| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rrx2linesl | Structured version Visualization version GIF version | ||
| Description: The line passing through the two different points 𝑋 and 𝑌 in a real Euclidean space of dimension 2, expressed by the slope 𝑆 between the two points ("point-slope form"), sometimes also written as ((𝑝‘2) − (𝑋‘2)) = (𝑆 · ((𝑝‘1) − (𝑋‘1))). (Contributed by AV, 22-Jan-2023.) |
| Ref | Expression |
|---|---|
| rrx2line.i | ⊢ 𝐼 = {1, 2} |
| rrx2line.e | ⊢ 𝐸 = (ℝ^‘𝐼) |
| rrx2line.b | ⊢ 𝑃 = (ℝ ↑m 𝐼) |
| rrx2line.l | ⊢ 𝐿 = (LineM‘𝐸) |
| rrx2linesl.s | ⊢ 𝑆 = (((𝑌‘2) − (𝑋‘2)) / ((𝑌‘1) − (𝑋‘1))) |
| Ref | Expression |
|---|---|
| rrx2linesl | ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ (𝑋‘1) ≠ (𝑌‘1)) → (𝑋𝐿𝑌) = {𝑝 ∈ 𝑃 ∣ (𝑝‘2) = ((𝑆 · ((𝑝‘1) − (𝑋‘1))) + (𝑋‘2))}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq1 6857 | . . . 4 ⊢ (𝑋 = 𝑌 → (𝑋‘1) = (𝑌‘1)) | |
| 2 | 1 | necon3i 2957 | . . 3 ⊢ ((𝑋‘1) ≠ (𝑌‘1) → 𝑋 ≠ 𝑌) |
| 3 | rrx2line.i | . . . 4 ⊢ 𝐼 = {1, 2} | |
| 4 | rrx2line.e | . . . 4 ⊢ 𝐸 = (ℝ^‘𝐼) | |
| 5 | rrx2line.b | . . . 4 ⊢ 𝑃 = (ℝ ↑m 𝐼) | |
| 6 | rrx2line.l | . . . 4 ⊢ 𝐿 = (LineM‘𝐸) | |
| 7 | 3, 4, 5, 6 | rrx2line 48729 | . . 3 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → (𝑋𝐿𝑌) = {𝑝 ∈ 𝑃 ∣ ∃𝑡 ∈ ℝ ((𝑝‘1) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2))))}) |
| 8 | 2, 7 | syl3an3 1165 | . 2 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ (𝑋‘1) ≠ (𝑌‘1)) → (𝑋𝐿𝑌) = {𝑝 ∈ 𝑃 ∣ ∃𝑡 ∈ ℝ ((𝑝‘1) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2))))}) |
| 9 | reex 11159 | . . . . . . . 8 ⊢ ℝ ∈ V | |
| 10 | prex 5392 | . . . . . . . . 9 ⊢ {1, 2} ∈ V | |
| 11 | 3, 10 | eqeltri 2824 | . . . . . . . 8 ⊢ 𝐼 ∈ V |
| 12 | 9, 11 | elmap 8844 | . . . . . . 7 ⊢ (𝑝 ∈ (ℝ ↑m 𝐼) ↔ 𝑝:𝐼⟶ℝ) |
| 13 | id 22 | . . . . . . . 8 ⊢ (𝑝:𝐼⟶ℝ → 𝑝:𝐼⟶ℝ) | |
| 14 | 1ex 11170 | . . . . . . . . . . 11 ⊢ 1 ∈ V | |
| 15 | 14 | prid1 4726 | . . . . . . . . . 10 ⊢ 1 ∈ {1, 2} |
| 16 | 15, 3 | eleqtrri 2827 | . . . . . . . . 9 ⊢ 1 ∈ 𝐼 |
| 17 | 16 | a1i 11 | . . . . . . . 8 ⊢ (𝑝:𝐼⟶ℝ → 1 ∈ 𝐼) |
| 18 | 13, 17 | ffvelcdmd 7057 | . . . . . . 7 ⊢ (𝑝:𝐼⟶ℝ → (𝑝‘1) ∈ ℝ) |
| 19 | 12, 18 | sylbi 217 | . . . . . 6 ⊢ (𝑝 ∈ (ℝ ↑m 𝐼) → (𝑝‘1) ∈ ℝ) |
| 20 | 19, 5 | eleq2s 2846 | . . . . 5 ⊢ (𝑝 ∈ 𝑃 → (𝑝‘1) ∈ ℝ) |
| 21 | 20 | adantl 481 | . . . 4 ⊢ (((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ (𝑋‘1) ≠ (𝑌‘1)) ∧ 𝑝 ∈ 𝑃) → (𝑝‘1) ∈ ℝ) |
| 22 | 9, 11 | elmap 8844 | . . . . . . . 8 ⊢ (𝑋 ∈ (ℝ ↑m 𝐼) ↔ 𝑋:𝐼⟶ℝ) |
| 23 | id 22 | . . . . . . . . 9 ⊢ (𝑋:𝐼⟶ℝ → 𝑋:𝐼⟶ℝ) | |
| 24 | 16 | a1i 11 | . . . . . . . . 9 ⊢ (𝑋:𝐼⟶ℝ → 1 ∈ 𝐼) |
| 25 | 23, 24 | ffvelcdmd 7057 | . . . . . . . 8 ⊢ (𝑋:𝐼⟶ℝ → (𝑋‘1) ∈ ℝ) |
