| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rrx2linesl | Structured version Visualization version GIF version | ||
| Description: The line passing through the two different points 𝑋 and 𝑌 in a real Euclidean space of dimension 2, expressed by the slope 𝑆 between the two points ("point-slope form"), sometimes also written as ((𝑝‘2) − (𝑋‘2)) = (𝑆 · ((𝑝‘1) − (𝑋‘1))). (Contributed by AV, 22-Jan-2023.) |
| Ref | Expression |
|---|---|
| rrx2line.i | ⊢ 𝐼 = {1, 2} |
| rrx2line.e | ⊢ 𝐸 = (ℝ^‘𝐼) |
| rrx2line.b | ⊢ 𝑃 = (ℝ ↑m 𝐼) |
| rrx2line.l | ⊢ 𝐿 = (LineM‘𝐸) |
| rrx2linesl.s | ⊢ 𝑆 = (((𝑌‘2) − (𝑋‘2)) / ((𝑌‘1) − (𝑋‘1))) |
| Ref | Expression |
|---|---|
| rrx2linesl | ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ (𝑋‘1) ≠ (𝑌‘1)) → (𝑋𝐿𝑌) = {𝑝 ∈ 𝑃 ∣ (𝑝‘2) = ((𝑆 · ((𝑝‘1) − (𝑋‘1))) + (𝑋‘2))}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq1 6860 | . . . 4 ⊢ (𝑋 = 𝑌 → (𝑋‘1) = (𝑌‘1)) | |
| 2 | 1 | necon3i 2958 | . . 3 ⊢ ((𝑋‘1) ≠ (𝑌‘1) → 𝑋 ≠ 𝑌) |
| 3 | rrx2line.i | . . . 4 ⊢ 𝐼 = {1, 2} | |
| 4 | rrx2line.e | . . . 4 ⊢ 𝐸 = (ℝ^‘𝐼) | |
| 5 | rrx2line.b | . . . 4 ⊢ 𝑃 = (ℝ ↑m 𝐼) | |
| 6 | rrx2line.l | . . . 4 ⊢ 𝐿 = (LineM‘𝐸) | |
| 7 | 3, 4, 5, 6 | rrx2line 48733 | . . 3 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → (𝑋𝐿𝑌) = {𝑝 ∈ 𝑃 ∣ ∃𝑡 ∈ ℝ ((𝑝‘1) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2))))}) |
| 8 | 2, 7 | syl3an3 1165 | . 2 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ (𝑋‘1) ≠ (𝑌‘1)) → (𝑋𝐿𝑌) = {𝑝 ∈ 𝑃 ∣ ∃𝑡 ∈ ℝ ((𝑝‘1) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2))))}) |
| 9 | reex 11166 | . . . . . . . 8 ⊢ ℝ ∈ V | |
| 10 | prex 5395 | . . . . . . . . 9 ⊢ {1, 2} ∈ V | |
| 11 | 3, 10 | eqeltri 2825 | . . . . . . . 8 ⊢ 𝐼 ∈ V |
| 12 | 9, 11 | elmap 8847 | . . . . . . 7 ⊢ (𝑝 ∈ (ℝ ↑m 𝐼) ↔ 𝑝:𝐼⟶ℝ) |
| 13 | id 22 | . . . . . . . 8 ⊢ (𝑝:𝐼⟶ℝ → 𝑝:𝐼⟶ℝ) | |
| 14 | 1ex 11177 | . . . . . . . . . . 11 ⊢ 1 ∈ V | |
| 15 | 14 | prid1 4729 | . . . . . . . . . 10 ⊢ 1 ∈ {1, 2} |
| 16 | 15, 3 | eleqtrri 2828 | . . . . . . . . 9 ⊢ 1 ∈ 𝐼 |
| 17 | 16 | a1i 11 | . . . . . . . 8 ⊢ (𝑝:𝐼⟶ℝ → 1 ∈ 𝐼) |
| 18 | 13, 17 | ffvelcdmd 7060 | . . . . . . 7 ⊢ (𝑝:𝐼⟶ℝ → (𝑝‘1) ∈ ℝ) |
| 19 | 12, 18 | sylbi 217 | . . . . . 6 ⊢ (𝑝 ∈ (ℝ ↑m 𝐼) → (𝑝‘1) ∈ ℝ) |
| 20 | 19, 5 | eleq2s 2847 | . . . . 5 ⊢ (𝑝 ∈ 𝑃 → (𝑝‘1) ∈ ℝ) |
| 21 | 20 | adantl 481 | . . . 4 ⊢ (((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ (𝑋‘1) ≠ (𝑌‘1)) ∧ 𝑝 ∈ 𝑃) → (𝑝‘1) ∈ ℝ) |
| 22 | 9, 11 | elmap 8847 | . . . . . . . 8 ⊢ (𝑋 ∈ (ℝ ↑m 𝐼) ↔ 𝑋:𝐼⟶ℝ) |
| 23 | id 22 | . . . . . . . . 9 ⊢ (𝑋:𝐼⟶ℝ → 𝑋:𝐼⟶ℝ) | |
| 24 | 16 | a1i 11 | . . . . . . . . 9 ⊢ (𝑋:𝐼⟶ℝ → 1 ∈ 𝐼) |
| 25 | 23, 24 | ffvelcdmd 7060 | . . . . . . . 8 ⊢ (𝑋:𝐼⟶ℝ → (𝑋‘1) ∈ ℝ) |
