Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrx2linesl Structured version   Visualization version   GIF version

Theorem rrx2linesl 48736
Description: The line passing through the two different points 𝑋 and 𝑌 in a real Euclidean space of dimension 2, expressed by the slope 𝑆 between the two points ("point-slope form"), sometimes also written as ((𝑝‘2) − (𝑋‘2)) = (𝑆 · ((𝑝‘1) − (𝑋‘1))). (Contributed by AV, 22-Jan-2023.)
Hypotheses
Ref Expression
rrx2line.i 𝐼 = {1, 2}
rrx2line.e 𝐸 = (ℝ^‘𝐼)
rrx2line.b 𝑃 = (ℝ ↑m 𝐼)
rrx2line.l 𝐿 = (LineM𝐸)
rrx2linesl.s 𝑆 = (((𝑌‘2) − (𝑋‘2)) / ((𝑌‘1) − (𝑋‘1)))
Assertion
Ref Expression
rrx2linesl ((𝑋𝑃𝑌𝑃 ∧ (𝑋‘1) ≠ (𝑌‘1)) → (𝑋𝐿𝑌) = {𝑝𝑃 ∣ (𝑝‘2) = ((𝑆 · ((𝑝‘1) − (𝑋‘1))) + (𝑋‘2))})
Distinct variable groups:   𝐸,𝑝   𝐼,𝑝   𝑃,𝑝   𝑋,𝑝   𝑌,𝑝
Allowed substitution hints:   𝑆(𝑝)   𝐿(𝑝)

Proof of Theorem rrx2linesl
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 fveq1 6860 . . . 4 (𝑋 = 𝑌 → (𝑋‘1) = (𝑌‘1))
21necon3i 2958 . . 3 ((𝑋‘1) ≠ (𝑌‘1) → 𝑋𝑌)
3 rrx2line.i . . . 4 𝐼 = {1, 2}
4 rrx2line.e . . . 4 𝐸 = (ℝ^‘𝐼)
5 rrx2line.b . . . 4 𝑃 = (ℝ ↑m 𝐼)
6 rrx2line.l . . . 4 𝐿 = (LineM𝐸)
73, 4, 5, 6rrx2line 48733 . . 3 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝑋𝐿𝑌) = {𝑝𝑃 ∣ ∃𝑡 ∈ ℝ ((𝑝‘1) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2))))})
82, 7syl3an3 1165 . 2 ((𝑋𝑃𝑌𝑃 ∧ (𝑋‘1) ≠ (𝑌‘1)) → (𝑋𝐿𝑌) = {𝑝𝑃 ∣ ∃𝑡 ∈ ℝ ((𝑝‘1) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2))))})
9 reex 11166 . . . . . . . 8 ℝ ∈ V
10 prex 5395 . . . . . . . . 9 {1, 2} ∈ V
113, 10eqeltri 2825 . . . . . . . 8 𝐼 ∈ V
129, 11elmap 8847 . . . . . . 7 (𝑝 ∈ (ℝ ↑m 𝐼) ↔ 𝑝:𝐼⟶ℝ)
13 id 22 . . . . . . . 8 (𝑝:𝐼⟶ℝ → 𝑝:𝐼⟶ℝ)
14 1ex 11177 . . . . . . . . . . 11 1 ∈ V
1514prid1 4729 . . . . . . . . . 10 1 ∈ {1, 2}
1615, 3eleqtrri 2828 . . . . . . . . 9 1 ∈ 𝐼
1716a1i 11 . . . . . . . 8 (𝑝:𝐼⟶ℝ → 1 ∈ 𝐼)
1813, 17ffvelcdmd 7060 . . . . . . 7 (𝑝:𝐼⟶ℝ → (𝑝‘1) ∈ ℝ)
1912, 18sylbi 217 . . . . . 6 (𝑝 ∈ (ℝ ↑m 𝐼) → (𝑝‘1) ∈ ℝ)
2019, 5eleq2s 2847 . . . . 5 (𝑝𝑃 → (𝑝‘1) ∈ ℝ)
2120adantl 481 . . . 4 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘1) ≠ (𝑌‘1)) ∧ 𝑝𝑃) → (𝑝‘1) ∈ ℝ)
229, 11elmap 8847 . . . . . . . 8 (𝑋 ∈ (ℝ ↑m 𝐼) ↔ 𝑋:𝐼⟶ℝ)
