Step | Hyp | Ref
| Expression |
1 | | oveq2 7263 |
. . . . 5
⊢ (𝑥 = ∅ → (𝑂 Σg
𝑥) = (𝑂 Σg
∅)) |
2 | | fveq2 6756 |
. . . . . . 7
⊢ (𝑥 = ∅ →
(reverse‘𝑥) =
(reverse‘∅)) |
3 | | rev0 14405 |
. . . . . . 7
⊢
(reverse‘∅) = ∅ |
4 | 2, 3 | eqtrdi 2795 |
. . . . . 6
⊢ (𝑥 = ∅ →
(reverse‘𝑥) =
∅) |
5 | 4 | oveq2d 7271 |
. . . . 5
⊢ (𝑥 = ∅ → (𝑀 Σg
(reverse‘𝑥)) = (𝑀 Σg
∅)) |
6 | 1, 5 | eqeq12d 2754 |
. . . 4
⊢ (𝑥 = ∅ → ((𝑂 Σg
𝑥) = (𝑀 Σg
(reverse‘𝑥)) ↔
(𝑂
Σg ∅) = (𝑀 Σg
∅))) |
7 | 6 | imbi2d 340 |
. . 3
⊢ (𝑥 = ∅ → ((𝑀 ∈ Mnd → (𝑂 Σg
𝑥) = (𝑀 Σg
(reverse‘𝑥))) ↔
(𝑀 ∈ Mnd → (𝑂 Σg
∅) = (𝑀
Σg ∅)))) |
8 | | oveq2 7263 |
. . . . 5
⊢ (𝑥 = 𝑦 → (𝑂 Σg 𝑥) = (𝑂 Σg 𝑦)) |
9 | | fveq2 6756 |
. . . . . 6
⊢ (𝑥 = 𝑦 → (reverse‘𝑥) = (reverse‘𝑦)) |
10 | 9 | oveq2d 7271 |
. . . . 5
⊢ (𝑥 = 𝑦 → (𝑀 Σg
(reverse‘𝑥)) = (𝑀 Σg
(reverse‘𝑦))) |
11 | 8, 10 | eqeq12d 2754 |
. . . 4
⊢ (𝑥 = 𝑦 → ((𝑂 Σg 𝑥) = (𝑀 Σg
(reverse‘𝑥)) ↔
(𝑂
Σg 𝑦) = (𝑀 Σg
(reverse‘𝑦)))) |
12 | 11 | imbi2d 340 |
. . 3
⊢ (𝑥 = 𝑦 → ((𝑀 ∈ Mnd → (𝑂 Σg 𝑥) = (𝑀 Σg
(reverse‘𝑥))) ↔
(𝑀 ∈ Mnd → (𝑂 Σg
𝑦) = (𝑀 Σg
(reverse‘𝑦))))) |
13 | | oveq2 7263 |
. . . . 5
⊢ (𝑥 = (𝑦 ++ 〈“𝑧”〉) → (𝑂 Σg 𝑥) = (𝑂 Σg (𝑦 ++ 〈“𝑧”〉))) |
14 | | fveq2 6756 |
. . . . . 6
⊢ (𝑥 = (𝑦 ++ 〈“𝑧”〉) → (reverse‘𝑥) = (reverse‘(𝑦 ++ 〈“𝑧”〉))) |
15 | 14 | oveq2d 7271 |
. . . . 5
⊢ (𝑥 = (𝑦 ++ 〈“𝑧”〉) → (𝑀 Σg
(reverse‘𝑥)) = (𝑀 Σg
(reverse‘(𝑦 ++
〈“𝑧”〉)))) |
16 | 13, 15 | eqeq12d 2754 |
. . . 4
⊢ (𝑥 = (𝑦 ++ 〈“𝑧”〉) → ((𝑂 Σg 𝑥) = (𝑀 Σg
(reverse‘𝑥)) ↔
(𝑂
Σg (𝑦 ++ 〈“𝑧”〉)) = (𝑀 Σg
(reverse‘(𝑦 ++
〈“𝑧”〉))))) |
17 | 16 | imbi2d 340 |
. . 3
⊢ (𝑥 = (𝑦 ++ 〈“𝑧”〉) → ((𝑀 ∈ Mnd → (𝑂 Σg 𝑥) = (𝑀 Σg
(reverse‘𝑥))) ↔
(𝑀 ∈ Mnd → (𝑂 Σg
(𝑦 ++ 〈“𝑧”〉)) = (𝑀 Σg
(reverse‘(𝑦 ++
〈“𝑧”〉)))))) |
18 | | oveq2 7263 |
. . . . 5
⊢ (𝑥 = 𝑊 → (𝑂 Σg 𝑥) = (𝑂 Σg 𝑊)) |
19 | | fveq2 6756 |
. . . . . 6
⊢ (𝑥 = 𝑊 → (reverse‘𝑥) = (reverse‘𝑊)) |
20 | 19 | oveq2d 7271 |
. . . . 5
⊢ (𝑥 = 𝑊 → (𝑀 Σg
(reverse‘𝑥)) = (𝑀 Σg
(reverse‘𝑊))) |
21 | 18, 20 | eqeq12d 2754 |
. . . 4
⊢ (𝑥 = 𝑊 → ((𝑂 Σg 𝑥) = (𝑀 Σg
