Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrx2linesl Structured version   Visualization version   GIF version

Theorem rrx2linesl 45157
Description: The line passing through the two different points 𝑋 and 𝑌 in a real Euclidean space of dimension 2, expressed by the slope 𝑆 between the two points ("point-slope form"), sometimes also written as ((𝑝‘2) − (𝑋‘2)) = (𝑆 · ((𝑝‘1) − (𝑋‘1))). (Contributed by AV, 22-Jan-2023.)
Hypotheses
Ref Expression
rrx2line.i 𝐼 = {1, 2}
rrx2line.e 𝐸 = (ℝ^‘𝐼)
rrx2line.b 𝑃 = (ℝ ↑m 𝐼)
rrx2line.l 𝐿 = (LineM𝐸)
rrx2linesl.s 𝑆 = (((𝑌‘2) − (𝑋‘2)) / ((𝑌‘1) − (𝑋‘1)))
Assertion
Ref Expression
rrx2linesl ((𝑋𝑃𝑌𝑃 ∧ (𝑋‘1) ≠ (𝑌‘1)) → (𝑋𝐿𝑌) = {𝑝𝑃 ∣ (𝑝‘2) = ((𝑆 · ((𝑝‘1) − (𝑋‘1))) + (𝑋‘2))})
Distinct variable groups:   𝐸,𝑝   𝐼,𝑝   𝑃,𝑝   𝑋,𝑝   𝑌,𝑝
Allowed substitution hints:   𝑆(𝑝)   𝐿(𝑝)

Proof of Theorem rrx2linesl
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 fveq1 6644 . . . 4 (𝑋 = 𝑌 → (𝑋‘1) = (𝑌‘1))
21necon3i 3019 . . 3 ((𝑋‘1) ≠ (𝑌‘1) → 𝑋𝑌)
3 rrx2line.i . . . 4 𝐼 = {1, 2}
4 rrx2line.e . . . 4 𝐸 = (ℝ^‘𝐼)
5 rrx2line.b . . . 4 𝑃 = (ℝ ↑m 𝐼)
6 rrx2line.l . . . 4 𝐿 = (LineM𝐸)
73, 4, 5, 6rrx2line 45154 . . 3 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝑋𝐿𝑌) = {𝑝𝑃 ∣ ∃𝑡 ∈ ℝ ((𝑝‘1) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2))))})
82, 7syl3an3 1162 . 2 ((𝑋𝑃𝑌𝑃 ∧ (𝑋‘1) ≠ (𝑌‘1)) → (𝑋𝐿𝑌) = {𝑝𝑃 ∣ ∃𝑡 ∈ ℝ ((𝑝‘1) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2))))})
9 reex 10617 . . . . . . . 8 ℝ ∈ V
10 prex 5298 . . . . . . . . 9 {1, 2} ∈ V
113, 10eqeltri 2886 . . . . . . . 8 𝐼 ∈ V
129, 11elmap 8418 . . . . . . 7 (𝑝 ∈ (ℝ ↑m 𝐼) ↔ 𝑝:𝐼⟶ℝ)
13 id 22 . . . . . . . 8 (𝑝:𝐼⟶ℝ → 𝑝:𝐼⟶ℝ)
14 1ex 10626 . . . . . . . . . . 11 1 ∈ V
1514prid1 4658 . . . . . . . . . 10 1 ∈ {1, 2}
1615, 3eleqtrri 2889 . . . . . . . . 9 1 ∈ 𝐼
1716a1i 11 . . . . . . . 8 (𝑝:𝐼⟶ℝ → 1 ∈ 𝐼)
1813, 17ffvelrnd 6829 . . . . . . 7 (𝑝:𝐼⟶ℝ → (𝑝‘1) ∈ ℝ)
1912, 18sylbi 220 . . . . . 6 (𝑝 ∈ (ℝ ↑m 𝐼) → (𝑝‘1) ∈ ℝ)
2019, 5eleq2s 2908 . . . . 5 (𝑝𝑃 → (𝑝‘1) ∈ ℝ)
2120adantl 485 . . . 4 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘1) ≠ (𝑌‘1)) ∧ 𝑝𝑃) → (𝑝‘1) ∈ ℝ)
