Proof of Theorem argregt0
| Step | Hyp | Ref
| Expression |
| 1 | | recl 15134 |
. . . . . 6
⊢ (𝐴 ∈ ℂ →
(ℜ‘𝐴) ∈
ℝ) |
| 2 | | gt0ne0 11707 |
. . . . . 6
⊢
(((ℜ‘𝐴)
∈ ℝ ∧ 0 < (ℜ‘𝐴)) → (ℜ‘𝐴) ≠ 0) |
| 3 | 1, 2 | sylan 580 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℜ‘𝐴)) →
(ℜ‘𝐴) ≠
0) |
| 4 | | fveq2 6881 |
. . . . . . 7
⊢ (𝐴 = 0 → (ℜ‘𝐴) =
(ℜ‘0)) |
| 5 | | re0 15176 |
. . . . . . 7
⊢
(ℜ‘0) = 0 |
| 6 | 4, 5 | eqtrdi 2787 |
. . . . . 6
⊢ (𝐴 = 0 → (ℜ‘𝐴) = 0) |
| 7 | 6 | necon3i 2965 |
. . . . 5
⊢
((ℜ‘𝐴)
≠ 0 → 𝐴 ≠
0) |
| 8 | 3, 7 | syl 17 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℜ‘𝐴)) →
𝐴 ≠ 0) |
| 9 | | logcl 26534 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (log‘𝐴) ∈
ℂ) |
| 10 | 8, 9 | syldan 591 |
. . 3
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℜ‘𝐴)) →
(log‘𝐴) ∈
ℂ) |
| 11 | 10 | imcld 15219 |
. 2
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℜ‘𝐴)) →
(ℑ‘(log‘𝐴)) ∈ ℝ) |
| 12 | | coshalfpi 26435 |
. . . . . 6
⊢
(cos‘(π / 2)) = 0 |
| 13 | | simpr 484 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℜ‘𝐴)) → 0
< (ℜ‘𝐴)) |
| 14 | | abscl 15302 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ∈ ℂ →
(abs‘𝐴) ∈
ℝ) |
| 15 | 14 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℜ‘𝐴)) →
(abs‘𝐴) ∈
ℝ) |
| 16 | 15 | recnd 11268 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℜ‘𝐴)) →
(abs‘𝐴) ∈
ℂ) |
| 17 | 16 | mul01d 11439 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℜ‘𝐴)) →
((abs‘𝐴) · 0)
= 0) |
| 18 | | simpl 482 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℜ‘𝐴)) →
𝐴 ∈
ℂ) |
| 19 | | absrpcl 15312 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (abs‘𝐴) ∈
ℝ+) |
| 20 | 8, 19 | syldan 591 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℜ‘𝐴)) →
(abs‘𝐴) ∈
ℝ+) |
| 21 | 20 | rpne0d 13061 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℜ‘𝐴)) →
(abs‘𝐴) ≠
0) |
| 22 | 18, 16, 21 | divcld 12022 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℜ‘𝐴)) →
(𝐴 / (abs‘𝐴)) ∈
ℂ) |
| 23 | 15, 22 | remul2d 15251 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℜ‘𝐴)) →
(ℜ‘((abs‘𝐴) · (𝐴 / (abs‘𝐴)))) = ((abs‘𝐴) · (ℜ‘(𝐴 / (abs‘𝐴))))) |
| 24 | 18, 16, 21 | divcan2d 12024 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℜ‘𝐴)) →
((abs‘𝐴) ·
(𝐴 / (abs‘𝐴))) = 𝐴) |
| 25 | 24 | fveq2d 6885 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℜ‘𝐴)) →
(ℜ‘((abs‘𝐴) · (𝐴 / (abs‘𝐴)))) = (ℜ‘𝐴)) |
| 26 | 23, 25 | eqtr3d 2773 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℜ‘𝐴)) →
((abs‘𝐴) ·
(ℜ‘(𝐴 /
(abs‘𝐴)))) =
(ℜ‘𝐴)) |
