MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumwrev Structured version   Visualization version   GIF version

Theorem gsumwrev 19147
Description: A sum in an opposite monoid is the regular sum of a reversed word. (Contributed by Stefan O'Rear, 27-Aug-2015.) (Proof shortened by Mario Carneiro, 28-Feb-2016.)
Hypotheses
Ref Expression
gsumwrev.b 𝐵 = (Base‘𝑀)
gsumwrev.o 𝑂 = (oppg𝑀)
Assertion
Ref Expression
gsumwrev ((𝑀 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵) → (𝑂 Σg 𝑊) = (𝑀 Σg (reverse‘𝑊)))

Proof of Theorem gsumwrev
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7365 . . . . 5 (𝑥 = ∅ → (𝑂 Σg 𝑥) = (𝑂 Σg ∅))
2 fveq2 6842 . . . . . . 7 (𝑥 = ∅ → (reverse‘𝑥) = (reverse‘∅))
3 rev0 14652 . . . . . . 7 (reverse‘∅) = ∅
42, 3eqtrdi 2792 . . . . . 6 (𝑥 = ∅ → (reverse‘𝑥) = ∅)
54oveq2d 7373 . . . . 5 (𝑥 = ∅ → (𝑀 Σg (reverse‘𝑥)) = (𝑀 Σg ∅))
61, 5eqeq12d 2752 . . . 4 (𝑥 = ∅ → ((𝑂 Σg 𝑥) = (𝑀 Σg (reverse‘𝑥)) ↔ (𝑂 Σg ∅) = (𝑀 Σg ∅)))
76imbi2d 340 . . 3 (𝑥 = ∅ → ((𝑀 ∈ Mnd → (𝑂 Σg 𝑥) = (𝑀 Σg (reverse‘𝑥))) ↔ (𝑀 ∈ Mnd → (𝑂 Σg ∅) = (𝑀 Σg ∅))))
8 oveq2 7365 . . . . 5 (𝑥 = 𝑦 → (𝑂 Σg 𝑥) = (𝑂 Σg 𝑦))
9 fveq2 6842 . . . . . 6 (𝑥 = 𝑦 → (reverse‘𝑥) = (reverse‘𝑦))
109oveq2d 7373 . . . . 5 (𝑥 = 𝑦 → (𝑀 Σg (reverse‘𝑥)) = (𝑀 Σg (reverse‘𝑦)))
118, 10eqeq12d 2752 . . . 4 (𝑥 = 𝑦 → ((𝑂 Σg 𝑥) = (𝑀 Σg (reverse‘𝑥)) ↔ (𝑂 Σg 𝑦) = (𝑀 Σg (reverse‘𝑦))))
1211imbi2d 340 . . 3 (𝑥 = 𝑦 → ((𝑀 ∈ Mnd → (𝑂 Σg 𝑥) = (𝑀 Σg (reverse‘𝑥))) ↔ (𝑀 ∈ Mnd → (𝑂 Σg 𝑦) = (𝑀 Σg (reverse‘𝑦)))))
13 oveq2 7365 . . . . 5 (𝑥 = (𝑦 ++ ⟨“𝑧”⟩) → (𝑂 Σg 𝑥) = (𝑂 Σg (𝑦 ++ ⟨“𝑧”⟩)))
14 fveq2 6842 . . . . . 6 (𝑥 = (𝑦 ++ ⟨“𝑧”⟩) → (reverse‘𝑥) = (reverse‘(𝑦 ++ ⟨“𝑧”⟩)))
1514oveq2d 7373 . . . . 5 (𝑥 = (𝑦 ++ ⟨“𝑧”⟩) → (𝑀 Σg (reverse‘𝑥)) = (𝑀 Σg (reverse‘(𝑦 ++ ⟨“𝑧”⟩))))
1613, 15eqeq12d 2752 . . . 4 (𝑥 = (𝑦 ++ ⟨“𝑧”⟩) → ((𝑂 Σg 𝑥) = (𝑀 Σg (reverse‘𝑥)) ↔ (𝑂 Σg (𝑦 ++ ⟨“𝑧”⟩)) = (𝑀 Σg (reverse‘(𝑦 ++ ⟨“𝑧”⟩)))))
