MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumwrev Structured version   Visualization version   GIF version

Theorem gsumwrev 18888
Description: A sum in an opposite monoid is the regular sum of a reversed word. (Contributed by Stefan O'Rear, 27-Aug-2015.) (Proof shortened by Mario Carneiro, 28-Feb-2016.)
Hypotheses
Ref Expression
gsumwrev.b 𝐵 = (Base‘𝑀)
gsumwrev.o 𝑂 = (oppg𝑀)
Assertion
Ref Expression
gsumwrev ((𝑀 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵) → (𝑂 Σg 𝑊) = (𝑀 Σg (reverse‘𝑊)))

Proof of Theorem gsumwrev
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7263 . . . . 5 (𝑥 = ∅ → (𝑂 Σg 𝑥) = (𝑂 Σg ∅))
2 fveq2 6756 . . . . . . 7 (𝑥 = ∅ → (reverse‘𝑥) = (reverse‘∅))
3 rev0 14405 . . . . . . 7 (reverse‘∅) = ∅
42, 3eqtrdi 2795 . . . . . 6 (𝑥 = ∅ → (reverse‘𝑥) = ∅)
54oveq2d 7271 . . . . 5 (𝑥 = ∅ → (𝑀 Σg (reverse‘𝑥)) = (𝑀 Σg ∅))
61, 5eqeq12d 2754 . . . 4 (𝑥 = ∅ → ((𝑂 Σg 𝑥) = (𝑀 Σg (reverse‘𝑥)) ↔ (𝑂 Σg ∅) = (𝑀 Σg ∅)))
76imbi2d 340 . . 3 (𝑥 = ∅ → ((𝑀 ∈ Mnd → (𝑂 Σg 𝑥) = (𝑀 Σg (reverse‘𝑥))) ↔ (𝑀 ∈ Mnd → (𝑂 Σg ∅) = (𝑀 Σg ∅))))
8 oveq2 7263 . . . . 5 (𝑥 = 𝑦 → (𝑂 Σg 𝑥) = (𝑂 Σg 𝑦))
9 fveq2 6756 . . . . . 6 (𝑥 = 𝑦 → (reverse‘𝑥) = (reverse‘𝑦))
109oveq2d 7271 . . . . 5 (𝑥 = 𝑦 → (𝑀 Σg (reverse‘𝑥)) = (𝑀 Σg (reverse‘𝑦)))
118, 10eqeq12d 2754 . . . 4 (𝑥 = 𝑦 → ((𝑂 Σg 𝑥) = (𝑀 Σg (reverse‘𝑥)) ↔ (𝑂 Σg 𝑦) = (𝑀 Σg (reverse‘𝑦))))
1211imbi2d 340 . . 3 (𝑥 = 𝑦 → ((𝑀 ∈ Mnd → (𝑂 Σg 𝑥) = (𝑀 Σg (reverse‘𝑥))) ↔ (𝑀 ∈ Mnd → (𝑂 Σg 𝑦) = (𝑀 Σg (reverse‘𝑦)))))
13 oveq2 7263 . . . . 5 (𝑥 = (𝑦 ++ ⟨“𝑧”⟩) → (𝑂 Σg 𝑥) = (𝑂 Σg (𝑦 ++ ⟨“𝑧”⟩)))
