MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  argregt0 Structured version   Visualization version   GIF version

Theorem argregt0 24661
Description: Closure of the argument of a complex number with positive real part. (Contributed by Mario Carneiro, 25-Feb-2015.)
Assertion
Ref Expression
argregt0 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(log‘𝐴)) ∈ (-(π / 2)(,)(π / 2)))

Proof of Theorem argregt0
StepHypRef Expression
1 recl 14149 . . . . . 6 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ)
2 gt0ne0 10751 . . . . . 6 (((ℜ‘𝐴) ∈ ℝ ∧ 0 < (ℜ‘𝐴)) → (ℜ‘𝐴) ≠ 0)
31, 2sylan 575 . . . . 5 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → (ℜ‘𝐴) ≠ 0)
4 fveq2 6379 . . . . . . 7 (𝐴 = 0 → (ℜ‘𝐴) = (ℜ‘0))
5 re0 14191 . . . . . . 7 (ℜ‘0) = 0
64, 5syl6eq 2815 . . . . . 6 (𝐴 = 0 → (ℜ‘𝐴) = 0)
76necon3i 2969 . . . . 5 ((ℜ‘𝐴) ≠ 0 → 𝐴 ≠ 0)
83, 7syl 17 . . . 4 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → 𝐴 ≠ 0)
9 logcl 24620 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (log‘𝐴) ∈ ℂ)
108, 9syldan 585 . . 3 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → (log‘𝐴) ∈ ℂ)
1110imcld 14234 . 2 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(log‘𝐴)) ∈ ℝ)
12 coshalfpi 24527 . . . . . 6 (cos‘(π / 2)) = 0
13 simpr 477 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → 0 < (ℜ‘𝐴))
14 abscl 14317 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℝ)
1514adantr 472 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → (abs‘𝐴) ∈ ℝ)
1615recnd 10326 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → (abs‘𝐴) ∈ ℂ)
1716mul01d 10493 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → ((abs‘𝐴) · 0) = 0)
18 simpl 474 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → 𝐴 ∈ ℂ)
19 absrpcl 14327 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (abs‘𝐴) ∈ ℝ+)
208, 19syldan 585 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → (abs‘𝐴) ∈ ℝ+)
2120rpne0d 12080 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → (abs‘𝐴) ≠ 0)
2218, 16, 21divcld 11059 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → (𝐴 / (abs‘𝐴)) ∈ ℂ)
2315, 22remul2d 14266 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → (ℜ‘((abs‘𝐴) · (𝐴 / (abs‘𝐴)))) = ((abs‘𝐴) · (ℜ‘(𝐴 / (abs‘𝐴)))))
2418, 16, 21divcan2d 11061 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → ((abs‘𝐴) · (𝐴 / (abs‘𝐴))) = 𝐴)
2524fveq2d 6383 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → (ℜ‘((abs‘𝐴) · (𝐴 / (abs‘𝐴)))) = (ℜ‘𝐴))
2623, 25eqtr3d 2801 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → ((abs‘𝐴) · (ℜ‘(𝐴 / (abs‘𝐴)))) = (ℜ‘𝐴))
2713, 17, 263brtr4d 4843 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → ((abs‘𝐴) · 0) < ((abs‘𝐴) · (ℜ‘(𝐴 / (abs‘𝐴)))))
