Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrx2linesl Structured version   Visualization version   GIF version

Theorem rrx2linesl 43493
Description: The line passing through the two different points 𝑋 and 𝑌 in a real Euclidean space of dimension 2, expressed by the slope 𝑆 between the two points ("point-slope form"), sometimes also written as ((𝑝‘2) − (𝑋‘2)) = (𝑆 · ((𝑝‘1) − (𝑋‘1))). (Contributed by AV, 22-Jan-2023.)
Hypotheses
Ref Expression
rrx2line.i 𝐼 = {1, 2}
rrx2line.e 𝐸 = (ℝ^‘𝐼)
rrx2line.b 𝑃 = (ℝ ↑𝑚 𝐼)
rrx2line.l 𝐿 = (LineM𝐸)
rrx2linesl.s 𝑆 = (((𝑌‘2) − (𝑋‘2)) / ((𝑌‘1) − (𝑋‘1)))
Assertion
Ref Expression
rrx2linesl ((𝑋𝑃𝑌𝑃 ∧ (𝑋‘1) ≠ (𝑌‘1)) → (𝑋𝐿𝑌) = {𝑝𝑃 ∣ (𝑝‘2) = ((𝑆 · ((𝑝‘1) − (𝑋‘1))) + (𝑋‘2))})
Distinct variable groups:   𝐸,𝑝   𝐼,𝑝   𝑃,𝑝   𝑋,𝑝   𝑌,𝑝
Allowed substitution hints:   𝑆(𝑝)   𝐿(𝑝)

Proof of Theorem rrx2linesl
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 fveq1 6447 . . . 4 (𝑋 = 𝑌 → (𝑋‘1) = (𝑌‘1))
21necon3i 3001 . . 3 ((𝑋‘1) ≠ (𝑌‘1) → 𝑋𝑌)
3 rrx2line.i . . . 4 𝐼 = {1, 2}
4 rrx2line.e . . . 4 𝐸 = (ℝ^‘𝐼)
5 rrx2line.b . . . 4 𝑃 = (ℝ ↑𝑚 𝐼)
6 rrx2line.l . . . 4 𝐿 = (LineM𝐸)
73, 4, 5, 6rrx2line 43490 . . 3 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝑋𝐿𝑌) = {𝑝𝑃 ∣ ∃𝑡 ∈ ℝ ((𝑝‘1) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2))))})
82, 7syl3an3 1166 . 2 ((𝑋𝑃𝑌𝑃 ∧ (𝑋‘1) ≠ (𝑌‘1)) → (𝑋𝐿𝑌) = {𝑝𝑃 ∣ ∃𝑡 ∈ ℝ ((𝑝‘1) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2))))})
9 reex 10365 . . . . . . . 8 ℝ ∈ V
10 prex 5143 . . . . . . . . 9 {1, 2} ∈ V
113, 10eqeltri 2855 . . . . . . . 8 𝐼 ∈ V
129, 11elmap 8171 . . . . . . 7 (𝑝 ∈ (ℝ ↑𝑚 𝐼) ↔ 𝑝:𝐼⟶ℝ)
13 id 22 . . . . . . . 8 (𝑝:𝐼⟶ℝ → 𝑝:𝐼⟶ℝ)
14 1ex 10374 . . . . . . . . . . 11 1 ∈ V
1514prid1 4529 . . . . . . . . . 10 1 ∈ {1, 2}
1615, 3eleqtrri 2858 . . . . . . . . 9 1 ∈ 𝐼
1716a1i 11 . . . . . . . 8 (𝑝:𝐼⟶ℝ → 1 ∈ 𝐼)
1813, 17ffvelrnd 6626 . . . . . . 7 (𝑝:𝐼⟶ℝ → (𝑝‘1) ∈ ℝ)
1912, 18sylbi 209 . . . . . 6 (𝑝 ∈ (ℝ ↑𝑚 𝐼) → (𝑝‘1) ∈ ℝ)
2019, 5eleq2s 2877 . . . . 5 (𝑝𝑃 → (𝑝‘1) ∈ ℝ)