(reverse‘𝑥)) ↔
(𝑂
Σg 𝑊) = (𝑀 Σg
(reverse‘𝑊)))) |
22 | 21 | imbi2d 340 |
. . 3
⊢ (𝑥 = 𝑊 → ((𝑀 ∈ Mnd → (𝑂 Σg 𝑥) = (𝑀 Σg
(reverse‘𝑥))) ↔
(𝑀 ∈ Mnd → (𝑂 Σg
𝑊) = (𝑀 Σg
(reverse‘𝑊))))) |
23 | | gsumwrev.o |
. . . . . . 7
⊢ 𝑂 =
(oppg‘𝑀) |
24 | | eqid 2738 |
. . . . . . 7
⊢
(0g‘𝑀) = (0g‘𝑀) |
25 | 23, 24 | oppgid 18878 |
. . . . . 6
⊢
(0g‘𝑀) = (0g‘𝑂) |
26 | 25 | gsum0 18283 |
. . . . 5
⊢ (𝑂 Σg
∅) = (0g‘𝑀) |
27 | 24 | gsum0 18283 |
. . . . 5
⊢ (𝑀 Σg
∅) = (0g‘𝑀) |
28 | 26, 27 | eqtr4i 2769 |
. . . 4
⊢ (𝑂 Σg
∅) = (𝑀
Σg ∅) |
29 | 28 | a1i 11 |
. . 3
⊢ (𝑀 ∈ Mnd → (𝑂 Σg
∅) = (𝑀
Σg ∅)) |
30 | | oveq2 7263 |
. . . . . 6
⊢ ((𝑂 Σg
𝑦) = (𝑀 Σg
(reverse‘𝑦)) →
(𝑧(+g‘𝑀)(𝑂 Σg 𝑦)) = (𝑧(+g‘𝑀)(𝑀 Σg
(reverse‘𝑦)))) |
31 | 23 | oppgmnd 18876 |
. . . . . . . . . 10
⊢ (𝑀 ∈ Mnd → 𝑂 ∈ Mnd) |
32 | 31 | adantr 480 |
. . . . . . . . 9
⊢ ((𝑀 ∈ Mnd ∧ (𝑦 ∈ Word 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝑂 ∈ Mnd) |
33 | | simprl 767 |
. . . . . . . . 9
⊢ ((𝑀 ∈ Mnd ∧ (𝑦 ∈ Word 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝑦 ∈ Word 𝐵) |
34 | | simprr 769 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ Mnd ∧ (𝑦 ∈ Word 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝑧 ∈ 𝐵) |
35 | 34 | s1cld 14236 |
. . . . . . . . 9
⊢ ((𝑀 ∈ Mnd ∧ (𝑦 ∈ Word 𝐵 ∧ 𝑧 ∈ 𝐵)) → 〈“𝑧”〉 ∈ Word 𝐵) |
36 | | gsumwrev.b |
. . . . . . . . . . 11
⊢ 𝐵 = (Base‘𝑀) |
37 | 23, 36 | oppgbas 18871 |
. . . . . . . . . 10
⊢ 𝐵 = (Base‘𝑂) |
38 | | eqid 2738 |
. . . . . . . . . 10
⊢
(+g‘𝑂) = (+g‘𝑂) |
39 | 37, 38 | gsumccat 18395 |
. . . . . . . . 9
⊢ ((𝑂 ∈ Mnd ∧ 𝑦 ∈ Word 𝐵 ∧ 〈“𝑧”〉 ∈ Word 𝐵) → (𝑂 Σg (𝑦 ++ 〈“𝑧”〉)) = ((𝑂 Σg
𝑦)(+g‘𝑂)(𝑂 Σg
〈“𝑧”〉))) |
40 | 32, 33, 35, 39 | syl3anc 1369 |
. . . . . . . 8
⊢ ((𝑀 ∈ Mnd ∧ (𝑦 ∈ Word 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑂 Σg (𝑦 ++ 〈“𝑧”〉)) = ((𝑂 Σg
𝑦)(+g‘𝑂)(𝑂 Σg
〈“𝑧”〉))) |
41 | 37 | gsumws1 18391 |
. . . . . . . . . . 11
⊢ (𝑧 ∈ 𝐵 → (𝑂 Σg
〈“𝑧”〉) = 𝑧) |