| 27 | 13, 17, 26 | 3brtr4d 5156 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℜ‘𝐴)) →
((abs‘𝐴) · 0)
< ((abs‘𝐴)
· (ℜ‘(𝐴 /
(abs‘𝐴))))) |
| 28 | | 0re 11242 |
. . . . . . . . . . . 12
⊢ 0 ∈
ℝ |
| 29 | 28 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℜ‘𝐴)) → 0
∈ ℝ) |
| 30 | 22 | recld 15218 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℜ‘𝐴)) →
(ℜ‘(𝐴 /
(abs‘𝐴))) ∈
ℝ) |
| 31 | 29, 30, 20 | ltmul2d 13098 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℜ‘𝐴)) → (0
< (ℜ‘(𝐴 /
(abs‘𝐴))) ↔
((abs‘𝐴) · 0)
< ((abs‘𝐴)
· (ℜ‘(𝐴 /
(abs‘𝐴)))))) |
| 32 | 27, 31 | mpbird 257 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℜ‘𝐴)) → 0
< (ℜ‘(𝐴 /
(abs‘𝐴)))) |
| 33 | | efiarg 26573 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (exp‘(i
· (ℑ‘(log‘𝐴)))) = (𝐴 / (abs‘𝐴))) |
| 34 | 8, 33 | syldan 591 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℜ‘𝐴)) →
(exp‘(i · (ℑ‘(log‘𝐴)))) = (𝐴 / (abs‘𝐴))) |
| 35 | 34 | fveq2d 6885 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℜ‘𝐴)) →
(ℜ‘(exp‘(i · (ℑ‘(log‘𝐴))))) = (ℜ‘(𝐴 / (abs‘𝐴)))) |
| 36 | 32, 35 | breqtrrd 5152 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℜ‘𝐴)) → 0
< (ℜ‘(exp‘(i · (ℑ‘(log‘𝐴)))))) |
| 37 | | recosval 16159 |
. . . . . . . . 9
⊢
((ℑ‘(log‘𝐴)) ∈ ℝ →
(cos‘(ℑ‘(log‘𝐴))) = (ℜ‘(exp‘(i ·
(ℑ‘(log‘𝐴)))))) |
| 38 | 11, 37 | syl 17 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℜ‘𝐴)) →
(cos‘(ℑ‘(log‘𝐴))) = (ℜ‘(exp‘(i ·
(ℑ‘(log‘𝐴)))))) |
| 39 | 36, 38 | breqtrrd 5152 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℜ‘𝐴)) → 0
< (cos‘(ℑ‘(log‘𝐴)))) |
| 40 | | fveq2 6881 |
. . . . . . . . 9
⊢
((abs‘(ℑ‘(log‘𝐴))) = (ℑ‘(log‘𝐴)) →
(cos‘(abs‘(ℑ‘(log‘𝐴)))) =
(cos‘(ℑ‘(log‘𝐴)))) |
| 41 | 40 | a1i 11 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℜ‘𝐴)) →
((abs‘(ℑ‘(log‘𝐴))) = (ℑ‘(log‘𝐴)) →
(cos‘(abs‘(ℑ‘(log‘𝐴)))) =
(cos‘(ℑ‘(log‘𝐴))))) |
| 42 | 11 | recnd 11268 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℜ‘𝐴)) →
(ℑ‘(log‘𝐴)) ∈ ℂ) |
| 43 | | cosneg 16170 |
. . . . . . . . . 10
⊢
((ℑ‘(log‘𝐴)) ∈ ℂ →
(cos‘-(ℑ‘(log‘𝐴))) =
(cos‘(ℑ‘(log‘𝐴)))) |
| 44 | 42, 43 | syl 17 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℜ‘𝐴)) →
(cos‘-(ℑ‘(log‘𝐴))) =
(cos‘(ℑ‘(log‘𝐴)))) |
| 45 | | fveqeq2 6890 |
. . . . . . . . 9
⊢
((abs‘(ℑ‘(log‘𝐴))) = -(ℑ‘(log‘𝐴)) →
((cos‘(abs‘(ℑ‘(log‘𝐴)))) =
(cos‘(ℑ‘(log‘𝐴))) ↔
(cos‘-(ℑ‘(log‘𝐴))) =
(cos‘(ℑ‘(log‘𝐴))))) |
| 46 | 44, 45 | syl5ibrcom 247 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℜ‘𝐴)) →
((abs‘(ℑ‘(log‘𝐴))) = -(ℑ‘(log‘𝐴)) →
(cos‘(abs‘(ℑ‘(log‘𝐴)))) =
(cos‘(ℑ‘(log‘𝐴))))) |
| 47 | 11 | absord 15439 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℜ‘𝐴)) →
