MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  argregt0 Structured version   Visualization version   GIF version

Theorem argregt0 26667
Description: Closure of the argument of a complex number with positive real part. (Contributed by Mario Carneiro, 25-Feb-2015.)
Assertion
Ref Expression
argregt0 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(log‘𝐴)) ∈ (-(π / 2)(,)(π / 2)))

Proof of Theorem argregt0
StepHypRef Expression
1 recl 15146 . . . . . 6 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ)
2 gt0ne0 11726 . . . . . 6 (((ℜ‘𝐴) ∈ ℝ ∧ 0 < (ℜ‘𝐴)) → (ℜ‘𝐴) ≠ 0)
31, 2sylan 580 . . . . 5 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → (ℜ‘𝐴) ≠ 0)
4 fveq2 6907 . . . . . . 7 (𝐴 = 0 → (ℜ‘𝐴) = (ℜ‘0))
5 re0 15188 . . . . . . 7 (ℜ‘0) = 0
64, 5eqtrdi 2791 . . . . . 6 (𝐴 = 0 → (ℜ‘𝐴) = 0)
76necon3i 2971 . . . . 5 ((ℜ‘𝐴) ≠ 0 → 𝐴 ≠ 0)
83, 7syl 17 . . . 4 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → 𝐴 ≠ 0)
9 logcl 26625 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (log‘𝐴) ∈ ℂ)
108, 9syldan 591 . . 3 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → (log‘𝐴) ∈ ℂ)
1110imcld 15231 . 2 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(log‘𝐴)) ∈ ℝ)
12 coshalfpi 26526 . . . . . 6 (cos‘(π / 2)) = 0
13 simpr 484 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → 0 < (ℜ‘𝐴))
14 abscl 15314 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℝ)
1514adantr 480 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → (abs‘𝐴) ∈ ℝ)
1615recnd 11287 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → (abs‘𝐴) ∈ ℂ)
1716mul01d 11458 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → ((abs‘𝐴) · 0) = 0)
18 simpl 482 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → 𝐴 ∈ ℂ)
19 absrpcl 15324 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (abs‘𝐴) ∈ ℝ+)
208, 19syldan 591 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → (abs‘𝐴) ∈ ℝ+)
2120rpne0d 13080 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → (abs‘𝐴) ≠ 0)
2218, 16, 21divcld 12041 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → (𝐴 / (abs‘𝐴)) ∈ ℂ)
2315, 22remul2d 15263 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → (ℜ‘((abs‘𝐴) · (𝐴 / (abs‘𝐴)))) = ((abs‘𝐴) · (ℜ‘(𝐴 / (abs‘𝐴)))))
2418, 16, 21divcan2d 12043 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → ((abs‘𝐴) · (𝐴 / (abs‘𝐴))) = 𝐴)
2524fveq2d 6911 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → (ℜ‘((abs‘𝐴) · (𝐴 / (abs‘𝐴)))) = (ℜ‘𝐴))
2623, 25eqtr3d 2777 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → ((abs‘𝐴) · (ℜ‘(𝐴 / (abs‘𝐴)))) = (ℜ‘𝐴))
2713, 17, 263brtr4d 5180 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → ((abs‘𝐴) · 0) < ((abs‘𝐴) · (ℜ‘(𝐴 / (abs‘𝐴)))))
28 0re 11261 . . . . . . . . . . . 12 0 ∈ ℝ
2928a1i 11 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → 0 ∈ ℝ)
3022recld 15230 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → (ℜ‘(𝐴 / (abs‘𝐴))) ∈ ℝ)