28 0re 10299 . . . . . . . . . . . 12 0 ∈ ℝ
2928a1i 11 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → 0 ∈ ℝ)
3022recld 14233 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → (ℜ‘(𝐴 / (abs‘𝐴))) ∈ ℝ)
3129, 30, 20ltmul2d 12117 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → (0 < (ℜ‘(𝐴 / (abs‘𝐴))) ↔ ((abs‘𝐴) · 0) < ((abs‘𝐴) · (ℜ‘(𝐴 / (abs‘𝐴))))))
3227, 31mpbird 248 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → 0 < (ℜ‘(𝐴 / (abs‘𝐴))))
33 efiarg 24658 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (exp‘(i · (ℑ‘(log‘𝐴)))) = (𝐴 / (abs‘𝐴)))
348, 33syldan 585 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → (exp‘(i · (ℑ‘(log‘𝐴)))) = (𝐴 / (abs‘𝐴)))
3534fveq2d 6383 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → (ℜ‘(exp‘(i · (ℑ‘(log‘𝐴))))) = (ℜ‘(𝐴 / (abs‘𝐴))))
3632, 35breqtrrd 4839 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → 0 < (ℜ‘(exp‘(i · (ℑ‘(log‘𝐴))))))
37 recosval 15162 . . . . . . . . 9 ((ℑ‘(log‘𝐴)) ∈ ℝ → (cos‘(ℑ‘(log‘𝐴))) = (ℜ‘(exp‘(i · (ℑ‘(log‘𝐴))))))
3811, 37syl 17 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → (cos‘(ℑ‘(log‘𝐴))) = (ℜ‘(exp‘(i · (ℑ‘(log‘𝐴))))))
3936, 38breqtrrd 4839 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → 0 < (cos‘(ℑ‘(log‘𝐴))))
40 fveq2 6379 . . . . . . . . 9 ((abs‘(ℑ‘(log‘𝐴))) = (ℑ‘(log‘𝐴)) → (cos‘(abs‘(ℑ‘(log‘𝐴)))) = (cos‘(ℑ‘(log‘𝐴))))
4140a1i 11 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → ((abs‘(ℑ‘(log‘𝐴))) = (ℑ‘(log‘𝐴)) → (cos‘(abs‘(ℑ‘(log‘𝐴)))) = (cos‘(ℑ‘(log‘𝐴)))))
4211recnd 10326 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(log‘𝐴)) ∈ ℂ)
43 cosneg 15173 . . . . . . . . . 10 ((ℑ‘(log‘𝐴)) ∈ ℂ → (cos‘-(ℑ‘(log‘𝐴))) = (cos‘(ℑ‘(log‘𝐴))))
4442, 43syl 17 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → (cos‘-(ℑ‘(log‘𝐴))) = (cos‘(ℑ‘(log‘𝐴))))
45 fveqeq2 6388 . . . . . . . . 9 ((abs‘(ℑ‘(log‘𝐴))) = -(ℑ‘(log‘𝐴)) → ((cos‘(abs‘(ℑ‘(log‘𝐴)))) = (cos‘(ℑ‘(log‘𝐴))) ↔ (cos‘-(ℑ‘(log‘𝐴))) = (cos‘(ℑ‘(log‘𝐴)))))
4644, 45syl5ibrcom 238 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → ((abs‘(ℑ‘(log‘𝐴))) = -(ℑ‘(log‘𝐴)) → (cos‘(abs‘(ℑ‘(log‘𝐴)))) = (cos‘(ℑ‘(log‘𝐴)))))
4711absord 14453 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → ((abs‘(ℑ‘(log‘𝐴))) = (ℑ‘(log‘𝐴)) ∨ (abs‘(ℑ‘(log‘𝐴))) = -(ℑ‘(log‘𝐴))))
4841, 46, 47mpjaod 886 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → (cos‘(abs‘(ℑ‘(log‘𝐴)))) = (cos‘(ℑ‘(log‘𝐴))))
4939, 48breqtrrd 4839 . . . . . 6 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → 0 < (cos‘(abs‘(ℑ‘(log‘𝐴)))))
5012, 49syl5eqbr 4846 . . . . 5 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → (cos‘(π / 2)) < (cos‘(abs‘(ℑ‘(log‘𝐴)))))
51 abscl 14317 . . . . . . . 8 ((ℑ‘(log‘𝐴)) ∈ ℂ → (abs‘(ℑ‘(log‘𝐴))) ∈ ℝ)