((abs‘(ℑ‘(log‘𝐴))) = (ℑ‘(log‘𝐴)) ∨
(abs‘(ℑ‘(log‘𝐴))) = -(ℑ‘(log‘𝐴)))) |
| 48 | 41, 46, 47 | mpjaod 860 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℜ‘𝐴)) →
(cos‘(abs‘(ℑ‘(log‘𝐴)))) =
(cos‘(ℑ‘(log‘𝐴)))) |
| 49 | 39, 48 | breqtrrd 5152 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℜ‘𝐴)) → 0
< (cos‘(abs‘(ℑ‘(log‘𝐴))))) |
| 50 | 12, 49 | eqbrtrid 5159 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℜ‘𝐴)) →
(cos‘(π / 2)) <
(cos‘(abs‘(ℑ‘(log‘𝐴))))) |
| 51 | 42 | abscld 15460 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℜ‘𝐴)) →
(abs‘(ℑ‘(log‘𝐴))) ∈ ℝ) |
| 52 | 42 | absge0d 15468 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℜ‘𝐴)) → 0
≤ (abs‘(ℑ‘(log‘𝐴)))) |
| 53 | | logimcl 26535 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (-π <
(ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ π)) |
| 54 | 8, 53 | syldan 591 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℜ‘𝐴)) →
(-π < (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ π)) |
| 55 | 54 | simpld 494 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℜ‘𝐴)) →
-π < (ℑ‘(log‘𝐴))) |
| 56 | | pire 26423 |
. . . . . . . . . . 11
⊢ π
∈ ℝ |
| 57 | 56 | renegcli 11549 |
. . . . . . . . . 10
⊢ -π
∈ ℝ |
| 58 | | ltle 11328 |
. . . . . . . . . 10
⊢ ((-π
∈ ℝ ∧ (ℑ‘(log‘𝐴)) ∈ ℝ) → (-π <
(ℑ‘(log‘𝐴)) → -π ≤
(ℑ‘(log‘𝐴)))) |
| 59 | 57, 11, 58 | sylancr 587 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℜ‘𝐴)) →
(-π < (ℑ‘(log‘𝐴)) → -π ≤
(ℑ‘(log‘𝐴)))) |
| 60 | 55, 59 | mpd 15 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℜ‘𝐴)) →
-π ≤ (ℑ‘(log‘𝐴))) |
| 61 | 54 | simprd 495 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℜ‘𝐴)) →
(ℑ‘(log‘𝐴)) ≤ π) |
| 62 | | absle 15339 |
. . . . . . . . 9
⊢
(((ℑ‘(log‘𝐴)) ∈ ℝ ∧ π ∈ ℝ)
→ ((abs‘(ℑ‘(log‘𝐴))) ≤ π ↔ (-π ≤
(ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ π))) |
| 63 | 11, 56, 62 | sylancl 586 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℜ‘𝐴)) →
((abs‘(ℑ‘(log‘𝐴))) ≤ π ↔ (-π ≤
(ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ π))) |
| 64 | 60, 61, 63 | mpbir2and 713 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℜ‘𝐴)) →
(abs‘(ℑ‘(log‘𝐴))) ≤ π) |
| 65 | 28, 56 | elicc2i 13434 |
. . . . . . 7
⊢
((abs‘(ℑ‘(log‘𝐴))) ∈ (0[,]π) ↔
((abs‘(ℑ‘(log‘𝐴))) ∈ ℝ ∧ 0 ≤
(abs‘(ℑ‘(log‘𝐴))) ∧
(abs‘(ℑ‘(log‘𝐴))) ≤ π)) |
| 66 | 51, 52, 64, 65 | syl3anbrc 1344 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℜ‘𝐴)) →
(abs‘(ℑ‘(log‘𝐴))) ∈ (0[,]π)) |
| 67 | | halfpire 26430 |
. . . . . . 7
⊢ (π /
2) ∈ ℝ |
| 68 | | pirp 26427 |