2120adantl 475 . . . 4 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘1) ≠ (𝑌‘1)) ∧ 𝑝𝑃) → (𝑝‘1) ∈ ℝ)
229, 11elmap 8171 . . . . . . . 8 (𝑋 ∈ (ℝ ↑𝑚 𝐼) ↔ 𝑋:𝐼⟶ℝ)
23 id 22 . . . . . . . . 9 (𝑋:𝐼⟶ℝ → 𝑋:𝐼⟶ℝ)
2416a1i 11 . . . . . . . . 9 (𝑋:𝐼⟶ℝ → 1 ∈ 𝐼)
2523, 24ffvelrnd 6626 . . . . . . . 8 (𝑋:𝐼⟶ℝ → (𝑋‘1) ∈ ℝ)
2622, 25sylbi 209 . . . . . . 7 (𝑋 ∈ (ℝ ↑𝑚 𝐼) → (𝑋‘1) ∈ ℝ)
2726, 5eleq2s 2877 . . . . . 6 (𝑋𝑃 → (𝑋‘1) ∈ ℝ)
28273ad2ant1 1124 . . . . 5 ((𝑋𝑃𝑌𝑃 ∧ (𝑋‘1) ≠ (𝑌‘1)) → (𝑋‘1) ∈ ℝ)
2928adantr 474 . . . 4 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘1) ≠ (𝑌‘1)) ∧ 𝑝𝑃) → (𝑋‘1) ∈ ℝ)
309, 11elmap 8171 . . . . . . . 8 (𝑌 ∈ (ℝ ↑𝑚 𝐼) ↔ 𝑌:𝐼⟶ℝ)
31 id 22 . . . . . . . . 9 (𝑌:𝐼⟶ℝ → 𝑌:𝐼⟶ℝ)
3216a1i 11 . . . . . . . . 9 (𝑌:𝐼⟶ℝ → 1 ∈ 𝐼)
3331, 32ffvelrnd 6626 . . . . . . . 8 (𝑌:𝐼⟶ℝ → (𝑌‘1) ∈ ℝ)
3430, 33sylbi 209 . . . . . . 7 (𝑌 ∈ (ℝ ↑𝑚 𝐼) → (𝑌‘1) ∈ ℝ)
3534, 5eleq2s 2877 . . . . . 6 (𝑌𝑃 → (𝑌‘1) ∈ ℝ)
36353ad2ant2 1125 . . . . 5 ((𝑋𝑃𝑌𝑃 ∧ (𝑋‘1) ≠ (𝑌‘1)) → (𝑌‘1) ∈ ℝ)
3736adantr 474 . . . 4 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘1) ≠ (𝑌‘1)) ∧ 𝑝𝑃) → (𝑌‘1) ∈ ℝ)
38 simpl3 1203 . . . 4 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘1) ≠ (𝑌‘1)) ∧ 𝑝𝑃) → (𝑋‘1) ≠ (𝑌‘1))
39 2ex 11457 . . . . . . . . . . 11 2 ∈ V
4039prid2 4530 . . . . . . . . . 10 2 ∈ {1, 2}
4140, 3eleqtrri 2858 . . . . . . . . 9 2 ∈ 𝐼
4241a1i 11 . . . . . . . 8 (𝑝:𝐼⟶ℝ → 2 ∈ 𝐼)
4313, 42ffvelrnd 6626 . . . . . . 7 (𝑝:𝐼⟶ℝ → (𝑝‘2) ∈ ℝ)
4412, 43sylbi 209 . . . . . 6 (𝑝 ∈ (ℝ ↑𝑚 𝐼) → (𝑝‘2) ∈ ℝ)
4544, 5eleq2s 2877 . . . . 5 (𝑝𝑃 → (𝑝‘2) ∈ ℝ)
4645adantl 475 . . . 4 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘1) ≠ (𝑌‘1)) ∧ 𝑝𝑃) → (𝑝‘2) ∈ ℝ)
4741a1i 11 . . . . . . . . 9 (𝑋:𝐼⟶ℝ → 2 ∈ 𝐼)
4823, 47ffvelrnd 6626 . . . . . . . 8 (𝑋:𝐼⟶ℝ → (𝑋‘2) ∈ ℝ)
4922, 48sylbi 209 . . . . . . 7 (𝑋 ∈ (ℝ ↑𝑚 𝐼) → (𝑋‘2) ∈ ℝ)
5049, 5eleq2s 2877 . . . . . 6 (𝑋𝑃 → (𝑋‘2) ∈ ℝ)
51503ad2ant1 1124 . . . . 5 ((𝑋𝑃𝑌𝑃 ∧ (𝑋‘1) ≠ (𝑌‘1)) → (𝑋‘2) ∈ ℝ)
5251adantr 474 . . . 4 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘1) ≠ (𝑌‘1)) ∧ 𝑝𝑃) → (𝑋‘2) ∈ ℝ)
