![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rrx2linesl | Structured version Visualization version GIF version |
Description: The line passing through the two different points 𝑋 and 𝑌 in a real Euclidean space of dimension 2, expressed by the slope 𝑆 between the two points ("point-slope form"), sometimes also written as ((𝑝‘2) − (𝑋‘2)) = (𝑆 · ((𝑝‘1) − (𝑋‘1))). (Contributed by AV, 22-Jan-2023.) |
Ref | Expression |
---|---|
rrx2line.i | ⊢ 𝐼 = {1, 2} |
rrx2line.e | ⊢ 𝐸 = (ℝ^‘𝐼) |
rrx2line.b | ⊢ 𝑃 = (ℝ ↑m 𝐼) |
rrx2line.l | ⊢ 𝐿 = (LineM‘𝐸) |
rrx2linesl.s | ⊢ 𝑆 = (((𝑌‘2) − (𝑋‘2)) / ((𝑌‘1) − (𝑋‘1))) |
Ref | Expression |
---|---|
rrx2linesl | ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ (𝑋‘1) ≠ (𝑌‘1)) → (𝑋𝐿𝑌) = {𝑝 ∈ 𝑃 ∣ (𝑝‘2) = ((𝑆 · ((𝑝‘1) − (𝑋‘1))) + (𝑋‘2))}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq1 6841 | . . . 4 ⊢ (𝑋 = 𝑌 → (𝑋‘1) = (𝑌‘1)) | |
2 | 1 | necon3i 2976 | . . 3 ⊢ ((𝑋‘1) ≠ (𝑌‘1) → 𝑋 ≠ 𝑌) |
3 | rrx2line.i | . . . 4 ⊢ 𝐼 = {1, 2} | |
4 | rrx2line.e | . . . 4 ⊢ 𝐸 = (ℝ^‘𝐼) | |
5 | rrx2line.b | . . . 4 ⊢ 𝑃 = (ℝ ↑m 𝐼) | |
6 | rrx2line.l | . . . 4 ⊢ 𝐿 = (LineM‘𝐸) | |
7 | 3, 4, 5, 6 | rrx2line 46816 | . . 3 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → (𝑋𝐿𝑌) = {𝑝 ∈ 𝑃 ∣ ∃𝑡 ∈ ℝ ((𝑝‘1) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2))))}) |
8 | 2, 7 | syl3an3 1165 | . 2 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ (𝑋‘1) ≠ (𝑌‘1)) → (𝑋𝐿𝑌) = {𝑝 ∈ 𝑃 ∣ ∃𝑡 ∈ ℝ ((𝑝‘1) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2))))}) |
9 | reex 11142 | . . . . . . . 8 ⊢ ℝ ∈ V | |
10 | prex 5389 | . . . . . . . . 9 ⊢ {1, 2} ∈ V | |
11 | 3, 10 | eqeltri 2834 | . . . . . . . 8 ⊢ 𝐼 ∈ V |
12 | 9, 11 | elmap 8809 | . . . . . . 7 ⊢ (𝑝 ∈ (ℝ ↑m 𝐼) ↔ 𝑝:𝐼⟶ℝ) |
13 | id 22 | . . . . . . . 8 ⊢ (𝑝:𝐼⟶ℝ → 𝑝:𝐼⟶ℝ) | |
14 | 1ex 11151 | . . . . . . . . . . 11 ⊢ 1 ∈ V | |
15 | 14 | prid1 4723 | . . . . . . . . . 10 ⊢ 1 ∈ {1, 2} |
16 | 15, 3 | eleqtrri 2837 | . . . . . . . . 9 ⊢ 1 ∈ 𝐼 |
17 | 16 | a1i 11 | . . . . . . . 8 ⊢ (𝑝:𝐼⟶ℝ → 1 ∈ 𝐼) |
18 | 13, 17 | ffvelcdmd 7036 | . . . . . . 7 ⊢ (𝑝:𝐼⟶ℝ → (𝑝‘1) ∈ ℝ) |
19 | 12, 18 | sylbi 216 | . . . . . 6 ⊢ (𝑝 ∈ (ℝ ↑m 𝐼) → (𝑝‘1) ∈ ℝ) |
20 | 19, 5 | eleq2s 2856 | . . . . 5 ⊢ (𝑝 ∈ 𝑃 → (𝑝‘1) ∈ ℝ) |
21 | 20 | adantl 482 | . . . 4 ⊢ (((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ (𝑋‘1) ≠ (𝑌‘1)) ∧ 𝑝 ∈ 𝑃) → (𝑝‘1) ∈ ℝ) |
