MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumwrev Structured version   Visualization version   GIF version

Theorem gsumwrev 19349
Description: A sum in an opposite monoid is the regular sum of a reversed word. (Contributed by Stefan O'Rear, 27-Aug-2015.) (Proof shortened by Mario Carneiro, 28-Feb-2016.)
Hypotheses
Ref Expression
gsumwrev.b 𝐵 = (Base‘𝑀)
gsumwrev.o 𝑂 = (oppg𝑀)
Assertion
Ref Expression
gsumwrev ((𝑀 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵) → (𝑂 Σg 𝑊) = (𝑀 Σg (reverse‘𝑊)))

Proof of Theorem gsumwrev
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7413 . . . . 5 (𝑥 = ∅ → (𝑂 Σg 𝑥) = (𝑂 Σg ∅))
2 fveq2 6876 . . . . . . 7 (𝑥 = ∅ → (reverse‘𝑥) = (reverse‘∅))
3 rev0 14782 . . . . . . 7 (reverse‘∅) = ∅
42, 3eqtrdi 2786 . . . . . 6 (𝑥 = ∅ → (reverse‘𝑥) = ∅)
54oveq2d 7421 . . . . 5 (𝑥 = ∅ → (𝑀 Σg (reverse‘𝑥)) = (𝑀 Σg ∅))
61, 5eqeq12d 2751 . . . 4 (𝑥 = ∅ → ((𝑂 Σg 𝑥) = (𝑀 Σg (reverse‘𝑥)) ↔ (𝑂 Σg ∅) = (𝑀 Σg ∅)))
76imbi2d 340 . . 3 (𝑥 = ∅ → ((𝑀 ∈ Mnd → (𝑂 Σg 𝑥) = (𝑀 Σg (reverse‘𝑥))) ↔ (𝑀 ∈ Mnd → (𝑂 Σg ∅) = (𝑀 Σg ∅))))
8 oveq2 7413 . . . . 5 (𝑥 = 𝑦 → (𝑂 Σg 𝑥) = (𝑂 Σg 𝑦))
9 fveq2 6876 . . . . . 6 (𝑥 = 𝑦 → (reverse‘𝑥) = (reverse‘𝑦))
109oveq2d 7421 . . . . 5 (𝑥 = 𝑦 → (𝑀 Σg (reverse‘𝑥)) = (𝑀 Σg (reverse‘𝑦)))
118, 10eqeq12d 2751 . . . 4 (𝑥 = 𝑦 → ((𝑂 Σg 𝑥) = (𝑀 Σg (reverse‘𝑥)) ↔ (𝑂 Σg 𝑦) = (𝑀 Σg (reverse‘𝑦))))
1211imbi2d 340 . . 3 (𝑥 = 𝑦 → ((𝑀 ∈ Mnd → (𝑂 Σg 𝑥) = (𝑀 Σg (reverse‘𝑥))) ↔ (𝑀 ∈ Mnd → (𝑂 Σg 𝑦) = (𝑀 Σg (reverse‘𝑦)))))
13 oveq2 7413 . . . . 5 (𝑥 = (𝑦 ++ ⟨“𝑧”⟩) → (𝑂 Σg 𝑥) = (𝑂 Σg (𝑦 ++ ⟨“𝑧”⟩)))
14 fveq2 6876 . . . . . 6 (𝑥 = (𝑦 ++ ⟨“𝑧”⟩) → (reverse‘𝑥) = (reverse‘(𝑦 ++ ⟨“𝑧”⟩)))
1514oveq2d 7421 . . . . 5 (𝑥 = (𝑦 ++ ⟨“𝑧”⟩) → (𝑀 Σg (reverse‘𝑥)) = (𝑀 Σg (reverse‘(𝑦 ++ ⟨“𝑧”⟩))))
1613, 15eqeq12d 2751 . . . 4 (𝑥 = (𝑦 ++ ⟨“𝑧”⟩) → ((𝑂 Σg 𝑥) = (𝑀 Σg (reverse‘𝑥)) ↔ (𝑂 Σg (𝑦 ++ ⟨“𝑧”⟩)) = (𝑀 Σg (reverse‘(𝑦 ++ ⟨“𝑧”⟩)))))
