| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rrx2linesl | Structured version Visualization version GIF version | ||
| Description: The line passing through the two different points 𝑋 and 𝑌 in a real Euclidean space of dimension 2, expressed by the slope 𝑆 between the two points ("point-slope form"), sometimes also written as ((𝑝‘2) − (𝑋‘2)) = (𝑆 · ((𝑝‘1) − (𝑋‘1))). (Contributed by AV, 22-Jan-2023.) |
| Ref | Expression |
|---|---|
| rrx2line.i | ⊢ 𝐼 = {1, 2} |
| rrx2line.e | ⊢ 𝐸 = (ℝ^‘𝐼) |
| rrx2line.b | ⊢ 𝑃 = (ℝ ↑m 𝐼) |
| rrx2line.l | ⊢ 𝐿 = (LineM‘𝐸) |
| rrx2linesl.s | ⊢ 𝑆 = (((𝑌‘2) − (𝑋‘2)) / ((𝑌‘1) − (𝑋‘1))) |
| Ref | Expression |
|---|---|
| rrx2linesl | ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ (𝑋‘1) ≠ (𝑌‘1)) → (𝑋𝐿𝑌) = {𝑝 ∈ 𝑃 ∣ (𝑝‘2) = ((𝑆 · ((𝑝‘1) − (𝑋‘1))) + (𝑋‘2))}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq1 6839 | . . . 4 ⊢ (𝑋 = 𝑌 → (𝑋‘1) = (𝑌‘1)) | |
| 2 | 1 | necon3i 2957 | . . 3 ⊢ ((𝑋‘1) ≠ (𝑌‘1) → 𝑋 ≠ 𝑌) |
| 3 | rrx2line.i | . . . 4 ⊢ 𝐼 = {1, 2} | |
| 4 | rrx2line.e | . . . 4 ⊢ 𝐸 = (ℝ^‘𝐼) | |
| 5 | rrx2line.b | . . . 4 ⊢ 𝑃 = (ℝ ↑m 𝐼) | |
| 6 | rrx2line.l | . . . 4 ⊢ 𝐿 = (LineM‘𝐸) | |
| 7 | 3, 4, 5, 6 | rrx2line 48702 | . . 3 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → (𝑋𝐿𝑌) = {𝑝 ∈ 𝑃 ∣ ∃𝑡 ∈ ℝ ((𝑝‘1) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2))))}) |
| 8 | 2, 7 | syl3an3 1165 | . 2 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ (𝑋‘1) ≠ (𝑌‘1)) → (𝑋𝐿𝑌) = {𝑝 ∈ 𝑃 ∣ ∃𝑡 ∈ ℝ ((𝑝‘1) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2))))}) |
| 9 | reex 11135 | . . . . . . . 8 ⊢ ℝ ∈ V | |
| 10 | prex 5387 | . . . . . . . . 9 ⊢ {1, 2} ∈ V | |
| 11 | 3, 10 | eqeltri 2824 | . . . . . . . 8 ⊢ 𝐼 ∈ V |
| 12 | 9, 11 | elmap 8821 | . . . . . . 7 ⊢ (𝑝 ∈ (ℝ ↑m 𝐼) ↔ 𝑝:𝐼⟶ℝ) |
| 13 | id 22 | . . . . . . . 8 ⊢ (𝑝:𝐼⟶ℝ → 𝑝:𝐼⟶ℝ) | |
| 14 | 1ex 11146 | . . . . . . . . . . 11 ⊢ 1 ∈ V | |
| 15 | 14 | prid1 4722 | . . . . . . . . . 10 ⊢ 1 ∈ {1, 2} |
| 16 | 15, 3 | eleqtrri 2827 | . . . . . . . . 9 ⊢ 1 ∈ 𝐼 |