22 | 9, 11 | elmap 8809 | . . . . . . . 8 ⊢ (𝑋 ∈ (ℝ ↑m 𝐼) ↔ 𝑋:𝐼⟶ℝ) |
23 | id 22 | . . . . . . . . 9 ⊢ (𝑋:𝐼⟶ℝ → 𝑋:𝐼⟶ℝ) | |
24 | 16 | a1i 11 | . . . . . . . . 9 ⊢ (𝑋:𝐼⟶ℝ → 1 ∈ 𝐼) |
25 | 23, 24 | ffvelcdmd 7036 | . . . . . . . 8 ⊢ (𝑋:𝐼⟶ℝ → (𝑋‘1) ∈ ℝ) |
26 | 22, 25 | sylbi 216 | . . . . . . 7 ⊢ (𝑋 ∈ (ℝ ↑m 𝐼) → (𝑋‘1) ∈ ℝ) |
27 | 26, 5 | eleq2s 2856 | . . . . . 6 ⊢ (𝑋 ∈ 𝑃 → (𝑋‘1) ∈ ℝ) |
28 | 27 | 3ad2ant1 1133 | . . . . 5 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ (𝑋‘1) ≠ (𝑌‘1)) → (𝑋‘1) ∈ ℝ) |
29 | 28 | adantr 481 | . . . 4 ⊢ (((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ (𝑋‘1) ≠ (𝑌‘1)) ∧ 𝑝 ∈ 𝑃) → (𝑋‘1) ∈ ℝ) |
30 | 9, 11 | elmap 8809 | . . . . . . . 8 ⊢ (𝑌 ∈ (ℝ ↑m 𝐼) ↔ 𝑌:𝐼⟶ℝ) |
31 | id 22 | . . . . . . . . 9 ⊢ (𝑌:𝐼⟶ℝ → 𝑌:𝐼⟶ℝ) | |
32 | 16 | a1i 11 | . . . . . . . . 9 ⊢ (𝑌:𝐼⟶ℝ → 1 ∈ 𝐼) |
33 | 31, 32 | ffvelcdmd 7036 | . . . . . . . 8 ⊢ (𝑌:𝐼⟶ℝ → (𝑌‘1) ∈ ℝ) |
34 | 30, 33 | sylbi 216 | . . . . . . 7 ⊢ (𝑌 ∈ (ℝ ↑m 𝐼) → (𝑌‘1) ∈ ℝ) |
35 | 34, 5 | eleq2s 2856 | . . . . . 6 ⊢ (𝑌 ∈ 𝑃 → (𝑌‘1) ∈ ℝ) |
36 | 35 | 3ad2ant2 1134 | . . . . 5 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ (𝑋‘1) ≠ (𝑌‘1)) → (𝑌‘1) ∈ ℝ) |
37 | 36 | adantr 481 | . . . 4 ⊢ (((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ (𝑋‘1) ≠ (𝑌‘1)) ∧ 𝑝 ∈ 𝑃) → (𝑌‘1) ∈ ℝ) |
38 | simpl3 1193 | . . . 4 ⊢ (((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ (𝑋‘1) ≠ (𝑌‘1)) ∧ 𝑝 ∈ 𝑃) → (𝑋‘1) ≠ (𝑌‘1)) | |
39 | 2ex 12230 | . . . . . . . . . . 11 ⊢ 2 ∈ V | |
40 | 39 | prid2 4724 | . . . . . . . . . 10 ⊢ 2 ∈ {1, 2} |
41 | 40, 3 | eleqtrri 2837 | . . . . . . . . 9 ⊢ 2 ∈ 𝐼 |
42 | 41 | a1i 11 | . . . . . . . 8 ⊢ (𝑝:𝐼⟶ℝ → 2 ∈ 𝐼) |
43 | 13, 42 | ffvelcdmd 7036 | . . . . . . 7 ⊢ (𝑝:𝐼⟶ℝ → (𝑝‘2) ∈ ℝ) |
44 | 12, 43 | sylbi 216 | . . . . . 6 ⊢ (𝑝 ∈ (ℝ ↑m 𝐼) → (𝑝‘2) ∈ ℝ) |
45 | 44, 5 | eleq2s 2856 | . . . . 5 ⊢ (𝑝 ∈ 𝑃 → (𝑝‘2) ∈ ℝ) |
46 | 45 | adantl 482 | . . . 4 ⊢ (((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ (𝑋‘1) ≠ (𝑌‘1)) ∧ 𝑝 ∈ 𝑃) → (𝑝‘2) ∈ ℝ) |
47 | 41 | a1i 11 | . . . . . . . . 9 ⊢ (𝑋:𝐼⟶ℝ → 2 ∈ 𝐼) |
48 | 23, 47 | ffvelcdmd 7036 | . . . . . . . 8 ⊢ (𝑋:𝐼⟶ℝ → (𝑋‘2) ∈ ℝ) |
49 | 22, 48 | sylbi 216 | . . . . . . 7 ⊢ (𝑋 ∈ (ℝ ↑m 𝐼) → (𝑋‘2) ∈ ℝ) |
50 | 49, 5 | eleq2s 2856 | . . . . . 6 ⊢ (𝑋 ∈ 𝑃 → (𝑋‘2) ∈ ℝ) |