1716imbi2d 340 . . 3 (𝑥 = (𝑦 ++ ⟨“𝑧”⟩) → ((𝑀 ∈ Mnd → (𝑂 Σg 𝑥) = (𝑀 Σg (reverse‘𝑥))) ↔ (𝑀 ∈ Mnd → (𝑂 Σg (𝑦 ++ ⟨“𝑧”⟩)) = (𝑀 Σg (reverse‘(𝑦 ++ ⟨“𝑧”⟩))))))
18 oveq2 7413 . . . . 5 (𝑥 = 𝑊 → (𝑂 Σg 𝑥) = (𝑂 Σg 𝑊))
19 fveq2 6876 . . . . . 6 (𝑥 = 𝑊 → (reverse‘𝑥) = (reverse‘𝑊))
2019oveq2d 7421 . . . . 5 (𝑥 = 𝑊 → (𝑀 Σg (reverse‘𝑥)) = (𝑀 Σg (reverse‘𝑊)))
2118, 20eqeq12d 2751 . . . 4 (𝑥 = 𝑊 → ((𝑂 Σg 𝑥) = (𝑀 Σg (reverse‘𝑥)) ↔ (𝑂 Σg 𝑊) = (𝑀 Σg (reverse‘𝑊))))
2221imbi2d 340 . . 3 (𝑥 = 𝑊 → ((𝑀 ∈ Mnd → (𝑂 Σg 𝑥) = (𝑀 Σg (reverse‘𝑥))) ↔ (𝑀 ∈ Mnd → (𝑂 Σg 𝑊) = (𝑀 Σg (reverse‘𝑊)))))
23 gsumwrev.o . . . . . . 7 𝑂 = (oppg𝑀)
24 eqid 2735 . . . . . . 7 (0g𝑀) = (0g𝑀)
2523, 24oppgid 19339 . . . . . 6 (0g𝑀) = (0g𝑂)
2625gsum0 18662 . . . . 5 (𝑂 Σg ∅) = (0g𝑀)
2724gsum0 18662 . . . . 5 (𝑀 Σg ∅) = (0g𝑀)
2826, 27eqtr4i 2761 . . . 4 (𝑂 Σg ∅) = (𝑀 Σg ∅)
2928a1i 11 . . 3 (𝑀 ∈ Mnd → (𝑂 Σg ∅) = (𝑀 Σg ∅))
30 oveq2 7413 . . . . . 6 ((𝑂 Σg 𝑦) = (𝑀 Σg (reverse‘𝑦)) → (𝑧(+g𝑀)(𝑂 Σg 𝑦)) = (𝑧(+g𝑀)(𝑀 Σg (reverse‘𝑦))))
3123oppgmnd 19337 . . . . . . . . . 10 (𝑀 ∈ Mnd → 𝑂 ∈ Mnd)
3231adantr 480 . . . . . . . . 9 ((𝑀 ∈ Mnd ∧ (𝑦 ∈ Word 𝐵𝑧𝐵)) → 𝑂 ∈ Mnd)
33 simprl 770 . . . . . . . . 9 ((𝑀 ∈ Mnd ∧ (𝑦 ∈ Word 𝐵𝑧𝐵)) → 𝑦 ∈ Word 𝐵)
34 simprr 772 . . . . . . . . . 10 ((𝑀 ∈ Mnd ∧ (𝑦 ∈ Word 𝐵𝑧𝐵)) → 𝑧𝐵)
3534s1cld 14621 . . . . . . . . 9 ((𝑀 ∈ Mnd ∧ (𝑦 ∈ Word 𝐵𝑧𝐵)) → ⟨“𝑧”⟩ ∈ Word 𝐵)
36 gsumwrev.b . . . . . . . . . . 11 𝐵 = (Base‘𝑀)
3723, 36oppgbas 19334 . . . . . . . . . 10 𝐵 = (Base‘𝑂)
38 eqid 2735 . . . . . . . . . 10 (+g𝑂) = (+g𝑂)
3937, 38gsumccat 18819 . . . . . . . . 9 ((𝑂 ∈ Mnd ∧ 𝑦 ∈ Word 𝐵 ∧ ⟨“𝑧”⟩ ∈ Word 𝐵) → (𝑂 Σg (𝑦 ++ ⟨“𝑧”⟩)) = ((𝑂 Σg 𝑦)(+g𝑂)(𝑂 Σg ⟨“𝑧”⟩)))
4032, 33, 35, 39syl3anc 1373 . . . . . . . 8 ((𝑀 ∈ Mnd ∧ (𝑦 ∈ Word 𝐵𝑧𝐵)) → (𝑂 Σg (𝑦 ++ ⟨“𝑧”⟩)) = ((𝑂 Σg 𝑦)(+g𝑂)(𝑂 Σg ⟨“𝑧”⟩)))
4137gsumws1 18816 . . . . . . . . . . 11 (𝑧𝐵 → (𝑂 Σg ⟨“𝑧”⟩) = 𝑧)
4241ad2antll 729 . . . . . . . . . 10 ((𝑀 ∈ Mnd ∧ (𝑦 ∈ Word 𝐵𝑧𝐵)) → (𝑂 Σg ⟨“𝑧”⟩) = 𝑧)