535eleq2i 2851 . . . . . . . 8 (𝑌𝑃𝑌 ∈ (ℝ ↑𝑚 𝐼))
5453, 30bitri 267 . . . . . . 7 (𝑌𝑃𝑌:𝐼⟶ℝ)
5541a1i 11 . . . . . . . 8 (𝑌:𝐼⟶ℝ → 2 ∈ 𝐼)
5631, 55ffvelrnd 6626 . . . . . . 7 (𝑌:𝐼⟶ℝ → (𝑌‘2) ∈ ℝ)
5754, 56sylbi 209 . . . . . 6 (𝑌𝑃 → (𝑌‘2) ∈ ℝ)
58573ad2ant2 1125 . . . . 5 ((𝑋𝑃𝑌𝑃 ∧ (𝑋‘1) ≠ (𝑌‘1)) → (𝑌‘2) ∈ ℝ)
5958adantr 474 . . . 4 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘1) ≠ (𝑌‘1)) ∧ 𝑝𝑃) → (𝑌‘2) ∈ ℝ)
60 rrx2linesl.s . . . 4 𝑆 = (((𝑌‘2) − (𝑋‘2)) / ((𝑌‘1) − (𝑋‘1)))
6121, 29, 37, 38, 46, 52, 59, 60affinecomb1 43452 . . 3 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘1) ≠ (𝑌‘1)) ∧ 𝑝𝑃) → (∃𝑡 ∈ ℝ ((𝑝‘1) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2)))) ↔ (𝑝‘2) = ((𝑆 · ((𝑝‘1) − (𝑋‘1))) + (𝑋‘2))))
6261rabbidva 3385 . 2 ((𝑋𝑃𝑌𝑃 ∧ (𝑋‘1) ≠ (𝑌‘1)) → {𝑝𝑃 ∣ ∃𝑡 ∈ ℝ ((𝑝‘1) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2))))} = {𝑝𝑃 ∣ (𝑝‘2) = ((𝑆 · ((𝑝‘1) − (𝑋‘1))) + (𝑋‘2))})
638, 62eqtrd 2814 1 ((𝑋𝑃𝑌𝑃 ∧ (𝑋‘1) ≠ (𝑌‘1)) → (𝑋𝐿𝑌) = {𝑝𝑃 ∣ (𝑝‘2) = ((𝑆 · ((𝑝‘1) − (𝑋‘1))) + (𝑋‘2))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386  w3a 1071   = wceq 1601  wcel 2107  wne 2969  wrex 3091  {crab 3094  Vcvv 3398  {cpr 4400  wf 6133  cfv 6137  (class class class)co 6924  𝑚 cmap 8142  cr 10273  1c1 10275   + caddc 10277   · cmul 10279  cmin 10608   / cdiv 11035  2c2 11435  ℝ^crrx 23600  LineMcline 43477
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5008  ax-sep 5019  ax-nul 5027  ax-pow 5079  ax-pr 5140  ax-un 7228  ax-cnex 10330  ax-resscn 10331  ax-1cn 10332  ax-icn 10333  ax-addcl 10334  ax-addrcl 10335  ax-mulcl 10336  ax-mulrcl 10337  ax-mulcom 10338  ax-addass 10339  ax-mulass 10340  ax-distr 10341  ax-i2m1 10342  ax-1ne0 10343  ax-1rid 10344  ax-rnegex 10345  ax-rrecex 10346  ax-cnre 10347  ax-pre-lttri 10348  ax-pre-lttrn 10349  ax-pre-ltadd 10350  ax-pre-mulgt0 10351  ax-pre-sup 10352  ax-addf 10353  ax-mulf 10354