| 17 | 16 | a1i 11 | . . . . . . . 8 ⊢ (𝑝:𝐼⟶ℝ → 1 ∈ 𝐼) |
| 18 | 13, 17 | ffvelcdmd 7039 | . . . . . . 7 ⊢ (𝑝:𝐼⟶ℝ → (𝑝‘1) ∈ ℝ) |
| 19 | 12, 18 | sylbi 217 | . . . . . 6 ⊢ (𝑝 ∈ (ℝ ↑m 𝐼) → (𝑝‘1) ∈ ℝ) |
| 20 | 19, 5 | eleq2s 2846 | . . . . 5 ⊢ (𝑝 ∈ 𝑃 → (𝑝‘1) ∈ ℝ) |
| 21 | 20 | adantl 481 | . . . 4 ⊢ (((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ (𝑋‘1) ≠ (𝑌‘1)) ∧ 𝑝 ∈ 𝑃) → (𝑝‘1) ∈ ℝ) |
| 22 | 9, 11 | elmap 8821 | . . . . . . . 8 ⊢ (𝑋 ∈ (ℝ ↑m 𝐼) ↔ 𝑋:𝐼⟶ℝ) |
| 23 | id 22 | . . . . . . . . 9 ⊢ (𝑋:𝐼⟶ℝ → 𝑋:𝐼⟶ℝ) | |
| 24 | 16 | a1i 11 | . . . . . . . . 9 ⊢ (𝑋:𝐼⟶ℝ → 1 ∈ 𝐼) |
| 25 | 23, 24 | ffvelcdmd 7039 | . . . . . . . 8 ⊢ (𝑋:𝐼⟶ℝ → (𝑋‘1) ∈ ℝ) |
| 26 | 22, 25 | sylbi 217 | . . . . . . 7 ⊢ (𝑋 ∈ (ℝ ↑m 𝐼) → (𝑋‘1) ∈ ℝ) |
| 27 | 26, 5 | eleq2s 2846 | . . . . . 6 ⊢ (𝑋 ∈ 𝑃 → (𝑋‘1) ∈ ℝ) |
| 28 | 27 | 3ad2ant1 1133 | . . . . 5 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ (𝑋‘1) ≠ (𝑌‘1)) → (𝑋‘1) ∈ ℝ) |
| 29 | 28 | adantr 480 | . . . 4 ⊢ (((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ (𝑋‘1) ≠ (𝑌‘1)) ∧ 𝑝 ∈ 𝑃) → (𝑋‘1) ∈ ℝ) |
| 30 | 9, 11 | elmap 8821 | . . . . . . . 8 ⊢ (𝑌 ∈ (ℝ ↑m 𝐼) ↔ 𝑌:𝐼⟶ℝ) |
| 31 | id 22 | . . . . . . . . 9 ⊢ (𝑌:𝐼⟶ℝ → 𝑌:𝐼⟶ℝ) | |
| 32 | 16 | a1i 11 | . . . . . . . . 9 ⊢ (𝑌:𝐼⟶ℝ → 1 ∈ 𝐼) |
| 33 | 31, 32 | ffvelcdmd 7039 | . . . . . . . 8 ⊢ (𝑌:𝐼⟶ℝ → (𝑌‘1) ∈ ℝ) |
| 34 | 30, 33 | sylbi 217 | . . . . . . 7 ⊢ (𝑌 ∈ (ℝ ↑m 𝐼) → (𝑌‘1) ∈ ℝ) |
| 35 | 34, 5 | eleq2s 2846 | . . . . . 6 ⊢ (𝑌 ∈ 𝑃 → (𝑌‘1) ∈ ℝ) |
| 36 | 35 | 3ad2ant2 1134 | . . . . 5 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ (𝑋‘1) ≠ (𝑌‘1)) → (𝑌‘1) ∈ ℝ) |
| 37 | 36 | adantr 480 | . . . 4 ⊢ (((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ (𝑋‘1) ≠ (𝑌‘1)) ∧ 𝑝 ∈ 𝑃) → (𝑌‘1) ∈ ℝ) |
| 38 | simpl3 1194 | . . . 4 ⊢ (((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ (𝑋‘1) ≠ (𝑌‘1)) ∧ 𝑝 ∈ 𝑃) → (𝑋‘1) ≠ (𝑌‘1)) | |
| 39 | 2ex 12239 | . . . . . . . . . . 11 ⊢ 2 ∈ V | |
| 40 | 39 | prid2 4723 | . . . . . . . . . 10 ⊢ 2 ∈ {1, 2} |
| 41 | 40, 3 | eleqtrri 2827 | . . . . . . . . 9 ⊢ 2 ∈ 𝐼 |
