Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrx2linesl Structured version   Visualization version   GIF version

Theorem rrx2linesl 48593
Description: The line passing through the two different points 𝑋 and 𝑌 in a real Euclidean space of dimension 2, expressed by the slope 𝑆 between the two points ("point-slope form"), sometimes also written as ((𝑝‘2) − (𝑋‘2)) = (𝑆 · ((𝑝‘1) − (𝑋‘1))). (Contributed by AV, 22-Jan-2023.)
Hypotheses
Ref Expression
rrx2line.i 𝐼 = {1, 2}
rrx2line.e 𝐸 = (ℝ^‘𝐼)
rrx2line.b 𝑃 = (ℝ ↑m 𝐼)
rrx2line.l 𝐿 = (LineM𝐸)
rrx2linesl.s 𝑆 = (((𝑌‘2) − (𝑋‘2)) / ((𝑌‘1) − (𝑋‘1)))
Assertion
Ref Expression
rrx2linesl ((𝑋𝑃𝑌𝑃 ∧ (𝑋‘1) ≠ (𝑌‘1)) → (𝑋𝐿𝑌) = {𝑝𝑃 ∣ (𝑝‘2) = ((𝑆 · ((𝑝‘1) − (𝑋‘1))) + (𝑋‘2))})
Distinct variable groups:   𝐸,𝑝   𝐼,𝑝   𝑃,𝑝   𝑋,𝑝   𝑌,𝑝
Allowed substitution hints:   𝑆(𝑝)   𝐿(𝑝)

Proof of Theorem rrx2linesl
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 fveq1 6906 . . . 4 (𝑋 = 𝑌 → (𝑋‘1) = (𝑌‘1))
21necon3i 2971 . . 3 ((𝑋‘1) ≠ (𝑌‘1) → 𝑋𝑌)
3 rrx2line.i . . . 4 𝐼 = {1, 2}
4 rrx2line.e . . . 4 𝐸 = (ℝ^‘𝐼)
5 rrx2line.b . . . 4 𝑃 = (ℝ ↑m 𝐼)
6 rrx2line.l . . . 4 𝐿 = (LineM𝐸)
73, 4, 5, 6rrx2line 48590 . . 3 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝑋𝐿𝑌) = {𝑝𝑃 ∣ ∃𝑡 ∈ ℝ ((𝑝‘1) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2))))})
82, 7syl3an3 1164 . 2 ((𝑋𝑃𝑌𝑃 ∧ (𝑋‘1) ≠ (𝑌‘1)) → (𝑋𝐿𝑌) = {𝑝𝑃 ∣ ∃𝑡 ∈ ℝ ((𝑝‘1) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2))))})
9 reex 11244 . . . . . . . 8 ℝ ∈ V
10 prex 5443 . . . . . . . . 9 {1, 2} ∈ V
113, 10eqeltri 2835 . . . . . . . 8 𝐼 ∈ V
129, 11elmap 8910 . . . . . . 7 (𝑝 ∈ (ℝ ↑m 𝐼) ↔ 𝑝:𝐼⟶ℝ)
13 id 22 . . . . . . . 8 (𝑝:𝐼⟶ℝ → 𝑝:𝐼⟶ℝ)
14 1ex 11255 . . . . . . . . . . 11 1 ∈ V
1514prid1 4767 . . . . . . . . . 10 1 ∈ {1, 2}
1615, 3eleqtrri 2838 . . . . . . . . 9 1 ∈ 𝐼
1716a1i 11 . . . . . . . 8 (𝑝:𝐼⟶ℝ → 1 ∈ 𝐼)
1813, 17ffvelcdmd 7105 . . . . . . 7 (𝑝:𝐼⟶ℝ → (𝑝‘1) ∈ ℝ)
1912, 18sylbi 217 . . . . . 6 (𝑝 ∈ (ℝ ↑m 𝐼) → (𝑝‘1) ∈ ℝ)
2019, 5eleq2s 2857 . . . . 5 (𝑝𝑃 → (𝑝‘1) ∈ ℝ)
2120adantl 481 . . . 4 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘1) ≠ (𝑌‘1)) ∧ 𝑝𝑃) → (𝑝‘1) ∈ ℝ)
229, 11elmap 8910 . . . . . . . 8 (𝑋 ∈ (ℝ ↑m 𝐼) ↔ 𝑋:𝐼⟶ℝ)
23 id 22 . . . . . . . . 9 (𝑋:𝐼⟶ℝ → 𝑋:𝐼⟶ℝ)