42 | 41 | ad2antll 725 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ Mnd ∧ (𝑦 ∈ Word 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑂 Σg
〈“𝑧”〉) = 𝑧) |
43 | 42 | oveq2d 7271 |
. . . . . . . . 9
⊢ ((𝑀 ∈ Mnd ∧ (𝑦 ∈ Word 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑂 Σg 𝑦)(+g‘𝑂)(𝑂 Σg
〈“𝑧”〉)) = ((𝑂 Σg 𝑦)(+g‘𝑂)𝑧)) |
44 | | eqid 2738 |
. . . . . . . . . 10
⊢
(+g‘𝑀) = (+g‘𝑀) |
45 | 44, 23, 38 | oppgplus 18868 |
. . . . . . . . 9
⊢ ((𝑂 Σg
𝑦)(+g‘𝑂)𝑧) = (𝑧(+g‘𝑀)(𝑂 Σg 𝑦)) |
46 | 43, 45 | eqtrdi 2795 |
. . . . . . . 8
⊢ ((𝑀 ∈ Mnd ∧ (𝑦 ∈ Word 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑂 Σg 𝑦)(+g‘𝑂)(𝑂 Σg
〈“𝑧”〉)) = (𝑧(+g‘𝑀)(𝑂 Σg 𝑦))) |
47 | 40, 46 | eqtrd 2778 |
. . . . . . 7
⊢ ((𝑀 ∈ Mnd ∧ (𝑦 ∈ Word 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑂 Σg (𝑦 ++ 〈“𝑧”〉)) = (𝑧(+g‘𝑀)(𝑂 Σg 𝑦))) |
48 | | revccat 14407 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ Word 𝐵 ∧ 〈“𝑧”〉 ∈ Word 𝐵) → (reverse‘(𝑦 ++ 〈“𝑧”〉)) =
((reverse‘〈“𝑧”〉) ++ (reverse‘𝑦))) |
49 | 33, 35, 48 | syl2anc 583 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ Mnd ∧ (𝑦 ∈ Word 𝐵 ∧ 𝑧 ∈ 𝐵)) → (reverse‘(𝑦 ++ 〈“𝑧”〉)) =
((reverse‘〈“𝑧”〉) ++ (reverse‘𝑦))) |
50 | | revs1 14406 |
. . . . . . . . . . 11
⊢
(reverse‘〈“𝑧”〉) = 〈“𝑧”〉 |
51 | 50 | oveq1i 7265 |
. . . . . . . . . 10
⊢
((reverse‘〈“𝑧”〉) ++ (reverse‘𝑦)) = (〈“𝑧”〉 ++
(reverse‘𝑦)) |
52 | 49, 51 | eqtrdi 2795 |
. . . . . . . . 9
⊢ ((𝑀 ∈ Mnd ∧ (𝑦 ∈ Word 𝐵 ∧ 𝑧 ∈ 𝐵)) → (reverse‘(𝑦 ++ 〈“𝑧”〉)) = (〈“𝑧”〉 ++
(reverse‘𝑦))) |
53 | 52 | oveq2d 7271 |
. . . . . . . 8
⊢ ((𝑀 ∈ Mnd ∧ (𝑦 ∈ Word 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑀 Σg
(reverse‘(𝑦 ++
〈“𝑧”〉))) = (𝑀 Σg
(〈“𝑧”〉 ++ (reverse‘𝑦)))) |
54 | | simpl 482 |
. . . . . . . . 9
⊢ ((𝑀 ∈ Mnd ∧ (𝑦 ∈ Word 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝑀 ∈ Mnd) |
55 | | revcl 14402 |
. . . . . . . . . 10
⊢ (𝑦 ∈ Word 𝐵 → (reverse‘𝑦) ∈ Word 𝐵) |
56 | 55 | ad2antrl 724 |
. . . . . . . . 9
⊢ ((𝑀 ∈ Mnd ∧ (𝑦 ∈ Word 𝐵 ∧ 𝑧 ∈ 𝐵)) → (reverse‘𝑦) ∈ Word 𝐵) |
57 | 36, 44 | gsumccat 18395 |