3129, 30, 20ltmul2d 13117 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → (0 < (ℜ‘(𝐴 / (abs‘𝐴))) ↔ ((abs‘𝐴) · 0) < ((abs‘𝐴) · (ℜ‘(𝐴 / (abs‘𝐴))))))
3227, 31mpbird 257 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → 0 < (ℜ‘(𝐴 / (abs‘𝐴))))
33 efiarg 26664 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (exp‘(i · (ℑ‘(log‘𝐴)))) = (𝐴 / (abs‘𝐴)))
348, 33syldan 591 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → (exp‘(i · (ℑ‘(log‘𝐴)))) = (𝐴 / (abs‘𝐴)))
3534fveq2d 6911 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → (ℜ‘(exp‘(i · (ℑ‘(log‘𝐴))))) = (ℜ‘(𝐴 / (abs‘𝐴))))
3632, 35breqtrrd 5176 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → 0 < (ℜ‘(exp‘(i · (ℑ‘(log‘𝐴))))))
37 recosval 16169 . . . . . . . . 9 ((ℑ‘(log‘𝐴)) ∈ ℝ → (cos‘(ℑ‘(log‘𝐴))) = (ℜ‘(exp‘(i · (ℑ‘(log‘𝐴))))))
3811, 37syl 17 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → (cos‘(ℑ‘(log‘𝐴))) = (ℜ‘(exp‘(i · (ℑ‘(log‘𝐴))))))
3936, 38breqtrrd 5176 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → 0 < (cos‘(ℑ‘(log‘𝐴))))
40 fveq2 6907 . . . . . . . . 9 ((abs‘(ℑ‘(log‘𝐴))) = (ℑ‘(log‘𝐴)) → (cos‘(abs‘(ℑ‘(log‘𝐴)))) = (cos‘(ℑ‘(log‘𝐴))))
4140a1i 11 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → ((abs‘(ℑ‘(log‘𝐴))) = (ℑ‘(log‘𝐴)) → (cos‘(abs‘(ℑ‘(log‘𝐴)))) = (cos‘(ℑ‘(log‘𝐴)))))
4211recnd 11287 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(log‘𝐴)) ∈ ℂ)
43 cosneg 16180 . . . . . . . . . 10 ((ℑ‘(log‘𝐴)) ∈ ℂ → (cos‘-(ℑ‘(log‘𝐴))) = (cos‘(ℑ‘(log‘𝐴))))
4442, 43syl 17 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → (cos‘-(ℑ‘(log‘𝐴))) = (cos‘(ℑ‘(log‘𝐴))))
45 fveqeq2 6916 . . . . . . . . 9 ((abs‘(ℑ‘(log‘𝐴))) = -(ℑ‘(log‘𝐴)) → ((cos‘(abs‘(ℑ‘(log‘𝐴)))) = (cos‘(ℑ‘(log‘𝐴))) ↔ (cos‘-(ℑ‘(log‘𝐴))) = (cos‘(ℑ‘(log‘𝐴)))))
4644, 45syl5ibrcom 247 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → ((abs‘(ℑ‘(log‘𝐴))) = -(ℑ‘(log‘𝐴)) → (cos‘(abs‘(ℑ‘(log‘𝐴)))) = (cos‘(ℑ‘(log‘𝐴)))))
4711absord 15451 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → ((abs‘(ℑ‘(log‘𝐴))) = (ℑ‘(log‘𝐴)) ∨ (abs‘(ℑ‘(log‘𝐴))) = -(ℑ‘(log‘𝐴))))
4841, 46, 47mpjaod 860 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → (cos‘(abs‘(ℑ‘(log‘𝐴)))) = (cos‘(ℑ‘(log‘𝐴))))
4939, 48breqtrrd 5176 . . . . . 6 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → 0 < (cos‘(abs‘(ℑ‘(log‘𝐴)))))
5012, 49eqbrtrid 5183 . . . . 5 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → (cos‘(π / 2)) < (cos‘(abs‘(ℑ‘(log‘𝐴)))))
5142abscld 15472 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → (abs‘(ℑ‘(log‘𝐴))) ∈ ℝ)
5242absge0d 15480 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → 0 ≤ (abs‘(ℑ‘(log‘𝐴))))
53 logimcl 26626 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (-π < (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ π))
548, 53syldan 591 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → (-π < (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ π))