2416a1i 11 . . . . . . . . 9 (𝑋:𝐼⟶ℝ → 1 ∈ 𝐼)
2523, 24ffvelcdmd 7105 . . . . . . . 8 (𝑋:𝐼⟶ℝ → (𝑋‘1) ∈ ℝ)
2622, 25sylbi 217 . . . . . . 7 (𝑋 ∈ (ℝ ↑m 𝐼) → (𝑋‘1) ∈ ℝ)
2726, 5eleq2s 2857 . . . . . 6 (𝑋𝑃 → (𝑋‘1) ∈ ℝ)
28273ad2ant1 1132 . . . . 5 ((𝑋𝑃𝑌𝑃 ∧ (𝑋‘1) ≠ (𝑌‘1)) → (𝑋‘1) ∈ ℝ)
2928adantr 480 . . . 4 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘1) ≠ (𝑌‘1)) ∧ 𝑝𝑃) → (𝑋‘1) ∈ ℝ)
309, 11elmap 8910 . . . . . . . 8 (𝑌 ∈ (ℝ ↑m 𝐼) ↔ 𝑌:𝐼⟶ℝ)
31 id 22 . . . . . . . . 9 (𝑌:𝐼⟶ℝ → 𝑌:𝐼⟶ℝ)
3216a1i 11 . . . . . . . . 9 (𝑌:𝐼⟶ℝ → 1 ∈ 𝐼)
3331, 32ffvelcdmd 7105 . . . . . . . 8 (𝑌:𝐼⟶ℝ → (𝑌‘1) ∈ ℝ)
3430, 33sylbi 217 . . . . . . 7 (𝑌 ∈ (ℝ ↑m 𝐼) → (𝑌‘1) ∈ ℝ)
3534, 5eleq2s 2857 . . . . . 6 (𝑌𝑃 → (𝑌‘1) ∈ ℝ)
36353ad2ant2 1133 . . . . 5 ((𝑋𝑃𝑌𝑃 ∧ (𝑋‘1) ≠ (𝑌‘1)) → (𝑌‘1) ∈ ℝ)
3736adantr 480 . . . 4 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘1) ≠ (𝑌‘1)) ∧ 𝑝𝑃) → (𝑌‘1) ∈ ℝ)
38 simpl3 1192 . . . 4 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘1) ≠ (𝑌‘1)) ∧ 𝑝𝑃) → (𝑋‘1) ≠ (𝑌‘1))
39 2ex 12341 . . . . . . . . . . 11 2 ∈ V
4039prid2 4768 . . . . . . . . . 10 2 ∈ {1, 2}
4140, 3eleqtrri 2838 . . . . . . . . 9 2 ∈ 𝐼
4241a1i 11 . . . . . . . 8 (𝑝:𝐼⟶ℝ → 2 ∈ 𝐼)
4313, 42ffvelcdmd 7105 . . . . . . 7 (𝑝:𝐼⟶ℝ → (𝑝‘2) ∈ ℝ)
4412, 43sylbi 217 . . . . . 6 (𝑝 ∈ (ℝ ↑m 𝐼) → (𝑝‘2) ∈ ℝ)
4544, 5eleq2s 2857 . . . . 5 (𝑝𝑃 → (𝑝‘2) ∈ ℝ)
4645adantl 481 . . . 4 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘1) ≠ (𝑌‘1)) ∧ 𝑝𝑃) → (𝑝‘2) ∈ ℝ)
4741a1i 11 . . . . . . . . 9 (𝑋:𝐼⟶ℝ → 2 ∈ 𝐼)
4823, 47ffvelcdmd 7105 . . . . . . . 8 (𝑋:𝐼⟶ℝ → (𝑋‘2) ∈ ℝ)
4922, 48sylbi 217 . . . . . . 7 (𝑋 ∈ (ℝ ↑m 𝐼) → (𝑋‘2) ∈ ℝ)
5049, 5eleq2s 2857 . . . . . 6 (𝑋𝑃 → (𝑋‘2) ∈ ℝ)
51503ad2ant1 1132 . . . . 5 ((𝑋𝑃𝑌𝑃 ∧ (𝑋‘1) ≠ (𝑌‘1)) → (𝑋‘2) ∈ ℝ)
5251adantr 480 . . . 4 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘1) ≠ (𝑌‘1)) ∧ 𝑝𝑃) → (𝑋‘2) ∈ ℝ)
535eleq2i 2831 . . . . . . . 8 (𝑌𝑃𝑌 ∈ (ℝ ↑m 𝐼))
5453, 30bitri 275 . . . . . . 7 (𝑌𝑃𝑌:𝐼⟶ℝ)
5541a1i 11 . . . . . . . 8 (𝑌:𝐼⟶ℝ → 2 ∈ 𝐼)
5631, 55ffvelcdmd 7105 . . . . . . 7 (𝑌:𝐼⟶ℝ → (𝑌‘2) ∈ ℝ)
5754, 56sylbi 217 . . . . . 6 (𝑌𝑃 → (𝑌‘2) ∈ ℝ)
58573ad2ant2 1133 . . . . 5 ((𝑋𝑃𝑌𝑃 ∧ (𝑋‘1) ≠ (𝑌‘1)) → (𝑌‘2) ∈ ℝ)
5958adantr 480 . . . 4 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘1) ≠ (𝑌‘1)) ∧ 𝑝𝑃) → (𝑌‘2) ∈ ℝ)
