Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > decma2c | Structured version Visualization version GIF version |
Description: Perform a multiply-add of two numerals 𝑀 and 𝑁 against a fixed multiplier 𝑃 (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by AV, 6-Sep-2021.) |
Ref | Expression |
---|---|
decma.a | ⊢ 𝐴 ∈ ℕ0 |
decma.b | ⊢ 𝐵 ∈ ℕ0 |
decma.c | ⊢ 𝐶 ∈ ℕ0 |
decma.d | ⊢ 𝐷 ∈ ℕ0 |
decma.m | ⊢ 𝑀 = ;𝐴𝐵 |
decma.n | ⊢ 𝑁 = ;𝐶𝐷 |
decma2c.p | ⊢ 𝑃 ∈ ℕ0 |
decma2c.f | ⊢ 𝐹 ∈ ℕ0 |
decma2c.g | ⊢ 𝐺 ∈ ℕ0 |
decma2c.e | ⊢ ((𝑃 · 𝐴) + (𝐶 + 𝐺)) = 𝐸 |
decma2c.2 | ⊢ ((𝑃 · 𝐵) + 𝐷) = ;𝐺𝐹 |
Ref | Expression |
---|---|
decma2c | ⊢ ((𝑃 · 𝑀) + 𝑁) = ;𝐸𝐹 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 10nn0 12359 | . . 3 ⊢ ;10 ∈ ℕ0 | |
2 | decma.a | . . 3 ⊢ 𝐴 ∈ ℕ0 | |
3 | decma.b | . . 3 ⊢ 𝐵 ∈ ℕ0 | |
4 | decma.c | . . 3 ⊢ 𝐶 ∈ ℕ0 | |
5 | decma.d | . . 3 ⊢ 𝐷 ∈ ℕ0 | |
6 | decma.m | . . . 4 ⊢ 𝑀 = ;𝐴𝐵 | |
7 | dfdec10 12344 | . . . 4 ⊢ ;𝐴𝐵 = ((;10 · 𝐴) + 𝐵) | |
8 | 6, 7 | eqtri 2767 | . . 3 ⊢ 𝑀 = ((;10 · 𝐴) + 𝐵) |
9 | decma.n | . . . 4 ⊢ 𝑁 = ;𝐶𝐷 | |
10 | dfdec10 12344 | . . . 4 ⊢ ;𝐶𝐷 = ((;10 · 𝐶) + 𝐷) | |
11 | 9, 10 | eqtri 2767 | . . 3 ⊢ 𝑁 = ((;10 · 𝐶) + 𝐷) |
12 | decma2c.p | . . 3 ⊢ 𝑃 ∈ ℕ0 | |
13 | decma2c.f | . . 3 ⊢ 𝐹 ∈ ℕ0 | |
14 | decma2c.g | . . 3 ⊢ 𝐺 ∈ ℕ0 | |
15 | decma2c.e | . . 3 ⊢ ((𝑃 · 𝐴) + (𝐶 + 𝐺)) = 𝐸 | |
16 | decma2c.2 | . . . 4 ⊢ ((𝑃 · 𝐵) + 𝐷) = ;𝐺𝐹 | |
17 | dfdec10 12344 | . . . 4 ⊢ ;𝐺𝐹 = ((;10 · 𝐺) + 𝐹) | |
18 | 16, 17 | eqtri 2767 | . . 3 ⊢ ((𝑃 · 𝐵) + 𝐷) = ((;10 · 𝐺) + 𝐹) |
19 | 1, 2, 3, 4, 5, 8, 11, 12, 13, 14, 15, 18 | numma2c 12387 | . 2 ⊢ ((𝑃 · 𝑀) + 𝑁) = ((;10 · 𝐸) + 𝐹) |
20 | dfdec10 12344 | . 2 ⊢ ;𝐸𝐹 = ((;10 · 𝐸) + 𝐹) | |
21 | 19, 20 | eqtr4i 2770 | 1 ⊢ ((𝑃 · 𝑀) + 𝑁) = ;𝐸𝐹 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1543 ∈ wcel 2112 (class class class)co 7252 0cc0 10777 1c1 10778 + caddc 10780 · cmul 10782 ℕ0cn0 12138 ;cdc 12341 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2160 ax-12 2177 ax-ext 2710 ax-sep 5216 ax-nul 5223 ax-pow 5282 ax-pr 5346 ax-un 7563 ax-resscn 10834 ax-1cn 10835 ax-icn 10836 ax-addcl 10837 ax-addrcl 10838 ax-mulcl 10839 ax-mulrcl 10840 ax-mulcom 10841 ax-addass 10842 ax-mulass 10843 ax-distr 10844 ax-i2m1 10845 ax-1ne0 10846 ax-1rid 10847 ax-rnegex 10848 ax-rrecex 10849 ax-cnre 10850 ax-pre-lttri 10851 ax-pre-lttrn 10852 ax-pre-ltadd 10853 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2073 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2818 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3071 df-rab 3073 df-v 3425 df-sbc 3713 df-csb 3830 df-dif 3887 df-un 3889 df-in 3891 df-ss 3901 df-pss 3903 df-nul 4255 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5153 df-tr 5186 df-id 5479 df-eprel 5485 df-po 5493 df-so 5494 df-fr 5534 df-we 5536 df-xp 5585 df-rel 5586 df-cnv 5587 df-co 5588 df-dm 5589 df-rn 5590 df-res 5591 df-ima 5592 df-pred 6189 df-ord 6251 df-on 6252 df-lim 6253 df-suc 6254 df-iota 6373 df-fun 6417 df-fn 6418 df-f 6419 df-f1 6420 df-fo 6421 df-f1o 6422 df-fv 6423 df-riota 7209 df-ov 7255 df-oprab 7256 df-mpo 7257 df-om 7685 df-wrecs 8089 df-recs 8150 df-rdg 8188 df-er 8433 df-en 8669 df-dom 8670 df-sdom 8671 df-pnf 10917 df-mnf 10918 df-ltxr 10920 df-sub 11112 df-nn 11879 df-2 11941 df-3 11942 df-4 11943 df-5 11944 df-6 11945 df-7 11946 df-8 11947 df-9 11948 df-n0 12139 df-dec 12342 |
This theorem is referenced by: 2exp16 16695 43prm 16726 83prm 16727 139prm 16728 163prm 16729 317prm 16730 631prm 16731 1259lem1 16735 1259lem2 16736 1259lem3 16737 1259lem4 16738 1259lem5 16739 2503lem1 16741 2503lem2 16742 2503lem3 16743 2503prm 16744 4001lem1 16745 4001lem2 16746 4001lem3 16747 4001lem4 16748 4001prm 16749 log2ublem3 25978 log2ub 25979 3exp7 39968 3lexlogpow5ineq1 39969 3lexlogpow5ineq5 39975 aks4d1p1 39990 235t711 40212 fmtno4nprmfac193 44887 139prmALT 44909 127prm 44912 m11nprm 44914 |
Copyright terms: Public domain | W3C validator |