14 fveq2 6756 . . . . . 6 (𝑥 = (𝑦 ++ ⟨“𝑧”⟩) → (reverse‘𝑥) = (reverse‘(𝑦 ++ ⟨“𝑧”⟩)))
1514oveq2d 7271 . . . . 5 (𝑥 = (𝑦 ++ ⟨“𝑧”⟩) → (𝑀 Σg (reverse‘𝑥)) = (𝑀 Σg (reverse‘(𝑦 ++ ⟨“𝑧”⟩))))
1613, 15eqeq12d 2754 . . . 4 (𝑥 = (𝑦 ++ ⟨“𝑧”⟩) → ((𝑂 Σg 𝑥) = (𝑀 Σg (reverse‘𝑥)) ↔ (𝑂 Σg (𝑦 ++ ⟨“𝑧”⟩)) = (𝑀 Σg (reverse‘(𝑦 ++ ⟨“𝑧”⟩)))))
1716imbi2d 340 . . 3 (𝑥 = (𝑦 ++ ⟨“𝑧”⟩) → ((𝑀 ∈ Mnd → (𝑂 Σg 𝑥) = (𝑀 Σg (reverse‘𝑥))) ↔ (𝑀 ∈ Mnd → (𝑂 Σg (𝑦 ++ ⟨“𝑧”⟩)) = (𝑀 Σg (reverse‘(𝑦 ++ ⟨“𝑧”⟩))))))
18 oveq2 7263 . . . . 5 (𝑥 = 𝑊 → (𝑂 Σg 𝑥) = (𝑂 Σg 𝑊))
19 fveq2 6756 . . . . . 6 (𝑥 = 𝑊 → (reverse‘𝑥) = (reverse‘𝑊))
2019oveq2d 7271 . . . . 5 (𝑥 = 𝑊 → (𝑀 Σg (reverse‘𝑥)) = (𝑀 Σg (reverse‘𝑊)))
2118, 20eqeq12d 2754 . . . 4 (𝑥 = 𝑊 → ((𝑂 Σg 𝑥) = (𝑀 Σg (reverse‘𝑥)) ↔ (𝑂 Σg 𝑊) = (𝑀 Σg (reverse‘𝑊))))
2221imbi2d 340 . . 3 (𝑥 = 𝑊 → ((𝑀 ∈ Mnd → (𝑂 Σg 𝑥) = (𝑀 Σg (reverse‘𝑥))) ↔ (𝑀 ∈ Mnd → (𝑂 Σg 𝑊) = (𝑀 Σg (reverse‘𝑊)))))
23 gsumwrev.o . . . . . . 7 𝑂 = (oppg𝑀)
24 eqid 2738 . . . . . . 7 (0g𝑀) = (0g𝑀)
2523, 24oppgid 18878 . . . . . 6 (0g𝑀) = (0g𝑂)
2625gsum0 18283 . . . . 5 (𝑂 Σg ∅) = (0g𝑀)
2724gsum0 18283 . . . . 5 (𝑀 Σg ∅) = (0g𝑀)
2826, 27eqtr4i 2769 . . . 4 (𝑂 Σg ∅) = (𝑀 Σg ∅)
2928a1i 11 . . 3 (𝑀 ∈ Mnd → (𝑂 Σg ∅) = (𝑀 Σg ∅))
30 oveq2 7263 . . . . . 6 ((𝑂 Σg 𝑦) = (𝑀 Σg (reverse‘𝑦)) → (𝑧(+g𝑀)(𝑂 Σg 𝑦)) = (𝑧(+g𝑀)(𝑀 Σg (reverse‘𝑦))))
3123oppgmnd 18876 . . . . . . . . . 10 (𝑀 ∈ Mnd → 𝑂 ∈ Mnd)
3231adantr 480 . . . . . . . . 9 ((𝑀 ∈ Mnd ∧ (𝑦 ∈ Word 𝐵𝑧𝐵)) → 𝑂 ∈ Mnd)
33 simprl 767 . . . . . . . . 9 ((𝑀 ∈ Mnd ∧ (𝑦 ∈ Word 𝐵𝑧𝐵)) → 𝑦 ∈ Word 𝐵)
34 simprr 769 . . . . . . . . . 10 ((𝑀 ∈ Mnd ∧ (𝑦 ∈ Word 𝐵𝑧𝐵)) → 𝑧𝐵)