60 rrx2linesl.s . . . 4 𝑆 = (((𝑌‘2) − (𝑋‘2)) / ((𝑌‘1) − (𝑋‘1)))
6121, 29, 37, 38, 46, 52, 59, 60affinecomb1 48552 . . 3 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘1) ≠ (𝑌‘1)) ∧ 𝑝𝑃) → (∃𝑡 ∈ ℝ ((𝑝‘1) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2)))) ↔ (𝑝‘2) = ((𝑆 · ((𝑝‘1) − (𝑋‘1))) + (𝑋‘2))))
6261rabbidva 3440 . 2 ((𝑋𝑃𝑌𝑃 ∧ (𝑋‘1) ≠ (𝑌‘1)) → {𝑝𝑃 ∣ ∃𝑡 ∈ ℝ ((𝑝‘1) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2))))} = {𝑝𝑃 ∣ (𝑝‘2) = ((𝑆 · ((𝑝‘1) − (𝑋‘1))) + (𝑋‘2))})
638, 62eqtrd 2775 1 ((𝑋𝑃𝑌𝑃 ∧ (𝑋‘1) ≠ (𝑌‘1)) → (𝑋𝐿𝑌) = {𝑝𝑃 ∣ (𝑝‘2) = ((𝑆 · ((𝑝‘1) − (𝑋‘1))) + (𝑋‘2))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1537  wcel 2106  wne 2938  wrex 3068  {crab 3433  Vcvv 3478  {cpr 4633  wf 6559  cfv 6563  (class class class)co 7431  m cmap 8865  cr 11152  1c1 11154   + caddc 11156   · cmul 11158  cmin 11490   / cdiv 11918  2c2 12319  ℝ^crrx 25431  LineMcline 48577
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231  ax-addf 11232  ax-mulf 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8013  df-2nd 8014  df-supp 8185  df-tpos 8250  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-er 8744  df-map 8867  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fsupp 9400  df-sup 9480  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-rp 13033  df-fz 13545  df-seq 14040  df-exp 14100  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-starv 17313  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-hom 17322  df-cco 17323  df-0g 17488  df-prds 17494  df-pws 17496  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-mhm 18809  df-grp 18967  df-minusg 18968  df-sbg 18969  df-subg 19154  df-ghm 19244  df-cmn 19815  df-abl 19816  df-mgp 20153  df-rng 20171  df-ur 20200  df-ring 20253  df-cring 20254  df-oppr 20351  df-dvdsr 20374  df-unit 20375  df-invr 20405  df-dvr 20418  df-rhm 20489  df-subrng 20563  df-subrg 20587  df-drng 20748  df-field 20749  df-staf 20857  df-srng 20858  df-lmod 20877  df-lss 20948  df-sra 21190  df-rgmod 21191  df-cnfld 21383  df-refld 21641  df-dsmm 21770  df-frlm 21785  df-tng 24613  df-tcph 25217  df-rrx 25433  df-line 48579
This theorem is referenced by:  line2  48602
  Copyright terms: Public domain W3C validator