MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  decma2c Structured version   Visualization version   GIF version

Theorem decma2c 11965
Description: Perform a multiply-add of two numerals 𝑀 and 𝑁 against a fixed multiplier 𝑃 (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by AV, 6-Sep-2021.)
Hypotheses
Ref Expression
decma.a 𝐴 ∈ ℕ0
decma.b 𝐵 ∈ ℕ0
decma.c 𝐶 ∈ ℕ0
decma.d 𝐷 ∈ ℕ0
decma.m 𝑀 = 𝐴𝐵
decma.n 𝑁 = 𝐶𝐷
decma2c.p 𝑃 ∈ ℕ0
decma2c.f 𝐹 ∈ ℕ0
decma2c.g 𝐺 ∈ ℕ0
decma2c.e ((𝑃 · 𝐴) + (𝐶 + 𝐺)) = 𝐸
decma2c.2 ((𝑃 · 𝐵) + 𝐷) = 𝐺𝐹
Assertion
Ref Expression
decma2c ((𝑃 · 𝑀) + 𝑁) = 𝐸𝐹

Proof of Theorem decma2c
StepHypRef Expression
1 10nn0 11929 . . 3 10 ∈ ℕ0
2 decma.a . . 3 𝐴 ∈ ℕ0
3 decma.b . . 3 𝐵 ∈ ℕ0
4 decma.c . . 3 𝐶 ∈ ℕ0
5 decma.d . . 3 𝐷 ∈ ℕ0
6 decma.m . . . 4 𝑀 = 𝐴𝐵
7 dfdec10 11914 . . . 4 𝐴𝐵 = ((10 · 𝐴) + 𝐵)
86, 7eqtri 2802 . . 3 𝑀 = ((10 · 𝐴) + 𝐵)
9 decma.n . . . 4 𝑁 = 𝐶𝐷
10 dfdec10 11914 . . . 4 𝐶𝐷 = ((10 · 𝐶) + 𝐷)
119, 10eqtri 2802 . . 3 𝑁 = ((10 · 𝐶) + 𝐷)
12 decma2c.p . . 3 𝑃 ∈ ℕ0
13 decma2c.f . . 3 𝐹 ∈ ℕ0
14 decma2c.g . . 3 𝐺 ∈ ℕ0
15 decma2c.e . . 3 ((𝑃 · 𝐴) + (𝐶 + 𝐺)) = 𝐸
16 decma2c.2 . . . 4 ((𝑃 · 𝐵) + 𝐷) = 𝐺𝐹
17 dfdec10 11914 . . . 4 𝐺𝐹 = ((10 · 𝐺) + 𝐹)
1816, 17eqtri 2802 . . 3 ((𝑃 · 𝐵) + 𝐷) = ((10 · 𝐺) + 𝐹)
191, 2, 3, 4, 5, 8, 11, 12, 13, 14, 15, 18numma2c 11958 . 2 ((𝑃 · 𝑀) + 𝑁) = ((10 · 𝐸) + 𝐹)
20 dfdec10 11914 . 2 𝐸𝐹 = ((10 · 𝐸) + 𝐹)
2119, 20eqtr4i 2805 1 ((𝑃 · 𝑀) + 𝑁) = 𝐸𝐹
Colors of variables: wff setvar class
Syntax hints:   = wceq 1507  wcel 2050  (class class class)co 6976  0cc0 10335  1c1 10336   + caddc 10338   · cmul 10340  0cn0 11707  cdc 11911
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2750  ax-sep 5060  ax-nul 5067  ax-pow 5119  ax-pr 5186  ax-un 7279  ax-resscn 10392  ax-1cn 10393  ax-icn 10394  ax-addcl 10395  ax-addrcl 10396  ax-mulcl 10397  ax-mulrcl 10398  ax-mulcom 10399  ax-addass 10400  ax-mulass 10401  ax-distr 10402  ax-i2m1 10403  ax-1ne0 10404  ax-1rid 10405  ax-rnegex 10406  ax-rrecex 10407  ax-cnre 10408  ax-pre-lttri 10409  ax-pre-lttrn 10410  ax-pre-ltadd 10411
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-ne 2968  df-nel 3074  df-ral 3093  df-rex 3094  df-reu 3095  df-rab 3097  df-v 3417  df-sbc 3682  df-csb 3787  df-dif 3832  df-un 3834  df-in 3836  df-ss 3843  df-pss 3845  df-nul 4179  df-if 4351  df-pw 4424  df-sn 4442  df-pr 4444  df-tp 4446  df-op 4448  df-uni 4713  df-iun 4794  df-br 4930  df-opab 4992  df-mpt 5009  df-tr 5031  df-id 5312  df-eprel 5317  df-po 5326  df-so 5327  df-fr 5366  df-we 5368  df-xp 5413  df-rel 5414  df-cnv 5415  df-co 5416  df-dm 5417  df-rn 5418  df-res 5419  df-ima 5420  df-pred 5986  df-ord 6032  df-on 6033  df-lim 6034  df-suc 6035  df-iota 6152  df-fun 6190  df-fn 6191  df-f 6192  df-f1 6193  df-fo 6194  df-f1o 6195  df-fv 6196  df-riota 6937  df-ov 6979  df-oprab 6980  df-mpo 6981  df-om 7397  df-wrecs 7750  df-recs 7812  df-rdg 7850  df-er 8089  df-en 8307  df-dom 8308  df-sdom 8309  df-pnf 10476  df-mnf 10477  df-ltxr 10479  df-sub 10672  df-nn 11440  df-2 11503  df-3 11504  df-4 11505  df-5 11506  df-6 11507  df-7 11508  df-8 11509  df-9 11510  df-n0 11708  df-dec 11912
This theorem is referenced by:  2exp16  16280  43prm  16311  83prm  16312  139prm  16313  163prm  16314  317prm  16315  631prm  16316  1259lem1  16320  1259lem2  16321  1259lem3  16322  1259lem4  16323  1259lem5  16324  2503lem1  16326  2503lem2  16327  2503lem3  16328  2503prm  16329  4001lem1  16330  4001lem2  16331  4001lem3  16332  4001lem4  16333  4001prm  16334  log2ublem3  25228  log2ub  25229  235t711  38615  fmtno4nprmfac193  43110  139prmALT  43133  127prm  43137  m11nprm  43140
  Copyright terms: Public domain W3C validator