3534s1cld 14236 . . . . . . . . 9 ((𝑀 ∈ Mnd ∧ (𝑦 ∈ Word 𝐵𝑧𝐵)) → ⟨“𝑧”⟩ ∈ Word 𝐵)
36 gsumwrev.b . . . . . . . . . . 11 𝐵 = (Base‘𝑀)
3723, 36oppgbas 18871 . . . . . . . . . 10 𝐵 = (Base‘𝑂)
38 eqid 2738 . . . . . . . . . 10 (+g𝑂) = (+g𝑂)
3937, 38gsumccat 18395 . . . . . . . . 9 ((𝑂 ∈ Mnd ∧ 𝑦 ∈ Word 𝐵 ∧ ⟨“𝑧”⟩ ∈ Word 𝐵) → (𝑂 Σg (𝑦 ++ ⟨“𝑧”⟩)) = ((𝑂 Σg 𝑦)(+g𝑂)(𝑂 Σg ⟨“𝑧”⟩)))
4032, 33, 35, 39syl3anc 1369 . . . . . . . 8 ((𝑀 ∈ Mnd ∧ (𝑦 ∈ Word 𝐵𝑧𝐵)) → (𝑂 Σg (𝑦 ++ ⟨“𝑧”⟩)) = ((𝑂 Σg 𝑦)(+g𝑂)(𝑂 Σg ⟨“𝑧”⟩)))
4137gsumws1 18391 . . . . . . . . . . 11 (𝑧𝐵 → (𝑂 Σg ⟨“𝑧”⟩) = 𝑧)
4241ad2antll 725 . . . . . . . . . 10 ((𝑀 ∈ Mnd ∧ (𝑦 ∈ Word 𝐵𝑧𝐵)) → (𝑂 Σg ⟨“𝑧”⟩) = 𝑧)
4342oveq2d 7271 . . . . . . . . 9 ((𝑀 ∈ Mnd ∧ (𝑦 ∈ Word 𝐵𝑧𝐵)) → ((𝑂 Σg 𝑦)(+g𝑂)(𝑂 Σg ⟨“𝑧”⟩)) = ((𝑂 Σg 𝑦)(+g𝑂)𝑧))
44 eqid 2738 . . . . . . . . . 10 (+g𝑀) = (+g𝑀)
4544, 23, 38oppgplus 18868 . . . . . . . . 9 ((𝑂 Σg 𝑦)(+g𝑂)𝑧) = (𝑧(+g𝑀)(𝑂 Σg 𝑦))
4643, 45eqtrdi 2795 . . . . . . . 8 ((𝑀 ∈ Mnd ∧ (𝑦 ∈ Word 𝐵𝑧𝐵)) → ((𝑂 Σg 𝑦)(+g𝑂)(𝑂 Σg ⟨“𝑧”⟩)) = (𝑧(+g𝑀)(𝑂 Σg 𝑦)))
4740, 46eqtrd 2778 . . . . . . 7 ((𝑀 ∈ Mnd ∧ (𝑦 ∈ Word 𝐵𝑧𝐵)) → (𝑂 Σg (𝑦 ++ ⟨“𝑧”⟩)) = (𝑧(+g𝑀)(𝑂 Σg 𝑦)))
48 revccat 14407 . . . . . . . . . . 11 ((𝑦 ∈ Word 𝐵 ∧ ⟨“𝑧”⟩ ∈ Word 𝐵) → (reverse‘(𝑦 ++ ⟨“𝑧”⟩)) = ((reverse‘⟨“𝑧”⟩) ++ (reverse‘𝑦)))
4933, 35, 48syl2anc 583 . . . . . . . . . 10 ((𝑀 ∈ Mnd ∧ (𝑦 ∈ Word 𝐵𝑧𝐵)) → (reverse‘(𝑦 ++ ⟨“𝑧”⟩)) = ((reverse‘⟨“𝑧”⟩) ++ (reverse‘𝑦)))
50 revs1 14406 . . . . . . . . . . 11 (reverse‘⟨“𝑧”⟩) = ⟨“𝑧”⟩
5150oveq1i 7265 . . . . . . . . . 10 ((reverse‘⟨“𝑧”⟩) ++ (reverse‘𝑦)) = (⟨“𝑧”⟩ ++ (reverse‘𝑦))