| 26 | 22, 25 | sylbi 217 | . . . . . . 7 ⊢ (𝑋 ∈ (ℝ ↑m 𝐼) → (𝑋‘1) ∈ ℝ) |
| 27 | 26, 5 | eleq2s 2846 | . . . . . 6 ⊢ (𝑋 ∈ 𝑃 → (𝑋‘1) ∈ ℝ) |
| 28 | 27 | 3ad2ant1 1133 | . . . . 5 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ (𝑋‘1) ≠ (𝑌‘1)) → (𝑋‘1) ∈ ℝ) |
| 29 | 28 | adantr 480 | . . . 4 ⊢ (((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ (𝑋‘1) ≠ (𝑌‘1)) ∧ 𝑝 ∈ 𝑃) → (𝑋‘1) ∈ ℝ) |
| 30 | 9, 11 | elmap 8844 | . . . . . . . 8 ⊢ (𝑌 ∈ (ℝ ↑m 𝐼) ↔ 𝑌:𝐼⟶ℝ) |
| 31 | id 22 | . . . . . . . . 9 ⊢ (𝑌:𝐼⟶ℝ → 𝑌:𝐼⟶ℝ) | |
| 32 | 16 | a1i 11 | . . . . . . . . 9 ⊢ (𝑌:𝐼⟶ℝ → 1 ∈ 𝐼) |
| 33 | 31, 32 | ffvelcdmd 7057 | . . . . . . . 8 ⊢ (𝑌:𝐼⟶ℝ → (𝑌‘1) ∈ ℝ) |
| 34 | 30, 33 | sylbi 217 | . . . . . . 7 ⊢ (𝑌 ∈ (ℝ ↑m 𝐼) → (𝑌‘1) ∈ ℝ) |
| 35 | 34, 5 | eleq2s 2846 | . . . . . 6 ⊢ (𝑌 ∈ 𝑃 → (𝑌‘1) ∈ ℝ) |
| 36 | 35 | 3ad2ant2 1134 | . . . . 5 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ (𝑋‘1) ≠ (𝑌‘1)) → (𝑌‘1) ∈ ℝ) |
| 37 | 36 | adantr 480 | . . . 4 ⊢ (((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ (𝑋‘1) ≠ (𝑌‘1)) ∧ 𝑝 ∈ 𝑃) → (𝑌‘1) ∈ ℝ) |
| 38 | simpl3 1194 | . . . 4 ⊢ (((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ (𝑋‘1) ≠ (𝑌‘1)) ∧ 𝑝 ∈ 𝑃) → (𝑋‘1) ≠ (𝑌‘1)) | |
| 39 | 2ex 12263 | . . . . . . . . . . 11 ⊢ 2 ∈ V | |
| 40 | 39 | prid2 4727 | . . . . . . . . . 10 ⊢ 2 ∈ {1, 2} |
| 41 | 40, 3 | eleqtrri 2827 | . . . . . . . . 9 ⊢ 2 ∈ 𝐼 |
| 42 | 41 | a1i 11 | . . . . . . . 8 ⊢ (𝑝:𝐼⟶ℝ → 2 ∈ 𝐼) |
| 43 | 13, 42 | ffvelcdmd 7057 | . . . . . . 7 ⊢ (𝑝:𝐼⟶ℝ → (𝑝‘2) ∈ ℝ) |
| 44 | 12, 43 | sylbi 217 | . . . . . 6 ⊢ (𝑝 ∈ (ℝ ↑m 𝐼) → (𝑝‘2) ∈ ℝ) |
| 45 | 44, 5 | eleq2s 2846 | . . . . 5 ⊢ (𝑝 ∈ 𝑃 → (𝑝‘2) ∈ ℝ) |
| 46 | 45 | adantl 481 | . . . 4 ⊢ (((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ (𝑋‘1) ≠ (𝑌‘1)) ∧ 𝑝 ∈ 𝑃) → (𝑝‘2) ∈ ℝ) |
| 47 | 41 | a1i 11 | . . . . . . . . 9 ⊢ (𝑋:𝐼⟶ℝ → 2 ∈ 𝐼) |
| 48 | 23, 47 | ffvelcdmd 7057 | . . . . . . . 8 ⊢ (𝑋:𝐼⟶ℝ → (𝑋‘2) ∈ ℝ) |
| 49 | 22, 48 | sylbi 217 | . . . . . . 7 ⊢ (𝑋 ∈ (ℝ ↑m 𝐼) → (𝑋‘2) ∈ ℝ) |
| 50 | 49, 5 | eleq2s 2846 | . . . . . 6 ⊢ (𝑋 ∈ 𝑃 → (𝑋‘2) ∈ ℝ) |
| 51 | 50 | 3ad2ant1 1133 | . . . . 5 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ (𝑋‘1) ≠ (𝑌‘1)) → (𝑋‘2) ∈ ℝ) |
| 52 | 51 | adantr 480 | . . . 4 ⊢ (((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ (𝑋‘1) ≠ (𝑌‘1)) ∧ 𝑝 ∈ 𝑃) → (𝑋‘2) ∈ ℝ) |
| 53 | 5 | eleq2i 2820 | . . . . . . . 8 ⊢ (𝑌 ∈ 𝑃 ↔ 𝑌 ∈ (ℝ ↑m 𝐼)) |
| 54 | 53, 30 | bitri 275 | . . . . . . 7 ⊢ (𝑌 ∈ 𝑃 ↔ 𝑌:𝐼⟶ℝ) |
| 55 | 41 | a1i 11 | . . . . . . . 8 ⊢ (𝑌:𝐼⟶ℝ → 2 ∈ 𝐼) |
| 56 | 31, 55 | ffvelcdmd 7057 | . . . . . . 7 ⊢ (𝑌:𝐼⟶ℝ → (𝑌‘2) ∈ ℝ) |
| 57 | 54, 56 | sylbi 217 | . . . . . 6 ⊢ (𝑌 ∈ 𝑃 → (𝑌‘2) ∈ ℝ) |
| 58 | 57 | 3ad2ant2 1134 | . . . . 5 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ (𝑋‘1) ≠ (𝑌‘1)) → (𝑌‘2) ∈ ℝ) |