| 26 | 22, 25 | sylbi 217 | . . . . . . 7 ⊢ (𝑋 ∈ (ℝ ↑m 𝐼) → (𝑋‘1) ∈ ℝ) |
| 27 | 26, 5 | eleq2s 2847 | . . . . . 6 ⊢ (𝑋 ∈ 𝑃 → (𝑋‘1) ∈ ℝ) |
| 28 | 27 | 3ad2ant1 1133 | . . . . 5 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ (𝑋‘1) ≠ (𝑌‘1)) → (𝑋‘1) ∈ ℝ) |
| 29 | 28 | adantr 480 | . . . 4 ⊢ (((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ (𝑋‘1) ≠ (𝑌‘1)) ∧ 𝑝 ∈ 𝑃) → (𝑋‘1) ∈ ℝ) |
| 30 | 9, 11 | elmap 8847 | . . . . . . . 8 ⊢ (𝑌 ∈ (ℝ ↑m 𝐼) ↔ 𝑌:𝐼⟶ℝ) |
| 31 | id 22 | . . . . . . . . 9 ⊢ (𝑌:𝐼⟶ℝ → 𝑌:𝐼⟶ℝ) | |
| 32 | 16 | a1i 11 | . . . . . . . . 9 ⊢ (𝑌:𝐼⟶ℝ → 1 ∈ 𝐼) |
| 33 | 31, 32 | ffvelcdmd 7060 | . . . . . . . 8 ⊢ (𝑌:𝐼⟶ℝ → (𝑌‘1) ∈ ℝ) |
| 34 | 30, 33 | sylbi 217 | . . . . . . 7 ⊢ (𝑌 ∈ (ℝ ↑m 𝐼) → (𝑌‘1) ∈ ℝ) |
| 35 | 34, 5 | eleq2s 2847 | . . . . . 6 ⊢ (𝑌 ∈ 𝑃 → (𝑌‘1) ∈ ℝ) |
| 36 | 35 | 3ad2ant2 1134 | . . . . 5 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ (𝑋‘1) ≠ (𝑌‘1)) → (𝑌‘1) ∈ ℝ) |
| 37 | 36 | adantr 480 | . . . 4 ⊢ (((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ (𝑋‘1) ≠ (𝑌‘1)) ∧ 𝑝 ∈ 𝑃) → (𝑌‘1) ∈ ℝ) |
| 38 | simpl3 1194 | . . . 4 ⊢ (((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ (𝑋‘1) ≠ (𝑌‘1)) ∧ 𝑝 ∈ 𝑃) → (𝑋‘1) ≠ (𝑌‘1)) | |
| 39 | 2ex 12270 | . . . . . . . . . . 11 ⊢ 2 ∈ V | |
| 40 | 39 | prid2 4730 | . . . . . . . . . 10 ⊢ 2 ∈ {1, 2} |
| 41 | 40, 3 | eleqtrri 2828 | . . . . . . . . 9 ⊢ 2 ∈ 𝐼 |
| 42 | 41 | a1i 11 | . . . . . . . 8 ⊢ (𝑝:𝐼⟶ℝ → 2 ∈ 𝐼) |
| 43 | 13, 42 | ffvelcdmd 7060 | . . . . . . 7 ⊢ (𝑝:𝐼⟶ℝ → (𝑝‘2) ∈ ℝ) |
| 44 | 12, 43 | sylbi 217 | . . . . . 6 ⊢ (𝑝 ∈ (ℝ ↑m 𝐼) → (𝑝‘2) ∈ ℝ) |
| 45 | 44, 5 | eleq2s 2847 | . . . . 5 ⊢ (𝑝 ∈ 𝑃 → (𝑝‘2) ∈ ℝ) |
| 46 | 45 | adantl 481 | . . . 4 ⊢ (((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ (𝑋‘1) ≠ (𝑌‘1)) ∧ 𝑝 ∈ 𝑃) → (𝑝‘2) ∈ ℝ) |
| 47 | 41 | a1i 11 | . . . . . . . . 9 ⊢ (𝑋:𝐼⟶ℝ → 2 ∈ 𝐼) |
| 48 | 23, 47 | ffvelcdmd 7060 | . . . . . . . 8 ⊢ (𝑋:𝐼⟶ℝ → (𝑋‘2) ∈ ℝ) |
| 49 | 22, 48 | sylbi 217 | . . . . . . 7 ⊢ (𝑋 ∈ (ℝ ↑m 𝐼) → (𝑋‘2) ∈ ℝ) |
| 50 | 49, 5 | eleq2s 2847 | . . . . . 6 ⊢ (𝑋 ∈ 𝑃 → (𝑋‘2) ∈ ℝ) |
| 51 | 50 | 3ad2ant1 1133 | . . . . 5 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ (𝑋‘1) ≠ (𝑌‘1)) → (𝑋‘2) ∈ ℝ) |
| 52 | 51 | adantr 480 | . . . 4 ⊢ (((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ (𝑋‘1) ≠ (𝑌‘1)) ∧ 𝑝 ∈ 𝑃) → (𝑋‘2) ∈ ℝ) |
| 53 | 5 | eleq2i 2821 | . . . . . . . 8 ⊢ (𝑌 ∈ 𝑃 ↔ 𝑌 ∈ (ℝ ↑m 𝐼)) |
| 54 | 53, 30 | bitri 275 | . . . . . . 7 ⊢ (𝑌 ∈ 𝑃 ↔ 𝑌:𝐼⟶ℝ) |
| 55 | 41 | a1i 11 | . . . . . . . 8 ⊢ (𝑌:𝐼⟶ℝ → 2 ∈ 𝐼) |
| 56 | 31, 55 | ffvelcdmd 7060 | . . . . . . 7 ⊢ (𝑌:𝐼⟶ℝ → (𝑌‘2) ∈ ℝ) |
| 57 | 54, 56 | sylbi 217 | . . . . . 6 ⊢ (𝑌 ∈ 𝑃 → (𝑌‘2) ∈ ℝ) |
| 58 | 57 | 3ad2ant2 1134 | . . . . 5 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ (𝑋‘1) ≠ (𝑌‘1)) → (𝑌‘2) ∈ ℝ) |