229, 11elmap 8418 . . . . . . . 8 (𝑋 ∈ (ℝ ↑m 𝐼) ↔ 𝑋:𝐼⟶ℝ)
23 id 22 . . . . . . . . 9 (𝑋:𝐼⟶ℝ → 𝑋:𝐼⟶ℝ)
2416a1i 11 . . . . . . . . 9 (𝑋:𝐼⟶ℝ → 1 ∈ 𝐼)
2523, 24ffvelrnd 6829 . . . . . . . 8 (𝑋:𝐼⟶ℝ → (𝑋‘1) ∈ ℝ)
2622, 25sylbi 220 . . . . . . 7 (𝑋 ∈ (ℝ ↑m 𝐼) → (𝑋‘1) ∈ ℝ)
2726, 5eleq2s 2908 . . . . . 6 (𝑋𝑃 → (𝑋‘1) ∈ ℝ)
28273ad2ant1 1130 . . . . 5 ((𝑋𝑃𝑌𝑃 ∧ (𝑋‘1) ≠ (𝑌‘1)) → (𝑋‘1) ∈ ℝ)
2928adantr 484 . . . 4 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘1) ≠ (𝑌‘1)) ∧ 𝑝𝑃) → (𝑋‘1) ∈ ℝ)
309, 11elmap 8418 . . . . . . . 8 (𝑌 ∈ (ℝ ↑m 𝐼) ↔ 𝑌:𝐼⟶ℝ)
31 id 22 . . . . . . . . 9 (𝑌:𝐼⟶ℝ → 𝑌:𝐼⟶ℝ)
3216a1i 11 . . . . . . . . 9 (𝑌:𝐼⟶ℝ → 1 ∈ 𝐼)
3331, 32ffvelrnd 6829 . . . . . . . 8 (𝑌:𝐼⟶ℝ → (𝑌‘1) ∈ ℝ)
3430, 33sylbi 220 . . . . . . 7 (𝑌 ∈ (ℝ ↑m 𝐼) → (𝑌‘1) ∈ ℝ)
3534, 5eleq2s 2908 . . . . . 6 (𝑌𝑃 → (𝑌‘1) ∈ ℝ)
36353ad2ant2 1131 . . . . 5 ((𝑋𝑃𝑌𝑃 ∧ (𝑋‘1) ≠ (𝑌‘1)) → (𝑌‘1) ∈ ℝ)
3736adantr 484 . . . 4 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘1) ≠ (𝑌‘1)) ∧ 𝑝𝑃) → (𝑌‘1) ∈ ℝ)
38 simpl3 1190 . . . 4 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘1) ≠ (𝑌‘1)) ∧ 𝑝𝑃) → (𝑋‘1) ≠ (𝑌‘1))
39 2ex 11702 . . . . . . . . . . 11 2 ∈ V
4039prid2 4659 . . . . . . . . . 10 2 ∈ {1, 2}
4140, 3eleqtrri 2889 . . . . . . . . 9 2 ∈ 𝐼
4241a1i 11 . . . . . . . 8 (𝑝:𝐼⟶ℝ → 2 ∈ 𝐼)
4313, 42ffvelrnd 6829 . . . . . . 7 (𝑝:𝐼⟶ℝ → (𝑝‘2) ∈ ℝ)
4412, 43sylbi 220 . . . . . 6 (𝑝 ∈ (ℝ ↑m 𝐼) → (𝑝‘2) ∈ ℝ)
4544, 5eleq2s 2908 . . . . 5 (𝑝𝑃 → (𝑝‘2) ∈ ℝ)
4645adantl 485 . . . 4 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘1) ≠ (𝑌‘1)) ∧ 𝑝𝑃) → (𝑝‘2) ∈ ℝ)
4741a1i 11 . . . . . . . . 9 (𝑋:𝐼⟶ℝ → 2 ∈ 𝐼)
4823, 47ffvelrnd 6829 . . . . . . . 8 (𝑋:𝐼⟶ℝ → (𝑋‘2) ∈ ℝ)
4922, 48sylbi 220 . . . . . . 7 (𝑋 ∈ (ℝ ↑m 𝐼) → (𝑋‘2) ∈ ℝ)
5049, 5eleq2s 2908 . . . . . 6 (𝑋𝑃 → (𝑋‘2) ∈ ℝ)
51503ad2ant1 1130 . . . . 5 ((𝑋𝑃𝑌𝑃 ∧ (𝑋‘1) ≠ (𝑌‘1)) → (𝑋‘2) ∈ ℝ)
5251adantr 484 . . . 4 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘1) ≠ (𝑌‘1)) ∧ 𝑝𝑃) → (𝑋‘2) ∈ ℝ)
535eleq2i 2881 . . . . . . . 8 (𝑌𝑃𝑌 ∈ (ℝ ↑m 𝐼))
5453, 30bitri 278 . . . . . . 7 (𝑌𝑃𝑌:𝐼⟶ℝ)
5541a1i 11 . . . . . . . 8 (𝑌:𝐼⟶ℝ → 2 ∈ 𝐼)
5631, 55ffvelrnd 6829 . . . . . . 7 (𝑌:𝐼⟶ℝ → (𝑌‘2) ∈ ℝ)