4342oveq2d 7421 . . . . . . . . 9 ((𝑀 ∈ Mnd ∧ (𝑦 ∈ Word 𝐵𝑧𝐵)) → ((𝑂 Σg 𝑦)(+g𝑂)(𝑂 Σg ⟨“𝑧”⟩)) = ((𝑂 Σg 𝑦)(+g𝑂)𝑧))
44 eqid 2735 . . . . . . . . . 10 (+g𝑀) = (+g𝑀)
4544, 23, 38oppgplus 19332 . . . . . . . . 9 ((𝑂 Σg 𝑦)(+g𝑂)𝑧) = (𝑧(+g𝑀)(𝑂 Σg 𝑦))
4643, 45eqtrdi 2786 . . . . . . . 8 ((𝑀 ∈ Mnd ∧ (𝑦 ∈ Word 𝐵𝑧𝐵)) → ((𝑂 Σg 𝑦)(+g𝑂)(𝑂 Σg ⟨“𝑧”⟩)) = (𝑧(+g𝑀)(𝑂 Σg 𝑦)))
4740, 46eqtrd 2770 . . . . . . 7 ((𝑀 ∈ Mnd ∧ (𝑦 ∈ Word 𝐵𝑧𝐵)) → (𝑂 Σg (𝑦 ++ ⟨“𝑧”⟩)) = (𝑧(+g𝑀)(𝑂 Σg 𝑦)))
48 revccat 14784 . . . . . . . . . . 11 ((𝑦 ∈ Word 𝐵 ∧ ⟨“𝑧”⟩ ∈ Word 𝐵) → (reverse‘(𝑦 ++ ⟨“𝑧”⟩)) = ((reverse‘⟨“𝑧”⟩) ++ (reverse‘𝑦)))
4933, 35, 48syl2anc 584 . . . . . . . . . 10 ((𝑀 ∈ Mnd ∧ (𝑦 ∈ Word 𝐵𝑧𝐵)) → (reverse‘(𝑦 ++ ⟨“𝑧”⟩)) = ((reverse‘⟨“𝑧”⟩) ++ (reverse‘𝑦)))
50 revs1 14783 . . . . . . . . . . 11 (reverse‘⟨“𝑧”⟩) = ⟨“𝑧”⟩
5150oveq1i 7415 . . . . . . . . . 10 ((reverse‘⟨“𝑧”⟩) ++ (reverse‘𝑦)) = (⟨“𝑧”⟩ ++ (reverse‘𝑦))
5249, 51eqtrdi 2786 . . . . . . . . 9 ((𝑀 ∈ Mnd ∧ (𝑦 ∈ Word 𝐵𝑧𝐵)) → (reverse‘(𝑦 ++ ⟨“𝑧”⟩)) = (⟨“𝑧”⟩ ++ (reverse‘𝑦)))
5352oveq2d 7421 . . . . . . . 8 ((𝑀 ∈ Mnd ∧ (𝑦 ∈ Word 𝐵𝑧𝐵)) → (𝑀 Σg (reverse‘(𝑦 ++ ⟨“𝑧”⟩))) = (𝑀 Σg (⟨“𝑧”⟩ ++ (reverse‘𝑦))))
54 simpl 482 . . . . . . . . 9 ((𝑀 ∈ Mnd ∧ (𝑦 ∈ Word 𝐵𝑧𝐵)) → 𝑀 ∈ Mnd)
55 revcl 14779 . . . . . . . . . 10 (𝑦 ∈ Word 𝐵 → (reverse‘𝑦) ∈ Word 𝐵)
5655ad2antrl 728 . . . . . . . . 9 ((𝑀 ∈ Mnd ∧ (𝑦 ∈ Word 𝐵𝑧𝐵)) → (reverse‘𝑦) ∈ Word 𝐵)
5736, 44gsumccat 18819 . . . . . . . . 9 ((𝑀 ∈ Mnd ∧ ⟨“𝑧”⟩ ∈ Word 𝐵 ∧ (reverse‘𝑦) ∈ Word 𝐵) → (𝑀 Σg (⟨“𝑧”⟩ ++ (reverse‘𝑦))) = ((𝑀 Σg ⟨“𝑧”⟩)(+g𝑀)(𝑀 Σg (reverse‘𝑦))))
5854, 35, 56, 57syl3anc 1373 . . . . . . . 8 ((𝑀 ∈ Mnd ∧ (𝑦 ∈ Word 𝐵𝑧𝐵)) → (𝑀 Σg (⟨“𝑧”⟩ ++ (reverse‘𝑦))) = ((𝑀 Σg ⟨“𝑧”⟩)(+g𝑀)(𝑀 Σg (reverse‘𝑦))))
5936gsumws1 18816 . . . . . . . . . 10 (𝑧𝐵 → (𝑀 Σg ⟨“𝑧”⟩) = 𝑧)
6059ad2antll 729 . . . . . . . . 9 ((𝑀 ∈ Mnd ∧ (𝑦 ∈ Word 𝐵𝑧𝐵)) → (𝑀 Σg ⟨“𝑧”⟩) = 𝑧)