1716imbi2d 340 . . 3 (𝑥 = (𝑦 ++ ⟨“𝑧”⟩) → ((𝑀 ∈ Mnd → (𝑂 Σg 𝑥) = (𝑀 Σg (reverse‘𝑥))) ↔ (𝑀 ∈ Mnd → (𝑂 Σg (𝑦 ++ ⟨“𝑧”⟩)) = (𝑀 Σg (reverse‘(𝑦 ++ ⟨“𝑧”⟩))))))
18 oveq2 7365 . . . . 5 (𝑥 = 𝑊 → (𝑂 Σg 𝑥) = (𝑂 Σg 𝑊))
19 fveq2 6842 . . . . . 6 (𝑥 = 𝑊 → (reverse‘𝑥) = (reverse‘𝑊))
2019oveq2d 7373 . . . . 5 (𝑥 = 𝑊 → (𝑀 Σg (reverse‘𝑥)) = (𝑀 Σg (reverse‘𝑊)))
2118, 20eqeq12d 2752 . . . 4 (𝑥 = 𝑊 → ((𝑂 Σg 𝑥) = (𝑀 Σg (reverse‘𝑥)) ↔ (𝑂 Σg 𝑊) = (𝑀 Σg (reverse‘𝑊))))
2221imbi2d 340 . . 3 (𝑥 = 𝑊 → ((𝑀 ∈ Mnd → (𝑂 Σg 𝑥) = (𝑀 Σg (reverse‘𝑥))) ↔ (𝑀 ∈ Mnd → (𝑂 Σg 𝑊) = (𝑀 Σg (reverse‘𝑊)))))
23 gsumwrev.o . . . . . . 7 𝑂 = (oppg𝑀)
24 eqid 2736 . . . . . . 7 (0g𝑀) = (0g𝑀)
2523, 24oppgid 19137 . . . . . 6 (0g𝑀) = (0g𝑂)
2625gsum0 18539 . . . . 5 (𝑂 Σg ∅) = (0g𝑀)
2724gsum0 18539 . . . . 5 (𝑀 Σg ∅) = (0g𝑀)
2826, 27eqtr4i 2767 . . . 4 (𝑂 Σg ∅) = (𝑀 Σg ∅)
2928a1i 11 . . 3 (𝑀 ∈ Mnd → (𝑂 Σg ∅) = (𝑀 Σg ∅))
30 oveq2 7365 . . . . . 6 ((𝑂 Σg 𝑦) = (𝑀 Σg (reverse‘𝑦)) → (𝑧(+g𝑀)(𝑂 Σg 𝑦)) = (𝑧(+g𝑀)(𝑀 Σg (reverse‘𝑦))))
3123oppgmnd 19135 . . . . . . . . . 10 (𝑀 ∈ Mnd → 𝑂 ∈ Mnd)
3231adantr 481 . . . . . . . . 9 ((𝑀 ∈ Mnd ∧ (𝑦 ∈ Word 𝐵𝑧𝐵)) → 𝑂 ∈ Mnd)
33 simprl 769 . . . . . . . . 9 ((𝑀 ∈ Mnd ∧ (𝑦 ∈ Word 𝐵𝑧𝐵)) → 𝑦 ∈ Word 𝐵)
34 simprr 771 . . . . . . . . . 10 ((𝑀 ∈ Mnd ∧ (𝑦 ∈ Word 𝐵𝑧𝐵)) → 𝑧𝐵)
3534s1cld 14491 . . . . . . . . 9 ((𝑀 ∈ Mnd ∧ (𝑦 ∈ Word 𝐵𝑧𝐵)) → ⟨“𝑧”⟩ ∈ Word 𝐵)
36 gsumwrev.b . . . . . . . . . . 11 𝐵 = (Base‘𝑀)
3723, 36oppgbas 19130 . . . . . . . . . 10 𝐵 = (Base‘𝑂)
38 eqid 2736 . . . . . . . . . 10 (+g𝑂) = (+g𝑂)
3937, 38gsumccat 18651 . . . . . . . . 9 ((𝑂 ∈ Mnd ∧ 𝑦 ∈ Word 𝐵 ∧ ⟨“𝑧”⟩ ∈ Word 𝐵) → (𝑂 Σg (𝑦 ++ ⟨“𝑧”⟩)) = ((𝑂 Σg 𝑦)(+g𝑂)(𝑂 Σg ⟨“𝑧”⟩)))
4032, 33, 35, 39syl3anc 1371 . . . . . . . 8 ((𝑀 ∈ Mnd ∧ (𝑦 ∈ Word 𝐵𝑧𝐵)) → (𝑂 Σg (𝑦 ++ ⟨“𝑧”⟩)) = ((𝑂 Σg 𝑦)(+g𝑂)(𝑂 Σg ⟨“𝑧”⟩)))
4137gsumws1 18648 . . . . . . . . . . 11 (𝑧𝐵 → (𝑂 Σg ⟨“𝑧”⟩) = 𝑧)
4241ad2antll 727 . . . . . . . . . 10 ((𝑀 ∈ Mnd ∧ (𝑦 ∈ Word 𝐵𝑧𝐵)) → (𝑂 Σg ⟨“𝑧”⟩) = 𝑧)