. . . . . . . 8
⊢ π
∈ ℝ+ |
| 69 | | rphalfcl 13041 |
. . . . . . . 8
⊢ (π
∈ ℝ+ → (π / 2) ∈
ℝ+) |
| 70 | | rpge0 13027 |
. . . . . . . 8
⊢ ((π /
2) ∈ ℝ+ → 0 ≤ (π / 2)) |
| 71 | 68, 69, 70 | mp2b 10 |
. . . . . . 7
⊢ 0 ≤
(π / 2) |
| 72 | | rphalflt 13043 |
. . . . . . . . 9
⊢ (π
∈ ℝ+ → (π / 2) < π) |
| 73 | 68, 72 | ax-mp 5 |
. . . . . . . 8
⊢ (π /
2) < π |
| 74 | 67, 56, 73 | ltleii 11363 |
. . . . . . 7
⊢ (π /
2) ≤ π |
| 75 | 28, 56 | elicc2i 13434 |
. . . . . . 7
⊢ ((π /
2) ∈ (0[,]π) ↔ ((π / 2) ∈ ℝ ∧ 0 ≤ (π / 2)
∧ (π / 2) ≤ π)) |
| 76 | 67, 71, 74, 75 | mpbir3an 1342 |
. . . . . 6
⊢ (π /
2) ∈ (0[,]π) |
| 77 | | cosord 26497 |
. . . . . 6
⊢
(((abs‘(ℑ‘(log‘𝐴))) ∈ (0[,]π) ∧ (π / 2)
∈ (0[,]π)) → ((abs‘(ℑ‘(log‘𝐴))) < (π / 2) ↔
(cos‘(π / 2)) <
(cos‘(abs‘(ℑ‘(log‘𝐴)))))) |
| 78 | 66, 76, 77 | sylancl 586 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℜ‘𝐴)) →
((abs‘(ℑ‘(log‘𝐴))) < (π / 2) ↔ (cos‘(π
/ 2)) < (cos‘(abs‘(ℑ‘(log‘𝐴)))))) |
| 79 | 50, 78 | mpbird 257 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℜ‘𝐴)) →
(abs‘(ℑ‘(log‘𝐴))) < (π / 2)) |
| 80 | | abslt 15338 |
. . . . 5
⊢
(((ℑ‘(log‘𝐴)) ∈ ℝ ∧ (π / 2) ∈
ℝ) → ((abs‘(ℑ‘(log‘𝐴))) < (π / 2) ↔ (-(π / 2) <
(ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) < (π /
2)))) |
| 81 | 11, 67, 80 | sylancl 586 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℜ‘𝐴)) →
((abs‘(ℑ‘(log‘𝐴))) < (π / 2) ↔ (-(π / 2) <
(ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) < (π /
2)))) |
| 82 | 79, 81 | mpbid 232 |
. . 3
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℜ‘𝐴)) →
(-(π / 2) < (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) < (π /
2))) |
| 83 | 82 | simpld 494 |
. 2
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℜ‘𝐴)) →
-(π / 2) < (ℑ‘(log‘𝐴))) |
| 84 | 82 | simprd 495 |
. 2
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℜ‘𝐴)) →
(ℑ‘(log‘𝐴)) < (π / 2)) |
| 85 | 67 | renegcli 11549 |
. . . 4
⊢ -(π /
2) ∈ ℝ |
| 86 | 85 | rexri 11298 |
. . 3
⊢ -(π /
2) ∈ ℝ* |
| 87 | 67 | rexri 11298 |
. . 3
⊢ (π /
2) ∈ ℝ* |
| 88 | | elioo2 13408 |
. . 3
⊢ ((-(π
/ 2) ∈ ℝ* ∧ (π / 2) ∈ ℝ*)
→ ((ℑ‘(log‘𝐴)) ∈ (-(π / 2)(,)(π / 2)) ↔
((ℑ‘(log‘𝐴)) ∈ ℝ ∧ -(π / 2) <
(ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) < (π /
2)))) |
| 89 | 86, 87, 88 | mp2an 692 |
. 2
⊢
((ℑ‘(log‘𝐴)) ∈ (-(π / 2)(,)(π / 2)) ↔
((ℑ‘(log‘𝐴)) ∈ ℝ ∧ -(π / 2) <
(ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) < (π /
2))) |
| 90 | 11, 83, 84, 89 | syl3anbrc 1344 |
1
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℜ‘𝐴)) →
(ℑ‘(log‘𝐴)) ∈ (-(π / 2)(,)(π /
2))) |