| 42 | 41 | a1i 11 | . . . . . . . 8 ⊢ (𝑝:𝐼⟶ℝ → 2 ∈ 𝐼) |
| 43 | 13, 42 | ffvelcdmd 7039 | . . . . . . 7 ⊢ (𝑝:𝐼⟶ℝ → (𝑝‘2) ∈ ℝ) |
| 44 | 12, 43 | sylbi 217 | . . . . . 6 ⊢ (𝑝 ∈ (ℝ ↑m 𝐼) → (𝑝‘2) ∈ ℝ) |
| 45 | 44, 5 | eleq2s 2846 | . . . . 5 ⊢ (𝑝 ∈ 𝑃 → (𝑝‘2) ∈ ℝ) |
| 46 | 45 | adantl 481 | . . . 4 ⊢ (((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ (𝑋‘1) ≠ (𝑌‘1)) ∧ 𝑝 ∈ 𝑃) → (𝑝‘2) ∈ ℝ) |
| 47 | 41 | a1i 11 | . . . . . . . . 9 ⊢ (𝑋:𝐼⟶ℝ → 2 ∈ 𝐼) |
| 48 | 23, 47 | ffvelcdmd 7039 | . . . . . . . 8 ⊢ (𝑋:𝐼⟶ℝ → (𝑋‘2) ∈ ℝ) |
| 49 | 22, 48 | sylbi 217 | . . . . . . 7 ⊢ (𝑋 ∈ (ℝ ↑m 𝐼) → (𝑋‘2) ∈ ℝ) |
| 50 | 49, 5 | eleq2s 2846 | . . . . . 6 ⊢ (𝑋 ∈ 𝑃 → (𝑋‘2) ∈ ℝ) |
| 51 | 50 | 3ad2ant1 1133 | . . . . 5 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ (𝑋‘1) ≠ (𝑌‘1)) → (𝑋‘2) ∈ ℝ) |
| 52 | 51 | adantr 480 | . . . 4 ⊢ (((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ (𝑋‘1) ≠ (𝑌‘1)) ∧ 𝑝 ∈ 𝑃) → (𝑋‘2) ∈ ℝ) |
| 53 | 5 | eleq2i 2820 | . . . . . . . 8 ⊢ (𝑌 ∈ 𝑃 ↔ 𝑌 ∈ (ℝ ↑m 𝐼)) |
| 54 | 53, 30 | bitri 275 | . . . . . . 7 ⊢ (𝑌 ∈ 𝑃 ↔ 𝑌:𝐼⟶ℝ) |
| 55 | 41 | a1i 11 | . . . . . . . 8 ⊢ (𝑌:𝐼⟶ℝ → 2 ∈ 𝐼) |
| 56 | 31, 55 | ffvelcdmd 7039 | . . . . . . 7 ⊢ (𝑌:𝐼⟶ℝ → (𝑌‘2) ∈ ℝ) |
| 57 | 54, 56 | sylbi 217 | . . . . . 6 ⊢ (𝑌 ∈ 𝑃 → (𝑌‘2) ∈ ℝ) |
| 58 | 57 | 3ad2ant2 1134 | . . . . 5 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ (𝑋‘1) ≠ (𝑌‘1)) → (𝑌‘2) ∈ ℝ) |
| 59 | 58 | adantr 480 | . . . 4 ⊢ (((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ (𝑋‘1) ≠ (𝑌‘1)) ∧ 𝑝 ∈ 𝑃) → (𝑌‘2) ∈ ℝ) |
| 60 | rrx2linesl.s | . . . 4 ⊢ 𝑆 = (((𝑌‘2) − (𝑋‘2)) / ((𝑌‘1) − (𝑋‘1))) | |
| 61 | 21, 29, 37, 38, 46, 52, 59, 60 | affinecomb1 48664 | . . 3 ⊢ (((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ (𝑋‘1) ≠ (𝑌‘1)) ∧ 𝑝 ∈ 𝑃) → (∃𝑡 ∈ ℝ ((𝑝‘1) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2)))) ↔ (𝑝‘2) = ((𝑆 · ((𝑝‘1) − (𝑋‘1))) + (𝑋‘2)))) |
| 62 | 61 | rabbidva 3409 | . 2 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ (𝑋‘1) ≠ (𝑌‘1)) → {𝑝 ∈ 𝑃 ∣ ∃𝑡 ∈ ℝ ((𝑝‘1) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2))))} = {𝑝 ∈ 𝑃 ∣ (𝑝‘2) = ((𝑆 · ((𝑝‘1) − (𝑋‘1))) + (𝑋‘2))}) |
