s))
75 breq1 5169 . . . . 5 (𝑧 = 𝑀 → (𝑧 ≤s 𝑁𝑀 ≤s 𝑁))
76 oveq2 7456 . . . . . 6 (𝑧 = 𝑀 → (𝑁 -s 𝑧) = (𝑁 -s 𝑀))
7776eleq1d 2829 . . . . 5 (𝑧 = 𝑀 → ((𝑁 -s 𝑧) ∈ ℕ0s ↔ (𝑁 -s 𝑀) ∈ ℕ0s))
7875, 77imbi12d 344 . . . 4 (𝑧 = 𝑀 → ((𝑧 ≤s 𝑁 → (𝑁 -s 𝑧) ∈ ℕ0s) ↔ (𝑀 ≤s 𝑁 → (𝑁 -s 𝑀) ∈ ℕ0s)))
7978rspcva 3633 . . 3 ((𝑀 ∈ ℕ0s ∧ ∀𝑧 ∈ ℕ0s (𝑧 ≤s 𝑁 → (𝑁 -s 𝑧) ∈ ℕ0s)) → (𝑀 ≤s 𝑁 → (𝑁 -s 𝑀) ∈ ℕ0s))
8074, 79sylan2 592 . 2 ((𝑀 ∈ ℕ0s𝑁 ∈ ℕ0s) → (𝑀 ≤s 𝑁 → (𝑁 -s 𝑀) ∈ ℕ0s))
81 n0sge0 28359 . . 3 ((𝑁 -s 𝑀) ∈ ℕ0s → 0s ≤s (𝑁 -s 𝑀))
82 n0sno 28346 . . . . 5 (𝑁 ∈ ℕ0s𝑁 No )
8382adantl 481 . . . 4 ((𝑀 ∈ ℕ0s𝑁 ∈ ℕ0s) → 𝑁 No )
84 n0sno 28346 . . . . 5 (𝑀 ∈ ℕ0s𝑀 No )
8584adantr 480 . . . 4 ((𝑀 ∈ ℕ0s𝑁 ∈ ℕ0s) → 𝑀 No )
8683, 85subsge0d 28147 . . 3 ((𝑀 ∈ ℕ0s𝑁 ∈ ℕ0s) → ( 0s ≤s (𝑁 -s 𝑀) ↔ 𝑀 ≤s 𝑁))
8781, 86imbitrid 244 . 2 ((𝑀 ∈ ℕ0s𝑁 ∈ ℕ0s) → ((𝑁 -s 𝑀) ∈ ℕ0s𝑀 ≤s 𝑁))
8880, 87impbid 212 1 ((𝑀 ∈ ℕ0s𝑁 ∈ ℕ0s) → (𝑀 ≤s 𝑁 ↔ (𝑁 -s 𝑀) ∈ ℕ0s))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 846   = wceq 1537  wcel 2108  wral 3067   class class class wbr 5166  (class class class)co 7448   No csur 27702   ≤s csle 27807   0s c0s 27885   1s c1s 27886   +s cadds 28010   -s csubs 28070  0scnn0s 28336
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-ot 4657  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-nadd 8722  df-no 27705  df-slt 27706  df-bday 27707  df-sle 27808  df-sslt 27844  df-scut 27846  df-0s 27887  df-1s 27888  df-made 27904  df-old 27905  df-left 27907  df-right 27908  df-norec 27989  df-norec2 28000  df-adds 28011  df-negs 28071  df-subs 28072  df-n0s 28338
This theorem is referenced by:  elzn0s  28402  eln0zs  28404
  Copyright terms: Public domain W3C validator