. . . . . . . . 9
⊢ ((𝑀 ∈ Mnd ∧
〈“𝑧”〉
∈ Word 𝐵 ∧
(reverse‘𝑦) ∈
Word 𝐵) → (𝑀 Σg
(〈“𝑧”〉 ++ (reverse‘𝑦))) = ((𝑀 Σg
〈“𝑧”〉)(+g‘𝑀)(𝑀 Σg
(reverse‘𝑦)))) |
58 | 54, 35, 56, 57 | syl3anc 1369 |
. . . . . . . 8
⊢ ((𝑀 ∈ Mnd ∧ (𝑦 ∈ Word 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑀 Σg
(〈“𝑧”〉 ++ (reverse‘𝑦))) = ((𝑀 Σg
〈“𝑧”〉)(+g‘𝑀)(𝑀 Σg
(reverse‘𝑦)))) |
59 | 36 | gsumws1 18391 |
. . . . . . . . . 10
⊢ (𝑧 ∈ 𝐵 → (𝑀 Σg
〈“𝑧”〉) = 𝑧) |
60 | 59 | ad2antll 725 |
. . . . . . . . 9
⊢ ((𝑀 ∈ Mnd ∧ (𝑦 ∈ Word 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑀 Σg
〈“𝑧”〉) = 𝑧) |
61 | 60 | oveq1d 7270 |
. . . . . . . 8
⊢ ((𝑀 ∈ Mnd ∧ (𝑦 ∈ Word 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑀 Σg
〈“𝑧”〉)(+g‘𝑀)(𝑀 Σg
(reverse‘𝑦))) =
(𝑧(+g‘𝑀)(𝑀 Σg
(reverse‘𝑦)))) |
62 | 53, 58, 61 | 3eqtrd 2782 |
. . . . . . 7
⊢ ((𝑀 ∈ Mnd ∧ (𝑦 ∈ Word 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑀 Σg
(reverse‘(𝑦 ++
〈“𝑧”〉))) = (𝑧(+g‘𝑀)(𝑀 Σg
(reverse‘𝑦)))) |
63 | 47, 62 | eqeq12d 2754 |
. . . . . 6
⊢ ((𝑀 ∈ Mnd ∧ (𝑦 ∈ Word 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑂 Σg (𝑦 ++ 〈“𝑧”〉)) = (𝑀 Σg
(reverse‘(𝑦 ++
〈“𝑧”〉))) ↔ (𝑧(+g‘𝑀)(𝑂 Σg 𝑦)) = (𝑧(+g‘𝑀)(𝑀 Σg
(reverse‘𝑦))))) |
64 | 30, 63 | syl5ibr 245 |
. . . . 5
⊢ ((𝑀 ∈ Mnd ∧ (𝑦 ∈ Word 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑂 Σg 𝑦) = (𝑀 Σg
(reverse‘𝑦)) →
(𝑂
Σg (𝑦 ++ 〈“𝑧”〉)) = (𝑀 Σg
(reverse‘(𝑦 ++
〈“𝑧”〉))))) |
65 | 64 | expcom 413 |
. . . 4
⊢ ((𝑦 ∈ Word 𝐵 ∧ 𝑧 ∈ 𝐵) → (𝑀 ∈ Mnd → ((𝑂 Σg 𝑦) = (𝑀 Σg
(reverse‘𝑦)) →
(𝑂
Σg (𝑦 ++ 〈“𝑧”〉)) = (𝑀 Σg
(reverse‘(𝑦 ++
〈“𝑧”〉)))))) |
66 | 65 | a2d 29 |
. . 3
⊢ ((𝑦 ∈ Word 𝐵 ∧ 𝑧 ∈ 𝐵) → ((𝑀 ∈ Mnd → (𝑂 Σg 𝑦) = (𝑀 Σg
(reverse‘𝑦))) →
(𝑀 ∈ Mnd → (𝑂 Σg
(𝑦 ++ 〈“𝑧”〉)) = (𝑀 Σg
(reverse‘(𝑦 ++
〈“𝑧”〉)))))) |
67 | 7, 12, 17, 22, 29, 66 | wrdind 14363 |
. 2
⊢ (𝑊 ∈ Word 𝐵 → (𝑀 ∈ Mnd → (𝑂 Σg 𝑊) = (𝑀 Σg
(reverse‘𝑊)))) |
68 | 67 | impcom 407 |
1
⊢ ((𝑀 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵) → (𝑂 Σg 𝑊) = (𝑀 Σg
(reverse‘𝑊))) |