4342oveq2d 7373 . . . . . . . . 9 ((𝑀 ∈ Mnd ∧ (𝑦 ∈ Word 𝐵𝑧𝐵)) → ((𝑂 Σg 𝑦)(+g𝑂)(𝑂 Σg ⟨“𝑧”⟩)) = ((𝑂 Σg 𝑦)(+g𝑂)𝑧))
44 eqid 2736 . . . . . . . . . 10 (+g𝑀) = (+g𝑀)
4544, 23, 38oppgplus 19127 . . . . . . . . 9 ((𝑂 Σg 𝑦)(+g𝑂)𝑧) = (𝑧(+g𝑀)(𝑂 Σg 𝑦))
4643, 45eqtrdi 2792 . . . . . . . 8 ((𝑀 ∈ Mnd ∧ (𝑦 ∈ Word 𝐵𝑧𝐵)) → ((𝑂 Σg 𝑦)(+g𝑂)(𝑂 Σg ⟨“𝑧”⟩)) = (𝑧(+g𝑀)(𝑂 Σg 𝑦)))
4740, 46eqtrd 2776 . . . . . . 7 ((𝑀 ∈ Mnd ∧ (𝑦 ∈ Word 𝐵𝑧𝐵)) → (𝑂 Σg (𝑦 ++ ⟨“𝑧”⟩)) = (𝑧(+g𝑀)(𝑂 Σg 𝑦)))
48 revccat 14654 . . . . . . . . . . 11 ((𝑦 ∈ Word 𝐵 ∧ ⟨“𝑧”⟩ ∈ Word 𝐵) → (reverse‘(𝑦 ++ ⟨“𝑧”⟩)) = ((reverse‘⟨“𝑧”⟩) ++ (reverse‘𝑦)))
4933, 35, 48syl2anc 584 . . . . . . . . . 10 ((𝑀 ∈ Mnd ∧ (𝑦 ∈ Word 𝐵𝑧𝐵)) → (reverse‘(𝑦 ++ ⟨“𝑧”⟩)) = ((reverse‘⟨“𝑧”⟩) ++ (reverse‘𝑦)))
50 revs1 14653 . . . . . . . . . . 11 (reverse‘⟨“𝑧”⟩) = ⟨“𝑧”⟩
5150oveq1i 7367 . . . . . . . . . 10 ((reverse‘⟨“𝑧”⟩) ++ (reverse‘𝑦)) = (⟨“𝑧”⟩ ++ (reverse‘𝑦))
5249, 51eqtrdi 2792 . . . . . . . . 9 ((𝑀 ∈ Mnd ∧ (𝑦 ∈ Word 𝐵𝑧𝐵)) → (reverse‘(𝑦 ++ ⟨“𝑧”⟩)) = (⟨“𝑧”⟩ ++ (reverse‘𝑦)))
5352oveq2d 7373 . . . . . . . 8 ((𝑀 ∈ Mnd ∧ (𝑦 ∈ Word 𝐵𝑧𝐵)) → (𝑀 Σg (reverse‘(𝑦 ++ ⟨“𝑧”⟩))) = (𝑀 Σg (⟨“𝑧”⟩ ++ (reverse‘𝑦))))
54 simpl 483 . . . . . . . . 9 ((𝑀 ∈ Mnd ∧ (𝑦 ∈ Word 𝐵𝑧𝐵)) → 𝑀 ∈ Mnd)
55 revcl 14649 . . . . . . . . . 10 (𝑦 ∈ Word 𝐵 → (reverse‘𝑦) ∈ Word 𝐵)
5655ad2antrl 726 . . . . . . . . 9 ((𝑀 ∈ Mnd ∧ (𝑦 ∈ Word 𝐵𝑧𝐵)) → (reverse‘𝑦) ∈ Word 𝐵)
5736, 44gsumccat 18651 . . . . . . . . 9 ((𝑀 ∈ Mnd ∧ ⟨“𝑧”⟩ ∈ Word 𝐵 ∧ (reverse‘𝑦) ∈ Word 𝐵) → (𝑀 Σg (⟨“𝑧”⟩ ++ (reverse‘𝑦))) = ((𝑀 Σg ⟨“𝑧”⟩)(+g𝑀)(𝑀 Σg (reverse‘𝑦))))
5854, 35, 56, 57syl3anc 1371 . . . . . . . 8 ((𝑀 ∈ Mnd ∧ (𝑦 ∈ Word 𝐵𝑧𝐵)) → (𝑀 Σg (⟨“𝑧”⟩ ++ (reverse‘𝑦))) = ((𝑀 Σg ⟨“𝑧”⟩)(+g𝑀)(𝑀 Σg (reverse‘𝑦))))
5936gsumws1 18648 . . . . . . . . . 10 (𝑧𝐵 → (𝑀 Σg ⟨“𝑧”⟩) = 𝑧)
6059ad2antll 727 . . . . . . . . 9 ((𝑀 ∈ Mnd ∧ (𝑦 ∈ Word 𝐵𝑧𝐵)) → (𝑀 Σg ⟨“𝑧”⟩) = 𝑧)