| 59 | 58 | adantr 480 | . . . 4 ⊢ (((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ (𝑋‘1) ≠ (𝑌‘1)) ∧ 𝑝 ∈ 𝑃) → (𝑌‘2) ∈ ℝ) |
| 60 | rrx2linesl.s | . . . 4 ⊢ 𝑆 = (((𝑌‘2) − (𝑋‘2)) / ((𝑌‘1) − (𝑋‘1))) | |
| 61 | 21, 29, 37, 38, 46, 52, 59, 60 | affinecomb1 48695 | . . 3 ⊢ (((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ (𝑋‘1) ≠ (𝑌‘1)) ∧ 𝑝 ∈ 𝑃) → (∃𝑡 ∈ ℝ ((𝑝‘1) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2)))) ↔ (𝑝‘2) = ((𝑆 · ((𝑝‘1) − (𝑋‘1))) + (𝑋‘2)))) |
| 62 | 61 | rabbidva 3415 | . 2 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ (𝑋‘1) ≠ (𝑌‘1)) → {𝑝 ∈ 𝑃 ∣ ∃𝑡 ∈ ℝ ((𝑝‘1) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2))))} = {𝑝 ∈ 𝑃 ∣ (𝑝‘2) = ((𝑆 · ((𝑝‘1) − (𝑋‘1))) + (𝑋‘2))}) |
| 63 | 8, 62 | eqtrd 2765 | 1 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ (𝑋‘1) ≠ (𝑌‘1)) → (𝑋𝐿𝑌) = {𝑝 ∈ 𝑃 ∣ (𝑝‘2) = ((𝑆 · ((𝑝‘1) − (𝑋‘1))) + (𝑋‘2))}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ∃wrex 3054 {crab 3408 Vcvv 3450 {cpr 4594 ⟶wf 6510 ‘cfv 6514 (class class class)co 7390 ↑m cmap 8802 ℝcr 11074 1c1 11076 + caddc 11078 · cmul 11080 − cmin 11412 / cdiv 11842 2c2 12248 ℝ^crrx 25290 LineMcline 48720 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 ax-addf 11154 ax-mulf 11155 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-of 7656 df-om 7846 df-1st 7971 df-2nd 7972 df-supp 8143 df-tpos 8208 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-2o 8438 df-er 8674 df-map 8804 df-ixp 8874 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-fsupp 9320 df-sup 9400 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-z 12537 df-dec 12657 df-uz 12801 df-rp 12959 df-fz 13476 df-seq 13974 df-exp 14034 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-struct 17124 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-plusg 17240 df-mulr 17241 df-starv 17242 df-sca 17243 df-vsca 17244 df-ip 17245 df-tset 17246 df-ple 17247 df-ds 17249 df-unif 17250 df-hom 17251 df-cco 17252 df-0g 17411 df-prds 17417 df-pws 17419 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-mhm 18717 df-grp 18875 df-minusg 18876 df-sbg 18877 df-subg 19062 df-ghm 19152 df-cmn 19719 df-abl 19720 df-mgp 20057 df-rng 20069 df-ur 20098 df-ring 20151 df-cring 20152 df-oppr 20253 df-dvdsr 20273 df-unit 20274 df-invr 20304 df-dvr 20317 df-rhm 20388 df-subrng 20462 df-subrg 20486 df-drng 20647 df-field 20648 df-staf 20755 df-srng 20756 df-lmod 20775 df-lss 20845 df-sra 21087 df-rgmod 21088 df-cnfld 21272 df-refld 21521 df-dsmm 21648 df-frlm 21663 df-tng 24479 df-tcph 25076 df-rrx 25292 df-line 48722 |
| This theorem is referenced by: line2 48745 |
| Copyright terms: Public domain | W3C validator |