5242, 51syl 17 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → (abs‘(ℑ‘(log‘𝐴))) ∈ ℝ)
5342absge0d 14482 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → 0 ≤ (abs‘(ℑ‘(log‘𝐴))))
54 logimcl 24621 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (-π < (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ π))
558, 54syldan 585 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → (-π < (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ π))
5655simpld 488 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → -π < (ℑ‘(log‘𝐴)))
57 pire 24516 . . . . . . . . . . 11 π ∈ ℝ
5857renegcli 10600 . . . . . . . . . 10 -π ∈ ℝ
59 ltle 10384 . . . . . . . . . 10 ((-π ∈ ℝ ∧ (ℑ‘(log‘𝐴)) ∈ ℝ) → (-π < (ℑ‘(log‘𝐴)) → -π ≤ (ℑ‘(log‘𝐴))))
6058, 11, 59sylancr 581 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → (-π < (ℑ‘(log‘𝐴)) → -π ≤ (ℑ‘(log‘𝐴))))
6156, 60mpd 15 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → -π ≤ (ℑ‘(log‘𝐴)))
6255simprd 489 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(log‘𝐴)) ≤ π)
63 absle 14354 . . . . . . . . 9 (((ℑ‘(log‘𝐴)) ∈ ℝ ∧ π ∈ ℝ) → ((abs‘(ℑ‘(log‘𝐴))) ≤ π ↔ (-π ≤ (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ π)))
6411, 57, 63sylancl 580 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → ((abs‘(ℑ‘(log‘𝐴))) ≤ π ↔ (-π ≤ (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ π)))
6561, 62, 64mpbir2and 704 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → (abs‘(ℑ‘(log‘𝐴))) ≤ π)
6628, 57elicc2i 12446 . . . . . . 7 ((abs‘(ℑ‘(log‘𝐴))) ∈ (0[,]π) ↔ ((abs‘(ℑ‘(log‘𝐴))) ∈ ℝ ∧ 0 ≤ (abs‘(ℑ‘(log‘𝐴))) ∧ (abs‘(ℑ‘(log‘𝐴))) ≤ π))
6752, 53, 65, 66syl3anbrc 1443 . . . . . 6 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → (abs‘(ℑ‘(log‘𝐴))) ∈ (0[,]π))
68 halfpire 24522 . . . . . . 7 (π / 2) ∈ ℝ
69 pirp 24519 . . . . . . . 8 π ∈ ℝ+
70 rphalfcl 12061 . . . . . . . 8 (π ∈ ℝ+ → (π / 2) ∈ ℝ+)
71 rpge0 12048 . . . . . . . 8 ((π / 2) ∈ ℝ+ → 0 ≤ (π / 2))
7269, 70, 71mp2b 10 . . . . . . 7 0 ≤ (π / 2)
73 rphalflt 12063 . . . . . . . . 9 (π ∈ ℝ+ → (π / 2) < π)
7469, 73ax-mp 5 . . . . . . . 8 (π / 2) < π
7568, 57, 74ltleii 10418 . . . . . . 7 (π / 2) ≤ π
7628, 57elicc2i 12446 . . . . . . 7 ((π / 2) ∈ (0[,]π) ↔ ((π / 2) ∈ ℝ ∧ 0 ≤ (π / 2) ∧ (π / 2) ≤ π))
7768, 72, 75, 76mpbir3an 1441 . . . . . 6 (π / 2) ∈ (0[,]π)
78 cosord 24584 . . . . . 6 (((abs‘(ℑ‘(log‘𝐴))) ∈ (0[,]π) ∧ (π / 2) ∈ (0[,]π)) → ((abs‘(ℑ‘(log‘𝐴))) < (π / 2) ↔ (cos‘(π / 2)) < (cos‘(abs‘(ℑ‘(log‘𝐴))))))
7967, 77, 78sylancl 580 . . . . 5 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → ((abs‘(ℑ‘(log‘𝐴))) < (π / 2) ↔ (cos‘(π / 2)) < (cos‘(abs‘(ℑ‘(log‘𝐴))))))
8050, 79mpbird 248 . . . 4 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → (abs‘(ℑ‘(log‘𝐴))) < (π / 2))