5554simpld 494 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → -π < (ℑ‘(log‘𝐴)))
56 pire 26515 . . . . . . . . . . 11 π ∈ ℝ
5756renegcli 11568 . . . . . . . . . 10 -π ∈ ℝ
58 ltle 11347 . . . . . . . . . 10 ((-π ∈ ℝ ∧ (ℑ‘(log‘𝐴)) ∈ ℝ) → (-π < (ℑ‘(log‘𝐴)) → -π ≤ (ℑ‘(log‘𝐴))))
5957, 11, 58sylancr 587 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → (-π < (ℑ‘(log‘𝐴)) → -π ≤ (ℑ‘(log‘𝐴))))
6055, 59mpd 15 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → -π ≤ (ℑ‘(log‘𝐴)))
6154simprd 495 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(log‘𝐴)) ≤ π)
62 absle 15351 . . . . . . . . 9 (((ℑ‘(log‘𝐴)) ∈ ℝ ∧ π ∈ ℝ) → ((abs‘(ℑ‘(log‘𝐴))) ≤ π ↔ (-π ≤ (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ π)))
6311, 56, 62sylancl 586 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → ((abs‘(ℑ‘(log‘𝐴))) ≤ π ↔ (-π ≤ (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ π)))
6460, 61, 63mpbir2and 713 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → (abs‘(ℑ‘(log‘𝐴))) ≤ π)
6528, 56elicc2i 13450 . . . . . . 7 ((abs‘(ℑ‘(log‘𝐴))) ∈ (0[,]π) ↔ ((abs‘(ℑ‘(log‘𝐴))) ∈ ℝ ∧ 0 ≤ (abs‘(ℑ‘(log‘𝐴))) ∧ (abs‘(ℑ‘(log‘𝐴))) ≤ π))
6651, 52, 64, 65syl3anbrc 1342 . . . . . 6 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → (abs‘(ℑ‘(log‘𝐴))) ∈ (0[,]π))
67 halfpire 26521 . . . . . . 7 (π / 2) ∈ ℝ
68 pirp 26518 . . . . . . . 8 π ∈ ℝ+
69 rphalfcl 13060 . . . . . . . 8 (π ∈ ℝ+ → (π / 2) ∈ ℝ+)
70 rpge0 13046 . . . . . . . 8 ((π / 2) ∈ ℝ+ → 0 ≤ (π / 2))
7168, 69, 70mp2b 10 . . . . . . 7 0 ≤ (π / 2)
72 rphalflt 13062 . . . . . . . . 9 (π ∈ ℝ+ → (π / 2) < π)
7368, 72ax-mp 5 . . . . . . . 8 (π / 2) < π
7467, 56, 73ltleii 11382 . . . . . . 7 (π / 2) ≤ π
7528, 56elicc2i 13450 . . . . . . 7 ((π / 2) ∈ (0[,]π) ↔ ((π / 2) ∈ ℝ ∧ 0 ≤ (π / 2) ∧ (π / 2) ≤ π))
7667, 71, 74, 75mpbir3an 1340 . . . . . 6 (π / 2) ∈ (0[,]π)
77 cosord 26588 . . . . . 6 (((abs‘(ℑ‘(log‘𝐴))) ∈ (0[,]π) ∧ (π / 2) ∈ (0[,]π)) → ((abs‘(ℑ‘(log‘𝐴))) < (π / 2) ↔ (cos‘(π / 2)) < (cos‘(abs‘(ℑ‘(log‘𝐴))))))
7866, 76, 77sylancl 586 . . . . 5 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → ((abs‘(ℑ‘(log‘𝐴))) < (π / 2) ↔ (cos‘(π / 2)) < (cos‘(abs‘(ℑ‘(log‘𝐴))))))
7950, 78mpbird 257 . . . 4 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → (abs‘(ℑ‘(log‘𝐴))) < (π / 2))
80 abslt 15350 . . . . 5 (((ℑ‘(log‘𝐴)) ∈ ℝ ∧ (π / 2) ∈ ℝ) → ((abs‘(ℑ‘(log‘𝐴))) < (π / 2) ↔ (-(π / 2) < (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) < (π / 2))))
8111, 67, 80sylancl 586 . . . 4 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → ((abs‘(ℑ‘(log‘𝐴))) < (π / 2) ↔ (-(π / 2) < (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) < (π / 2))))
8279, 81mpbid 232 . . 3 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → (-(π / 2) < (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) < (π / 2)))
8382simpld 494 . 2 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → -(π / 2) < (ℑ‘(log‘𝐴)))
8482simprd 495 . 2 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(log‘𝐴)) < (π / 2))