6160oveq1d 7372 . . . . . . . 8 ((𝑀 ∈ Mnd ∧ (𝑦 ∈ Word 𝐵𝑧𝐵)) → ((𝑀 Σg ⟨“𝑧”⟩)(+g𝑀)(𝑀 Σg (reverse‘𝑦))) = (𝑧(+g𝑀)(𝑀 Σg (reverse‘𝑦))))
6253, 58, 613eqtrd 2780 . . . . . . 7 ((𝑀 ∈ Mnd ∧ (𝑦 ∈ Word 𝐵𝑧𝐵)) → (𝑀 Σg (reverse‘(𝑦 ++ ⟨“𝑧”⟩))) = (𝑧(+g𝑀)(𝑀 Σg (reverse‘𝑦))))
6347, 62eqeq12d 2752 . . . . . 6 ((𝑀 ∈ Mnd ∧ (𝑦 ∈ Word 𝐵𝑧𝐵)) → ((𝑂 Σg (𝑦 ++ ⟨“𝑧”⟩)) = (𝑀 Σg (reverse‘(𝑦 ++ ⟨“𝑧”⟩))) ↔ (𝑧(+g𝑀)(𝑂 Σg 𝑦)) = (𝑧(+g𝑀)(𝑀 Σg (reverse‘𝑦)))))
6430, 63syl5ibr 245 . . . . 5 ((𝑀 ∈ Mnd ∧ (𝑦 ∈ Word 𝐵𝑧𝐵)) → ((𝑂 Σg 𝑦) = (𝑀 Σg (reverse‘𝑦)) → (𝑂 Σg (𝑦 ++ ⟨“𝑧”⟩)) = (𝑀 Σg (reverse‘(𝑦 ++ ⟨“𝑧”⟩)))))
6564expcom 414 . . . 4 ((𝑦 ∈ Word 𝐵𝑧𝐵) → (𝑀 ∈ Mnd → ((𝑂 Σg 𝑦) = (𝑀 Σg (reverse‘𝑦)) → (𝑂 Σg (𝑦 ++ ⟨“𝑧”⟩)) = (𝑀 Σg (reverse‘(𝑦 ++ ⟨“𝑧”⟩))))))
6665a2d 29 . . 3 ((𝑦 ∈ Word 𝐵𝑧𝐵) → ((𝑀 ∈ Mnd → (𝑂 Σg 𝑦) = (𝑀 Σg (reverse‘𝑦))) → (𝑀 ∈ Mnd → (𝑂 Σg (𝑦 ++ ⟨“𝑧”⟩)) = (𝑀 Σg (reverse‘(𝑦 ++ ⟨“𝑧”⟩))))))
677, 12, 17, 22, 29, 66wrdind 14610 . 2 (𝑊 ∈ Word 𝐵 → (𝑀 ∈ Mnd → (𝑂 Σg 𝑊) = (𝑀 Σg (reverse‘𝑊))))
6867impcom 408 1 ((𝑀 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵) → (𝑂 Σg 𝑊) = (𝑀 Σg (reverse‘𝑊)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  c0 4282  cfv 6496  (class class class)co 7357  Word cword 14402   ++ cconcat 14458  ⟨“cs1 14483  reversecreverse 14646  Basecbs 17083  +gcplusg 17133  0gc0g 17321   Σg cgsu 17322  Mndcmnd 18556  oppgcoppg 19123
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-tpos 8157  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-n0 12414  df-xnn0 12486  df-z 12500  df-uz 12764  df-fz 13425  df-fzo 13568  df-seq 13907  df-hash 14231  df-word 14403  df-lsw 14451  df-concat 14459  df-s1 14484  df-substr 14529  df-pfx 14559  df-reverse 14647  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-0g 17323  df-gsum 17324  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-submnd 18602  df-oppg 19124
This theorem is referenced by:  symgtrinv  19254
  Copyright terms: Public domain W3C validator