6160oveq1d 7420 . . . . . . . 8 ((𝑀 ∈ Mnd ∧ (𝑦 ∈ Word 𝐵𝑧𝐵)) → ((𝑀 Σg ⟨“𝑧”⟩)(+g𝑀)(𝑀 Σg (reverse‘𝑦))) = (𝑧(+g𝑀)(𝑀 Σg (reverse‘𝑦))))
6253, 58, 613eqtrd 2774 . . . . . . 7 ((𝑀 ∈ Mnd ∧ (𝑦 ∈ Word 𝐵𝑧𝐵)) → (𝑀 Σg (reverse‘(𝑦 ++ ⟨“𝑧”⟩))) = (𝑧(+g𝑀)(𝑀 Σg (reverse‘𝑦))))
6347, 62eqeq12d 2751 . . . . . 6 ((𝑀 ∈ Mnd ∧ (𝑦 ∈ Word 𝐵𝑧𝐵)) → ((𝑂 Σg (𝑦 ++ ⟨“𝑧”⟩)) = (𝑀 Σg (reverse‘(𝑦 ++ ⟨“𝑧”⟩))) ↔ (𝑧(+g𝑀)(𝑂 Σg 𝑦)) = (𝑧(+g𝑀)(𝑀 Σg (reverse‘𝑦)))))
6430, 63imbitrrid 246 . . . . 5 ((𝑀 ∈ Mnd ∧ (𝑦 ∈ Word 𝐵𝑧𝐵)) → ((𝑂 Σg 𝑦) = (𝑀 Σg (reverse‘𝑦)) → (𝑂 Σg (𝑦 ++ ⟨“𝑧”⟩)) = (𝑀 Σg (reverse‘(𝑦 ++ ⟨“𝑧”⟩)))))
6564expcom 413 . . . 4 ((𝑦 ∈ Word 𝐵𝑧𝐵) → (𝑀 ∈ Mnd → ((𝑂 Σg 𝑦) = (𝑀 Σg (reverse‘𝑦)) → (𝑂 Σg (𝑦 ++ ⟨“𝑧”⟩)) = (𝑀 Σg (reverse‘(𝑦 ++ ⟨“𝑧”⟩))))))
6665a2d 29 . . 3 ((𝑦 ∈ Word 𝐵𝑧𝐵) → ((𝑀 ∈ Mnd → (𝑂 Σg 𝑦) = (𝑀 Σg (reverse‘𝑦))) → (𝑀 ∈ Mnd → (𝑂 Σg (𝑦 ++ ⟨“𝑧”⟩)) = (𝑀 Σg (reverse‘(𝑦 ++ ⟨“𝑧”⟩))))))
677, 12, 17, 22, 29, 66wrdind 14740 . 2 (𝑊 ∈ Word 𝐵 → (𝑀 ∈ Mnd → (𝑂 Σg 𝑊) = (𝑀 Σg (reverse‘𝑊))))
6867impcom 407 1 ((𝑀 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵) → (𝑂 Σg 𝑊) = (𝑀 Σg (reverse‘𝑊)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  c0 4308  cfv 6531  (class class class)co 7405  Word cword 14531   ++ cconcat 14588  ⟨“cs1 14613  reversecreverse 14776  Basecbs 17228  +gcplusg 17271  0gc0g 17453   Σg cgsu 17454  Mndcmnd 18712  oppgcoppg 19328
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-tpos 8225  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-n0 12502  df-xnn0 12575  df-z 12589  df-uz 12853  df-fz 13525  df-fzo 13672  df-seq 14020  df-hash 14349  df-word 14532  df-lsw 14581  df-concat 14589  df-s1 14614  df-substr 14659  df-pfx 14689  df-reverse 14777  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-0g 17455  df-gsum 17456  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-submnd 18762  df-oppg 19329
This theorem is referenced by:  symgtrinv  19453
  Copyright terms: Public domain W3C validator