![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > djh01 | Structured version Visualization version GIF version |
Description: Closed subspace join with zero. (Contributed by NM, 9-Aug-2014.) |
Ref | Expression |
---|---|
djh01.h | ⊢ 𝐻 = (LHyp‘𝐾) |
djh01.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
djh01.o | ⊢ 0 = (0g‘𝑈) |
djh01.i | ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) |
djh01.j | ⊢ ∨ = ((joinH‘𝐾)‘𝑊) |
djh01.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
djh01.x | ⊢ (𝜑 → 𝑋 ∈ ran 𝐼) |
Ref | Expression |
---|---|
djh01 | ⊢ (𝜑 → (𝑋 ∨ { 0 }) = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2772 | . . 3 ⊢ (join‘𝐾) = (join‘𝐾) | |
2 | djh01.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
3 | djh01.i | . . 3 ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) | |
4 | djh01.j | . . 3 ⊢ ∨ = ((joinH‘𝐾)‘𝑊) | |
5 | djh01.k | . . 3 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
6 | djh01.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ ran 𝐼) | |
7 | djh01.u | . . . . 5 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
8 | djh01.o | . . . . 5 ⊢ 0 = (0g‘𝑈) | |
9 | 2, 3, 7, 8 | dih0rn 37894 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → { 0 } ∈ ran 𝐼) |
10 | 5, 9 | syl 17 | . . 3 ⊢ (𝜑 → { 0 } ∈ ran 𝐼) |
11 | 1, 2, 3, 4, 5, 6, 10 | djhjlj 38013 | . 2 ⊢ (𝜑 → (𝑋 ∨ { 0 }) = (𝐼‘((◡𝐼‘𝑋)(join‘𝐾)(◡𝐼‘{ 0 })))) |
12 | eqid 2772 | . . . . . . 7 ⊢ (0.‘𝐾) = (0.‘𝐾) | |
13 | 2, 12, 3, 7, 8 | dih0cnv 37893 | . . . . . 6 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (◡𝐼‘{ 0 }) = (0.‘𝐾)) |
14 | 5, 13 | syl 17 | . . . . 5 ⊢ (𝜑 → (◡𝐼‘{ 0 }) = (0.‘𝐾)) |
15 | 14 | oveq2d 6990 | . . . 4 ⊢ (𝜑 → ((◡𝐼‘𝑋)(join‘𝐾)(◡𝐼‘{ 0 })) = ((◡𝐼‘𝑋)(join‘𝐾)(0.‘𝐾))) |
16 | 5 | simpld 487 | . . . . . 6 ⊢ (𝜑 → 𝐾 ∈ HL) |
17 | hlol 35971 | . . . . . 6 ⊢ (𝐾 ∈ HL → 𝐾 ∈ OL) | |
18 | 16, 17 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ OL) |
19 | eqid 2772 | . . . . . . 7 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
20 | 19, 2, 3 | dihcnvcl 37881 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ ran 𝐼) → (◡𝐼‘𝑋) ∈ (Base‘𝐾)) |
21 | 5, 6, 20 | syl2anc 576 | . . . . 5 ⊢ (𝜑 → (◡𝐼‘𝑋) ∈ (Base‘𝐾)) |
22 | 19, 1, 12 | olj01 35835 | . . . . 5 ⊢ ((𝐾 ∈ OL ∧ (◡𝐼‘𝑋) ∈ (Base‘𝐾)) → ((◡𝐼‘𝑋)(join‘𝐾)(0.‘𝐾)) = (◡𝐼‘𝑋)) |
23 | 18, 21, 22 | syl2anc 576 | . . . 4 ⊢ (𝜑 → ((◡𝐼‘𝑋)(join‘𝐾)(0.‘𝐾)) = (◡𝐼‘𝑋)) |
24 | 15, 23 | eqtrd 2808 | . . 3 ⊢ (𝜑 → ((◡𝐼‘𝑋)(join‘𝐾)(◡𝐼‘{ 0 })) = (◡𝐼‘𝑋)) |
25 | 24 | fveq2d 6500 | . 2 ⊢ (𝜑 → (𝐼‘((◡𝐼‘𝑋)(join‘𝐾)(◡𝐼‘{ 0 }))) = (𝐼‘(◡𝐼‘𝑋))) |
26 | 2, 3 | dihcnvid2 37883 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ ran 𝐼) → (𝐼‘(◡𝐼‘𝑋)) = 𝑋) |
27 | 5, 6, 26 | syl2anc 576 | . 2 ⊢ (𝜑 → (𝐼‘(◡𝐼‘𝑋)) = 𝑋) |