8567renegcli 11568 . . . 4 -(π / 2) ∈ ℝ
8685rexri 11317 . . 3 -(π / 2) ∈ ℝ*
8767rexri 11317 . . 3 (π / 2) ∈ ℝ*
88 elioo2 13425 . . 3 ((-(π / 2) ∈ ℝ* ∧ (π / 2) ∈ ℝ*) → ((ℑ‘(log‘𝐴)) ∈ (-(π / 2)(,)(π / 2)) ↔ ((ℑ‘(log‘𝐴)) ∈ ℝ ∧ -(π / 2) < (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) < (π / 2))))
8986, 87, 88mp2an 692 . 2 ((ℑ‘(log‘𝐴)) ∈ (-(π / 2)(,)(π / 2)) ↔ ((ℑ‘(log‘𝐴)) ∈ ℝ ∧ -(π / 2) < (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) < (π / 2)))
9011, 83, 84, 89syl3anbrc 1342 1 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(log‘𝐴)) ∈ (-(π / 2)(,)(π / 2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  wne 2938   class class class wbr 5148  cfv 6563  (class class class)co 7431  cc 11151  cr 11152  0cc0 11153  ici 11155   · cmul 11158  *cxr 11292   < clt 11293  cle 11294  -cneg 11491   / cdiv 11918  2c2 12319  +crp 13032  (,)cioo 13384  [,]cicc 13387  cre 15133  cim 15134  abscabs 15270  expce 16094  cosccos 16097  πcpi 16099  logclog 26611
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231  ax-addf 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8013  df-2nd 8014  df-supp 8185  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-er 8744  df-map 8867  df-pm 8868  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fsupp 9400  df-fi 9449  df-sup 9480  df-inf 9481  df-oi 9548  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-q 12989  df-rp 13033  df-xneg 13152  df-xadd 13153  df-xmul 13154  df-ioo 13388  df-ioc 13389  df-ico 13390  df-icc 13391  df-fz 13545  df-fzo 13692  df-fl 13829  df-mod 13907  df-seq 14040  df-exp 14100  df-fac 14310  df-bc 14339  df-hash 14367  df-shft 15103  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-limsup 15504  df-clim 15521  df-rlim 15522  df-sum 15720  df-ef 16100  df-sin 16102  df-cos 16103  df-pi 16105  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-starv 17313  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-hom 17322  df-cco 17323  df-rest 17469  df-topn 17470  df-0g 17488  df-gsum 17489  df-topgen 17490  df-pt 17491  df-prds 17494  df-xrs 17549  df-qtop 17554  df-imas 17555  df-xps 17557  df-mre 17631  df-mrc 17632  df-acs 17634  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-submnd 18810  df-mulg 19099  df-cntz 19348  df-cmn 19815  df-psmet 21374  df-xmet 21375  df-met 21376  df-bl 21377  df-mopn 21378  df-fbas 21379  df-fg 21380  df-cnfld 21383  df-top 22916  df-topon 22933  df-topsp 22955  df-bases 22969  df-cld 23043  df-ntr 23044  df-cls 23045  df-nei 23122  df-lp 23160  df-perf 23161  df-cn 23251  df-cnp 23252  df-haus 23339  df-tx 23586  df-hmeo 23779  df-fil 23870  df-fm 23962  df-flim 23963  df-flf 23964  df-xms 24346  df-ms 24347  df-tms 24348  df-cncf 24918  df-limc 25916  df-dv 25917  df-log 26613
This theorem is referenced by:  logcnlem4  26702  atanlogsublem  26973
  Copyright terms: Public domain W3C validator