51 | 50 | 3ad2ant1 1133 | . . . . 5 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ (𝑋‘1) ≠ (𝑌‘1)) → (𝑋‘2) ∈ ℝ) |
52 | 51 | adantr 481 | . . . 4 ⊢ (((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ (𝑋‘1) ≠ (𝑌‘1)) ∧ 𝑝 ∈ 𝑃) → (𝑋‘2) ∈ ℝ) |
53 | 5 | eleq2i 2829 | . . . . . . . 8 ⊢ (𝑌 ∈ 𝑃 ↔ 𝑌 ∈ (ℝ ↑m 𝐼)) |
54 | 53, 30 | bitri 274 | . . . . . . 7 ⊢ (𝑌 ∈ 𝑃 ↔ 𝑌:𝐼⟶ℝ) |
55 | 41 | a1i 11 | . . . . . . . 8 ⊢ (𝑌:𝐼⟶ℝ → 2 ∈ 𝐼) |
56 | 31, 55 | ffvelcdmd 7036 | . . . . . . 7 ⊢ (𝑌:𝐼⟶ℝ → (𝑌‘2) ∈ ℝ) |
57 | 54, 56 | sylbi 216 | . . . . . 6 ⊢ (𝑌 ∈ 𝑃 → (𝑌‘2) ∈ ℝ) |
58 | 57 | 3ad2ant2 1134 | . . . . 5 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ (𝑋‘1) ≠ (𝑌‘1)) → (𝑌‘2) ∈ ℝ) |
59 | 58 | adantr 481 | . . . 4 ⊢ (((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ (𝑋‘1) ≠ (𝑌‘1)) ∧ 𝑝 ∈ 𝑃) → (𝑌‘2) ∈ ℝ) |
60 | rrx2linesl.s | . . . 4 ⊢ 𝑆 = (((𝑌‘2) − (𝑋‘2)) / ((𝑌‘1) − (𝑋‘1))) | |
61 | 21, 29, 37, 38, 46, 52, 59, 60 | affinecomb1 46778 | . . 3 ⊢ (((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ (𝑋‘1) ≠ (𝑌‘1)) ∧ 𝑝 ∈ 𝑃) → (∃𝑡 ∈ ℝ ((𝑝‘1) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2)))) ↔ (𝑝‘2) = ((𝑆 · ((𝑝‘1) − (𝑋‘1))) + (𝑋‘2)))) |
62 | 61 | rabbidva 3414 | . 2 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ (𝑋‘1) ≠ (𝑌‘1)) → {𝑝 ∈ 𝑃 ∣ ∃𝑡 ∈ ℝ ((𝑝‘1) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2))))} = {𝑝 ∈ 𝑃 ∣ (𝑝‘2) = ((𝑆 · ((𝑝‘1) − (𝑋‘1))) + (𝑋‘2))}) |
63 | 8, 62 | eqtrd 2776 | 1 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ (𝑋‘1) ≠ (𝑌‘1)) → (𝑋𝐿𝑌) = {𝑝 ∈ 𝑃 ∣ (𝑝‘2) = ((𝑆 · ((𝑝‘1) − (𝑋‘1))) + (𝑋‘2))}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ≠ wne 2943 ∃wrex 3073 {crab 3407 Vcvv 3445 {cpr 4588 ⟶wf 6492 ‘cfv 6496 (class class class)co 7357 ↑m cmap 8765 ℝcr 11050 1c1 11052 + caddc 11054 · cmul 11056 − cmin 11385 / cdiv 11812 2c2 12208 ℝ^crrx 24747 LineMcline 46803 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-rep 5242 ax-sep 5256 ax-nul 5263 ax-pow 5320 ax-pr 5384 ax-un 7672 ax-cnex 11107 ax-resscn 11108 ax-1cn 11109 ax-icn 11110 ax-addcl 11111 ax-addrcl 11112 ax-mulcl 11113 ax-mulrcl 11114 ax-mulcom 11115 ax-addass 11116 ax-mulass 11117 ax-distr 11118 ax-i2m1 11119 ax-1ne0 11120 ax-1rid 11121 ax-rnegex 11122 ax-rrecex 11123 ax-cnre 11124 ax-pre-lttri 11125 ax-pre-lttrn 11126 ax-pre-ltadd 11127 