28 | 11, 25, 27 | 3eqtrd 2812 | 1 ⊢ (𝜑 → (𝑋 ∨ { 0 }) = 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 = wceq 1507 ∈ wcel 2050 {csn 4435 ◡ccnv 5402 ran crn 5404 ‘cfv 6185 (class class class)co 6974 Basecbs 16337 0gc0g 16567 joincjn 17424 0.cp0 17517 OLcol 35784 HLchlt 35960 LHypclh 36594 DVecHcdvh 37688 DIsoHcdih 37838 joinHcdjh 38004 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2744 ax-rep 5045 ax-sep 5056 ax-nul 5063 ax-pow 5115 ax-pr 5182 ax-un 7277 ax-cnex 10389 ax-resscn 10390 ax-1cn 10391 ax-icn 10392 ax-addcl 10393 ax-addrcl 10394 ax-mulcl 10395 ax-mulrcl 10396 ax-mulcom 10397 ax-addass 10398 ax-mulass 10399 ax-distr 10400 ax-i2m1 10401 ax-1ne0 10402 ax-1rid 10403 ax-rnegex 10404 ax-rrecex 10405 ax-cnre 10406 ax-pre-lttri 10407 ax-pre-lttrn 10408 ax-pre-ltadd 10409 ax-pre-mulgt0 10410 ax-riotaBAD 35563 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-fal 1520 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2753 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ne 2962 df-nel 3068 df-ral 3087 df-rex 3088 df-reu 3089 df-rmo 3090 df-rab 3091 df-v 3411 df-sbc 3676 df-csb 3781 df-dif 3826 df-un 3828 df-in 3830 df-ss 3837 df-pss 3839 df-nul 4173 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-tp 4440 df-op 4442 df-uni 4709 df-int 4746 df-iun 4790 df-iin 4791 df-br 4926 df-opab 4988 df-mpt 5005 df-tr 5027 df-id 5308 df-eprel 5313 df-po 5322 df-so 5323 df-fr 5362 df-we 5364 df-xp 5409 df-rel 5410 df-cnv 5411 df-co 5412 df-dm 5413 df-rn 5414 df-res 5415 df-ima 5416 df-pred 5983 df-ord 6029 df-on 6030 df-lim 6031 df-suc 6032 df-iota 6149 df-fun 6187 df-fn 6188 df-f 6189 df-f1 6190 df-fo 6191 df-f1o 6192 df-fv 6193 df-riota 6935 df-ov 6977 df-oprab 6978 df-mpo 6979 df-om 7395 df-1st 7499 df-2nd 7500 df-tpos 7693 df-undef 7740 df-wrecs 7748 df-recs 7810 df-rdg 7848 df-1o 7903 df-oadd 7907 df-er 8087 df-map 8206 df-en 8305 df-dom 8306 df-sdom 8307 df-fin 8308 df-pnf 10474 df-mnf 10475 df-xr 10476 df-ltxr 10477 df-le 10478 df-sub 10670 df-neg 10671 df-nn 11438 df-2 11501 df-3 11502 df-4 11503 df-5 11504 df-6 11505 df-n0 11706 df-z 11792 df-uz 12057 df-fz 12707 df-struct 16339 df-ndx 16340 df-slot 16341 df-base 16343 df-sets 16344 df-ress 16345 df-plusg 16432 df-mulr 16433 df-sca 16435 df-vsca 16436 df-0g 16569 df-proset 17408 df-poset 17426 df-plt 17438 df-lub 17454 df-glb 17455 df-join 17456 df-meet 17457 df-p0 17519 df-p1 17520 df-lat 17526 df-clat 17588 df-mgm 17722 df-sgrp 17764 df-mnd 17775 df-submnd 17816 df-grp 17906 df-minusg 17907 df-sbg 17908 df-subg 18072 df-cntz 18230 df-lsm 18534 df-cmn 18680 df-abl 18681 df-mgp 18975 df-ur 18987 df-ring 19034 df-oppr 19108 df-dvdsr 19126 df-unit 19127 df-invr 19157 df-dvr 19168 df-drng 19239 df-lmod 19370 df-lss 19438 df-lsp 19478 df-lvec 19609 df-lsatoms 35586 df-oposet 35786 df-ol 35788 df-oml 35789 df-covers 35876 df-ats 35877 df-atl 35908 df-cvlat 35932 df-hlat 35961 df-llines 36108 df-lplanes 36109 df-lvols 36110 df-lines 36111 df-psubsp 36113 df-pmap 36114 df-padd 36406 df-lhyp 36598 df-laut 36599 df-ldil 36714 df-ltrn 36715 df-trl 36769 df-tendo 37365 df-edring 37367 df-disoa 37639 df-dvech 37689 df-dib 37749 df-dic 37783 df-dih 37839 df-doch 37958 df-djh 38005 |
This theorem is referenced by: djh02 38023 dihjat1 38039 |
Copyright terms: Public domain | W3C validator |