23 id 22 . . . . . . . . 9 (𝑋:𝐼⟶ℝ → 𝑋:𝐼⟶ℝ)
2416a1i 11 . . . . . . . . 9 (𝑋:𝐼⟶ℝ → 1 ∈ 𝐼)
2523, 24ffvelcdmd 7060 . . . . . . . 8 (𝑋:𝐼⟶ℝ → (𝑋‘1) ∈ ℝ)
2622, 25sylbi 217 . . . . . . 7 (𝑋 ∈ (ℝ ↑m 𝐼) → (𝑋‘1) ∈ ℝ)
2726, 5eleq2s 2847 . . . . . 6 (𝑋𝑃 → (𝑋‘1) ∈ ℝ)
28273ad2ant1 1133 . . . . 5 ((𝑋𝑃𝑌𝑃 ∧ (𝑋‘1) ≠ (𝑌‘1)) → (𝑋‘1) ∈ ℝ)
2928adantr 480 . . . 4 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘1) ≠ (𝑌‘1)) ∧ 𝑝𝑃) → (𝑋‘1) ∈ ℝ)
309, 11elmap 8847 . . . . . . . 8 (𝑌 ∈ (ℝ ↑m 𝐼) ↔ 𝑌:𝐼⟶ℝ)
31 id 22 . . . . . . . . 9 (𝑌:𝐼⟶ℝ → 𝑌:𝐼⟶ℝ)
3216a1i 11 . . . . . . . . 9 (𝑌:𝐼⟶ℝ → 1 ∈ 𝐼)
3331, 32ffvelcdmd 7060 . . . . . . . 8 (𝑌:𝐼⟶ℝ → (𝑌‘1) ∈ ℝ)
3430, 33sylbi 217 . . . . . . 7 (𝑌 ∈ (ℝ ↑m 𝐼) → (𝑌‘1) ∈ ℝ)
3534, 5eleq2s 2847 . . . . . 6 (𝑌𝑃 → (𝑌‘1) ∈ ℝ)
36353ad2ant2 1134 . . . . 5 ((𝑋𝑃𝑌𝑃 ∧ (𝑋‘1) ≠ (𝑌‘1)) → (𝑌‘1) ∈ ℝ)
3736adantr 480 . . . 4 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘1) ≠ (𝑌‘1)) ∧ 𝑝𝑃) → (𝑌‘1) ∈ ℝ)
38 simpl3 1194 . . . 4 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘1) ≠ (𝑌‘1)) ∧ 𝑝𝑃) → (𝑋‘1) ≠ (𝑌‘1))
39 2ex 12270 . . . . . . . . . . 11 2 ∈ V
4039prid2 4730 . . . . . . . . . 10 2 ∈ {1, 2}
4140, 3eleqtrri 2828 . . . . . . . . 9 2 ∈ 𝐼
4241a1i 11 . . . . . . . 8 (𝑝:𝐼⟶ℝ → 2 ∈ 𝐼)
4313, 42ffvelcdmd 7060 . . . . . . 7 (𝑝:𝐼⟶ℝ → (𝑝‘2) ∈ ℝ)
4412, 43sylbi 217 . . . . . 6 (𝑝 ∈ (ℝ ↑m 𝐼) → (𝑝‘2) ∈ ℝ)
4544, 5eleq2s 2847 . . . . 5 (𝑝𝑃 → (𝑝‘2) ∈ ℝ)
4645adantl 481 . . . 4 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘1) ≠ (𝑌‘1)) ∧ 𝑝𝑃) → (𝑝‘2) ∈ ℝ)
4741a1i 11 . . . . . . . . 9 (𝑋:𝐼⟶ℝ → 2 ∈ 𝐼)
4823, 47ffvelcdmd 7060 . . . . . . . 8 (𝑋:𝐼⟶ℝ → (𝑋‘2) ∈ ℝ)
4922, 48sylbi 217 . . . . . . 7 (𝑋 ∈ (ℝ ↑m 𝐼) → (𝑋‘2) ∈ ℝ)
5049, 5eleq2s 2847 . . . . . 6 (𝑋𝑃 → (𝑋‘2) ∈ ℝ)
51503ad2ant1 1133 . . . . 5 ((𝑋𝑃𝑌𝑃 ∧ (𝑋‘1) ≠ (𝑌‘1)) → (𝑋‘2) ∈ ℝ)
5251adantr 480 . . . 4 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘1) ≠ (𝑌‘1)) ∧ 𝑝𝑃) → (𝑋‘2) ∈ ℝ)
535eleq2i 2821 . . . . . . . 8 (𝑌𝑃𝑌 ∈ (ℝ ↑m 𝐼))
5453, 30bitri 275 . . . . . . 7 (𝑌𝑃𝑌:𝐼⟶ℝ)
5541a1i 11 . . . . . . . 8 (𝑌:𝐼⟶ℝ → 2 ∈ 𝐼)
5631, 55ffvelcdmd 7060 . . . . . . 7 (𝑌:𝐼⟶ℝ → (𝑌‘2) ∈ ℝ)
5754, 56sylbi 217 . . . . . 6 (𝑌𝑃 → (𝑌‘2) ∈ ℝ)