81 abslt 14353 . . . . 5 (((ℑ‘(log‘𝐴)) ∈ ℝ ∧ (π / 2) ∈ ℝ) → ((abs‘(ℑ‘(log‘𝐴))) < (π / 2) ↔ (-(π / 2) < (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) < (π / 2))))
8211, 68, 81sylancl 580 . . . 4 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → ((abs‘(ℑ‘(log‘𝐴))) < (π / 2) ↔ (-(π / 2) < (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) < (π / 2))))
8380, 82mpbid 223 . . 3 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → (-(π / 2) < (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) < (π / 2)))
8483simpld 488 . 2 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → -(π / 2) < (ℑ‘(log‘𝐴)))
8583simprd 489 . 2 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(log‘𝐴)) < (π / 2))
8668renegcli 10600 . . . 4 -(π / 2) ∈ ℝ
8786rexri 10355 . . 3 -(π / 2) ∈ ℝ*
8868rexri 10355 . . 3 (π / 2) ∈ ℝ*
89 elioo2 12423 . . 3 ((-(π / 2) ∈ ℝ* ∧ (π / 2) ∈ ℝ*) → ((ℑ‘(log‘𝐴)) ∈ (-(π / 2)(,)(π / 2)) ↔ ((ℑ‘(log‘𝐴)) ∈ ℝ ∧ -(π / 2) < (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) < (π / 2))))
9087, 88, 89mp2an 683 . 2 ((ℑ‘(log‘𝐴)) ∈ (-(π / 2)(,)(π / 2)) ↔ ((ℑ‘(log‘𝐴)) ∈ ℝ ∧ -(π / 2) < (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) < (π / 2)))
9111, 84, 85, 90syl3anbrc 1443 1 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(log‘𝐴)) ∈ (-(π / 2)(,)(π / 2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384  w3a 1107   = wceq 1652  wcel 2155  wne 2937   class class class wbr 4811  cfv 6070  (class class class)co 6846  cc 10191  cr 10192  0cc0 10193  ici 10195   · cmul 10198  *cxr 10331   < clt 10332  cle 10333  -cneg 10525   / cdiv 10942  2c2 11331  +crp 12033  (,)cioo 12382  [,]cicc 12385  cre 14136  cim 14137  abscabs 14273  expce 15088  cosccos 15091  πcpi 15093  logclog 24606
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4932  ax-sep 4943  ax-nul 4951  ax-pow 5003  ax-pr 5064  ax-un 7151  ax-inf2 8757  ax-cnex 10249  ax-resscn 10250  ax-1cn 10251  ax-icn 10252  ax-addcl 10253  ax-addrcl 10254  ax-mulcl 10255  ax-mulrcl 10256  ax-mulcom 10257  ax-addass 10258  ax-mulass 10259  ax-distr 10260  ax-i2m1 10261  ax-1ne0 10262  ax-1rid 10263  ax-rnegex 10264  ax-rrecex 10265  ax-cnre 10266  ax-pre-lttri 10267  ax-pre-lttrn 10268  ax-pre-ltadd 10269  ax-pre-mulgt0 10270  ax-pre-sup 10271  ax-addf 10272  ax-mulf 10273