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4674  df-int 4713  df-iun 4757  df-br 4889  df-opab 4951  df-mpt 4968  df-tr 4990  df-id 5263  df-eprel 5268  df-po 5276  df-so 5277  df-fr 5316  df-we 5318  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-rn 5368  df-res 5369  df-ima 5370  df-pred 5935  df-ord 5981  df-on 5982  df-lim 5983  df-suc 5984  df-iota 6101  df-fun 6139  df-fn 6140  df-f 6141  df-f1 6142  df-fo 6143  df-f1o 6144  df-fv 6145  df-riota 6885  df-ov 6927  df-oprab 6928  df-mpt2 6929  df-of 7176  df-om 7346  df-1st 7447  df-2nd 7448  df-supp 7579  df-tpos 7636  df-wrecs 7691  df-recs 7753  df-rdg 7791  df-1o 7845  df-oadd 7849  df-er 8028  df-map 8144  df-ixp 8197  df-en 8244  df-dom 8245  df-sdom 8246  df-fin 8247  df-fsupp 8566  df-sup 8638  df-pnf 10415  df-mnf 10416  df-xr 10417  df-ltxr 10418  df-le 10419  df-sub 10610  df-neg 10611  df-div 11036  df-nn 11380  df-2 11443  df-3 11444  df-4 11445  df-5 11446  df-6 11447  df-7 11448  df-8 11449  df-9 11450  df-n0 11648  df-z 11734  df-dec 11851  df-uz 11998  df-rp 12143  df-fz 12649  df-seq 13125  df-exp 13184  df-cj 14252  df-re 14253  df-im 14254  df-sqrt 14388  df-abs 14389  df-struct 16268  df-ndx 16269  df-slot 16270  df-base 16272  df-sets 16273  df-ress 16274  df-plusg 16362  df-mulr 16363  df-starv 16364  df-sca 16365  df-vsca 16366  df-ip 16367  df-tset 16368  df-ple 16369  df-ds 16371  df-unif 16372  df-hom 16373  df-cco 16374  df-0g 16499  df-prds 16505  df-pws 16507  df-mgm 17639  df-sgrp 17681  df-mnd 17692  df-mhm 17732  df-grp 17823  df-minusg 17824  df-sbg 17825  df-subg 17986  df-ghm 18053  df-cmn 18592  df-mgp 18888  df-ur 18900  df-ring 18947  df-cring 18948  df-oppr 19021  df-dvdsr 19039  df-unit 19040  df-invr 19070  df-dvr 19081  df-rnghom 19115  df-drng 19152  df-field 19153  df-subrg 19181  df-staf 19248  df-srng 19249  df-lmod 19268  df-lss 19336  df-sra 19580  df-rgmod 19581  df-cnfld 20154  df-refld 20359  df-dsmm 20486  df-frlm 20501  df-tng 22808  df-tcph 23387  df-rrx 23602  df-line 43479
This theorem is referenced by:  line2  43502
  Copyright terms: Public domain W3C validator