58573ad2ant2 1134 . . . . 5 ((𝑋𝑃𝑌𝑃 ∧ (𝑋‘1) ≠ (𝑌‘1)) → (𝑌‘2) ∈ ℝ)
5958adantr 480 . . . 4 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘1) ≠ (𝑌‘1)) ∧ 𝑝𝑃) → (𝑌‘2) ∈ ℝ)
60 rrx2linesl.s . . . 4 𝑆 = (((𝑌‘2) − (𝑋‘2)) / ((𝑌‘1) − (𝑋‘1)))
6121, 29, 37, 38, 46, 52, 59, 60affinecomb1 48695 . . 3 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘1) ≠ (𝑌‘1)) ∧ 𝑝𝑃) → (∃𝑡 ∈ ℝ ((𝑝‘1) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2)))) ↔ (𝑝‘2) = ((𝑆 · ((𝑝‘1) − (𝑋‘1))) + (𝑋‘2))))
6261rabbidva 3415 . 2 ((𝑋𝑃𝑌𝑃 ∧ (𝑋‘1) ≠ (𝑌‘1)) → {𝑝𝑃 ∣ ∃𝑡 ∈ ℝ ((𝑝‘1) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2))))} = {𝑝𝑃 ∣ (𝑝‘2) = ((𝑆 · ((𝑝‘1) − (𝑋‘1))) + (𝑋‘2))})
638, 62eqtrd 2765 1 ((𝑋𝑃𝑌𝑃 ∧ (𝑋‘1) ≠ (𝑌‘1)) → (𝑋𝐿𝑌) = {𝑝𝑃 ∣ (𝑝‘2) = ((𝑆 · ((𝑝‘1) − (𝑋‘1))) + (𝑋‘2))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  wrex 3054  {crab 3408  Vcvv 3450  {cpr 4594  wf 6510  cfv 6514  (class class class)co 7390  m cmap 8802  cr 11074  1c1 11076   + caddc 11078   · cmul 11080  cmin 11412   / cdiv 11842  2c2 12248  ℝ^crrx 25290  LineMcline 48720
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154  ax-mulf 11155
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-tpos 8208  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-sup 9400  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-rp 12959  df-fz 13476  df-seq 13974  df-exp 14034  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-hom 17251  df-cco 17252  df-0g 17411  df-prds 17417  df-pws 17419  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-mhm 18717  df-grp 18875  df-minusg 18876  df-sbg 18877  df-subg 19062  df-ghm 19152  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-cring 20152  df-oppr 20253  df-dvdsr 20273  df-unit 20274  df-invr 20304  df-dvr 20317  df-rhm 20388  df-subrng 20462  df-subrg 20486  df-drng 20647  df-field 20648  df-staf 20755  df-srng 20756  df-lmod 20775  df-lss 20845  df-sra 21087  df-rgmod 21088  df-cnfld 21272  df-refld 21521  df-dsmm 21648  df-frlm 21663  df-tng 24479  df-tcph 25076  df-rrx 25292  df-line 48722
This theorem is referenced by:  line2  48745
  Copyright terms: Public domain W3C validator