| 63 | 8, 62 | eqtrd 2764 | 1 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ (𝑋‘1) ≠ (𝑌‘1)) → (𝑋𝐿𝑌) = {𝑝 ∈ 𝑃 ∣ (𝑝‘2) = ((𝑆 · ((𝑝‘1) − (𝑋‘1))) + (𝑋‘2))}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∃wrex 3053 {crab 3402 Vcvv 3444 {cpr 4587 ⟶wf 6495 ‘cfv 6499 (class class class)co 7369 ↑m cmap 8776 ℝcr 11043 1c1 11045 + caddc 11047 · cmul 11049 − cmin 11381 / cdiv 11811 2c2 12217 ℝ^crrx 25259 LineMcline 48689 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 ax-addf 11123 ax-mulf 11124 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-of 7633 df-om 7823 df-1st 7947 df-2nd 7948 df-supp 8117 df-tpos 8182 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-er 8648 df-map 8778 df-ixp 8848 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-fsupp 9289 df-sup 9369 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-z 12506 df-dec 12626 df-uz 12770 df-rp 12928 df-fz 13445 df-seq 13943 df-exp 14003 df-cj 15041 df-re 15042 df-im 15043 df-sqrt 15177 df-abs 15178 df-struct 17093 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-ress 17177 df-plusg 17209 df-mulr 17210 df-starv 17211 df-sca 17212 df-vsca 17213 df-ip 17214 df-tset 17215 df-ple 17216 df-ds 17218 df-unif 17219 df-hom 17220 df-cco 17221 df-0g 17380 df-prds 17386 df-pws 17388 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-mhm 18686 df-grp 18844 df-minusg 18845 df-sbg 18846 df-subg 19031 df-ghm 19121 df-cmn 19688 df-abl 19689 df-mgp 20026 df-rng 20038 df-ur 20067 df-ring 20120 df-cring 20121 df-oppr 20222 df-dvdsr 20242 df-unit 20243 df-invr 20273 df-dvr 20286 df-rhm 20357 df-subrng 20431 df-subrg 20455 df-drng 20616 df-field 20617 df-staf 20724 df-srng 20725 df-lmod 20744 df-lss 20814 df-sra 21056 df-rgmod 21057 df-cnfld 21241 df-refld 21490 df-dsmm 21617 df-frlm 21632 df-tng 24448 df-tcph 25045 df-rrx 25261 df-line 48691 |
| This theorem is referenced by: line2 48714 |
| Copyright terms: Public domain | W3C validator |