ax-pre-mulgt0 11128 ax-pre-sup 11129 ax-addf 11130 ax-mulf 11131 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3065 df-rex 3074 df-rmo 3353 df-reu 3354 df-rab 3408 df-v 3447 df-sbc 3740 df-csb 3856 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-pss 3929 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-tp 4591 df-op 4593 df-uni 4866 df-iun 4956 df-br 5106 df-opab 5168 df-mpt 5189 df-tr 5223 df-id 5531 df-eprel 5537 df-po 5545 df-so 5546 df-fr 5588 df-we 5590 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-res 5645 df-ima 5646 df-pred 6253 df-ord 6320 df-on 6321 df-lim 6322 df-suc 6323 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-f1 6501 df-fo 6502 df-f1o 6503 df-fv 6504 df-riota 7313 df-ov 7360 df-oprab 7361 df-mpo 7362 df-of 7617 df-om 7803 df-1st 7921 df-2nd 7922 df-supp 8093 df-tpos 8157 df-frecs 8212 df-wrecs 8243 df-recs 8317 df-rdg 8356 df-1o 8412 df-er 8648 df-map 8767 df-ixp 8836 df-en 8884 df-dom 8885 df-sdom 8886 df-fin 8887 df-fsupp 9306 df-sup 9378 df-pnf 11191 df-mnf 11192 df-xr 11193 df-ltxr 11194 df-le 11195 df-sub 11387 df-neg 11388 df-div 11813 df-nn 12154 df-2 12216 df-3 12217 df-4 12218 df-5 12219 df-6 12220 df-7 12221 df-8 12222 df-9 12223 df-n0 12414 df-z 12500 df-dec 12619 df-uz 12764 df-rp 12916 df-fz 13425 df-seq 13907 df-exp 13968 df-cj 14984 df-re 14985 df-im 14986 df-sqrt 15120 df-abs 15121 df-struct 17019 df-sets 17036 df-slot 17054 df-ndx 17066 df-base 17084 df-ress 17113 df-plusg 17146 df-mulr 17147 df-starv 17148 df-sca 17149 df-vsca 17150 df-ip 17151 df-tset 17152 df-ple 17153 df-ds 17155 df-unif 17156 df-hom 17157 df-cco 17158 df-0g 17323 df-prds 17329 df-pws 17331 df-mgm 18497 df-sgrp 18546 df-mnd 18557 df-mhm 18601 df-grp 18751 df-minusg 18752 df-sbg 18753 df-subg 18925 df-ghm 19006 df-cmn 19564 df-mgp 19897 df-ur 19914 df-ring 19966 df-cring 19967 df-oppr 20049 df-dvdsr 20070 df-unit 20071 df-invr 20101 df-dvr 20112 df-rnghom 20146 df-drng 20187 df-field 20188 df-subrg 20220 df-staf 20304 df-srng 20305 df-lmod 20324 df-lss 20393 df-sra 20633 df-rgmod 20634 df-cnfld 20797 df-refld 21009 df-dsmm 21138 df-frlm 21153 df-tng 23940 df-tcph 24533 df-rrx 24749 df-line 46805 |
This theorem is referenced by: line2 46828 |
Copyright terms: Public domain | W3C validator |