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-fal 1666  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3599  df-csb 3694  df-dif 3737  df-un 3739  df-in 3741  df-ss 3748  df-pss 3750  df-nul 4082  df-if 4246  df-pw 4319  df-sn 4337  df-pr 4339  df-tp 4341  df-op 4343  df-uni 4597  df-int 4636  df-iun 4680  df-iin 4681  df-br 4812  df-opab 4874  df-mpt 4891  df-tr 4914  df-id 5187  df-eprel 5192  df-po 5200  df-so 5201  df-fr 5238  df-se 5239  df-we 5240  df-xp 5285  df-rel 5286  df-cnv 5287  df-co 5288  df-dm 5289  df-rn 5290  df-res 5291  df-ima 5292  df-pred 5867  df-ord 5913  df-on 5914  df-lim 5915  df-suc 5916  df-iota 6033  df-fun 6072  df-fn 6073  df-f 6074  df-f1 6075  df-fo 6076  df-f1o 6077  df-fv 6078  df-isom 6079  df-riota 6807  df-ov 6849  df-oprab 6850  df-mpt2 6851  df-of 7099  df-om 7268  df-1st 7370  df-2nd 7371  df-supp 7502  df-wrecs 7614  df-recs 7676  df-rdg 7714  df-1o 7768  df-2o 7769  df-oadd 7772  df-er 7951  df-map 8066  df-pm 8067  df-ixp 8118  df-en 8165  df-dom 8166  df-sdom 8167  df-fin 8168  df-fsupp 8487  df-fi 8528  df-sup 8559  df-inf 8560  df-oi 8626  df-card 9020  df-cda 9247  df-pnf 10334  df-mnf 10335  df-xr 10336  df-ltxr 10337  df-le 10338  df-sub 10526  df-neg 10527  df-div 10943  df-nn 11279  df-2 11339  df-3 11340  df-4 11341  df-5 11342  df-6 11343  df-7 11344  df-8 11345  df-9 11346  df-n0 11543  df-z 11629  df-dec 11746  df-uz 11892  df-q 11995  df-rp 12034  df-xneg 12151  df-xadd 12152  df-xmul 12153  df-ioo 12386  df-ioc 12387  df-ico 12388  df-icc 12389  df-fz 12539  df-fzo 12679  df-fl 12806  df-mod 12882  df-seq 13014  df-exp 13073  df-fac 13270  df-bc 13299  df-hash 13327  df-shft 14106  df-cj 14138  df-re 14139  df-im 14140  df-sqrt 14274  df-abs 14275  df-limsup 14501  df-clim 14518  df-rlim 14519  df-sum 14716  df-ef 15094  df-sin 15096  df-cos 15097  df-pi 15099  df-struct 16146  df-ndx 16147  df-slot 16148  df-base 16150  df-sets 16151  df-ress 16152  df-plusg 16241  df-mulr 16242  df-starv 16243  df-sca 16244  df-vsca 16245  df-ip 16246  df-tset 16247  df-ple 16248  df-ds 16250  df-unif 16251  df-hom 16252  df-cco 16253  df-rest 16363  df-topn 16364  df-0g 16382  df-gsum 16383  df-topgen 16384  df-pt 16385  df-prds 16388  df-xrs 16442  df-qtop 16447  df-imas 16448  df-xps 16450  df-mre 16526  df-mrc 16527  df-acs 16529  df-mgm 17522  df-sgrp 17564  df-mnd 17575  df-submnd 17616  df-mulg 17822  df-cntz 18027  df-cmn 18475  df-psmet 20025  df-xmet 20026  df-met 20027  df-bl 20028  df-mopn 20029  df-fbas 20030  df-fg 20031  df-cnfld 20034  df-top 20992  df-topon 21009  df-topsp 21031  df-bases 21044  df-cld 21117  df-ntr 21118  df-cls 21119  df-nei 21196  df-lp 21234  df-perf 21235  df-cn 21325  df-cnp 21326  df-haus 21413  df-tx 21659  df-hmeo 21852  df-fil 21943  df-fm 22035  df-flim 22036  df-flf 22037  df-xms 22418  df-ms 22419  df-tms 22420  df-cncf 22974  df-limc 23935  df-dv 23936  df-log 24608
This theorem is referenced by:  logcnlem4  24696  atanlogsublem  24947
  Copyright terms: Public domain W3C validator