5754, 56sylbi 220 . . . . . 6 (𝑌𝑃 → (𝑌‘2) ∈ ℝ)
58573ad2ant2 1131 . . . . 5 ((𝑋𝑃𝑌𝑃 ∧ (𝑋‘1) ≠ (𝑌‘1)) → (𝑌‘2) ∈ ℝ)
5958adantr 484 . . . 4 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘1) ≠ (𝑌‘1)) ∧ 𝑝𝑃) → (𝑌‘2) ∈ ℝ)
60 rrx2linesl.s . . . 4 𝑆 = (((𝑌‘2) − (𝑋‘2)) / ((𝑌‘1) − (𝑋‘1)))
6121, 29, 37, 38, 46, 52, 59, 60affinecomb1 45116 . . 3 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘1) ≠ (𝑌‘1)) ∧ 𝑝𝑃) → (∃𝑡 ∈ ℝ ((𝑝‘1) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2)))) ↔ (𝑝‘2) = ((𝑆 · ((𝑝‘1) − (𝑋‘1))) + (𝑋‘2))))
6261rabbidva 3425 . 2 ((𝑋𝑃𝑌𝑃 ∧ (𝑋‘1) ≠ (𝑌‘1)) → {𝑝𝑃 ∣ ∃𝑡 ∈ ℝ ((𝑝‘1) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2))))} = {𝑝𝑃 ∣ (𝑝‘2) = ((𝑆 · ((𝑝‘1) − (𝑋‘1))) + (𝑋‘2))})
638, 62eqtrd 2833 1 ((𝑋𝑃𝑌𝑃 ∧ (𝑋‘1) ≠ (𝑌‘1)) → (𝑋𝐿𝑌) = {𝑝𝑃 ∣ (𝑝‘2) = ((𝑆 · ((𝑝‘1) − (𝑋‘1))) + (𝑋‘2))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2987  wrex 3107  {crab 3110  Vcvv 3441  {cpr 4527  wf 6320  cfv 6324  (class class class)co 7135  m cmap 8389  cr 10525  1c1 10527   + caddc 10529   · cmul 10531  cmin 10859   / cdiv 11286  2c2 11680  ℝ^crrx 23987  LineMcline 45141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-tpos 7875  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-sup 8890  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-rp 12378  df-fz 12886  df-seq 13365  df-exp 13426  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-hom 16581  df-cco 16582  df-0g 16707  df-prds 16713  df-pws 16715  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-mhm 17948  df-grp 18098  df-minusg 18099  df-sbg 18100  df-subg 18268  df-ghm 18348  df-cmn 18900  df-mgp 19233  df-ur 19245  df-ring 19292  df-cring 19293  df-oppr 19369  df-dvdsr 19387  df-unit 19388  df-invr 19418  df-dvr 19429  df-rnghom 19463  df-drng 19497  df-field 19498  df-subrg 19526  df-staf 19609  df-srng 19610  df-lmod 19629  df-lss 19697  df-sra 19937  df-rgmod 19938  df-cnfld 20092  df-refld 20294  df-dsmm 20421  df-frlm 20436  df-tng 23191  df-tcph 23774  df-rrx 23989  df-line 45143
This theorem is referenced by:  line2  45166
  Copyright terms: Public domain W3C validator