| 59 | 58 | adantr 480 | . . . 4 ⊢ (((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ (𝑋‘1) ≠ (𝑌‘1)) ∧ 𝑝 ∈ 𝑃) → (𝑌‘2) ∈ ℝ) |
| 60 | rrx2linesl.s | . . . 4 ⊢ 𝑆 = (((𝑌‘2) − (𝑋‘2)) / ((𝑌‘1) − (𝑋‘1))) | |
| 61 | 21, 29, 37, 38, 46, 52, 59, 60 | affinecomb1 48691 | . . 3 ⊢ (((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ (𝑋‘1) ≠ (𝑌‘1)) ∧ 𝑝 ∈ 𝑃) → (∃𝑡 ∈ ℝ ((𝑝‘1) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2)))) ↔ (𝑝‘2) = ((𝑆 · ((𝑝‘1) − (𝑋‘1))) + (𝑋‘2)))) |
| 62 | 61 | rabbidva 3412 | . 2 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ (𝑋‘1) ≠ (𝑌‘1)) → {𝑝 ∈ 𝑃 ∣ ∃𝑡 ∈ ℝ ((𝑝‘1) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2))))} = {𝑝 ∈ 𝑃 ∣ (𝑝‘2) = ((𝑆 · ((𝑝‘1) − (𝑋‘1))) + (𝑋‘2))}) |
| 63 | 8, 62 | eqtrd 2764 | 1 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ (𝑋‘1) ≠ (𝑌‘1)) → (𝑋𝐿𝑌) = {𝑝 ∈ 𝑃 ∣ (𝑝‘2) = ((𝑆 · ((𝑝‘1) − (𝑋‘1))) + (𝑋‘2))}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∃wrex 3053 {crab 3405 Vcvv 3447 {cpr 4591 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 ↑m cmap 8799 ℝcr 11067 1c1 11069 + caddc 11071 · cmul 11073 − cmin 11405 / cdiv 11835 2c2 12241 ℝ^crrx 25283 LineMcline 48716 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 ax-addf 11147 ax-mulf 11148 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-of 7653 df-om 7843 df-1st 7968 df-2nd 7969 df-supp 8140 df-tpos 8205 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-er 8671 df-map 8801 df-ixp 8871 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-fsupp 9313 df-sup 9393 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-uz 12794 df-rp 12952 df-fz 13469 df-seq 13967 df-exp 14027 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 df-struct 17117 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-mulr 17234 df-starv 17235 df-sca 17236 df-vsca 17237 df-ip 17238 df-tset 17239 df-ple 17240 df-ds 17242 df-unif 17243 df-hom 17244 df-cco 17245 df-0g 17404 df-prds 17410 df-pws 17412 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-mhm 18710 df-grp 18868 df-minusg 18869 df-sbg 18870 df-subg 19055 df-ghm 19145 df-cmn 19712 df-abl 19713 df-mgp 20050 df-rng 20062 df-ur 20091 df-ring 20144 df-cring 20145 df-oppr 20246 df-dvdsr 20266 df-unit 20267 df-invr 20297 df-dvr 20310 df-rhm 20381 df-subrng 20455 df-subrg 20479 df-drng 20640 df-field 20641 df-staf 20748 df-srng 20749 df-lmod 20768 df-lss 20838 df-sra 21080 df-rgmod 21081 df-cnfld 21265 df-refld 21514 df-dsmm 21641 df-frlm 21656 df-tng 24472 df-tcph 25069 df-rrx 25285 df-line 48718 |
| This theorem is referenced by: line2 48741 |
| Copyright terms: Public domain | W3C validator |