5249, 51eqtrdi 2795 . . . . . . . . 9 ((𝑀 ∈ Mnd ∧ (𝑦 ∈ Word 𝐵𝑧𝐵)) → (reverse‘(𝑦 ++ ⟨“𝑧”⟩)) = (⟨“𝑧”⟩ ++ (reverse‘𝑦)))
5352oveq2d 7271 . . . . . . . 8 ((𝑀 ∈ Mnd ∧ (𝑦 ∈ Word 𝐵𝑧𝐵)) → (𝑀 Σg (reverse‘(𝑦 ++ ⟨“𝑧”⟩))) = (𝑀 Σg (⟨“𝑧”⟩ ++ (reverse‘𝑦))))
54 simpl 482 . . . . . . . . 9 ((𝑀 ∈ Mnd ∧ (𝑦 ∈ Word 𝐵𝑧𝐵)) → 𝑀 ∈ Mnd)
55 revcl 14402 . . . . . . . . . 10 (𝑦 ∈ Word 𝐵 → (reverse‘𝑦) ∈ Word 𝐵)
5655ad2antrl 724 . . . . . . . . 9 ((𝑀 ∈ Mnd ∧ (𝑦 ∈ Word 𝐵𝑧𝐵)) → (reverse‘𝑦) ∈ Word 𝐵)
5736, 44gsumccat 18395 . . . . . . . . 9 ((𝑀 ∈ Mnd ∧ ⟨“𝑧”⟩ ∈ Word 𝐵 ∧ (reverse‘𝑦) ∈ Word 𝐵) → (𝑀 Σg (⟨“𝑧”⟩ ++ (reverse‘𝑦))) = ((𝑀 Σg ⟨“𝑧”⟩)(+g𝑀)(𝑀 Σg (reverse‘𝑦))))
5854, 35, 56, 57syl3anc 1369 . . . . . . . 8 ((𝑀 ∈ Mnd ∧ (𝑦 ∈ Word 𝐵𝑧𝐵)) → (𝑀 Σg (⟨“𝑧”⟩ ++ (reverse‘𝑦))) = ((𝑀 Σg ⟨“𝑧”⟩)(+g𝑀)(𝑀 Σg (reverse‘𝑦))))
5936gsumws1 18391 . . . . . . . . . 10 (𝑧𝐵 → (𝑀 Σg ⟨“𝑧”⟩) = 𝑧)
6059ad2antll 725 . . . . . . . . 9 ((𝑀 ∈ Mnd ∧ (𝑦 ∈ Word 𝐵𝑧𝐵)) → (𝑀 Σg ⟨“𝑧”⟩) = 𝑧)
6160oveq1d 7270 . . . . . . . 8 ((𝑀 ∈ Mnd ∧ (𝑦 ∈ Word 𝐵𝑧𝐵)) → ((𝑀 Σg ⟨“𝑧”⟩)(+g𝑀)(𝑀 Σg (reverse‘𝑦))) = (𝑧(+g𝑀)(𝑀 Σg (reverse‘𝑦))))
6253, 58, 613eqtrd 2782 . . . . . . 7 ((𝑀 ∈ Mnd ∧ (𝑦 ∈ Word 𝐵𝑧𝐵)) → (𝑀 Σg (reverse‘(𝑦 ++ ⟨“𝑧”⟩))) = (𝑧(+g𝑀)(𝑀 Σg (reverse‘𝑦))))
6347, 62eqeq12d 2754 . . . . . 6 ((𝑀 ∈ Mnd ∧ (𝑦 ∈ Word 𝐵𝑧𝐵)) → ((𝑂 Σg (𝑦 ++ ⟨“𝑧”⟩)) = (𝑀 Σg (reverse‘(𝑦 ++ ⟨“𝑧”⟩))) ↔ (𝑧(+g𝑀)(𝑂 Σg 𝑦)) = (𝑧(+g𝑀)(𝑀 Σg (reverse‘𝑦)))))
6430, 63syl5ibr 245 . . . . 5 ((𝑀 ∈ Mnd ∧ (𝑦 ∈ Word 𝐵𝑧𝐵)) → ((𝑂 Σg 𝑦) = (𝑀 Σg (reverse‘𝑦)) → (𝑂 Σg (𝑦 ++ ⟨“𝑧”⟩)) = (𝑀 Σg (reverse‘(𝑦 ++ ⟨“𝑧”⟩)))))
6564expcom 413 . . . 4 ((𝑦 ∈ Word 𝐵𝑧𝐵) → (𝑀 ∈ Mnd → ((𝑂 Σg 𝑦) = (𝑀 Σg (reverse‘𝑦)) → (𝑂 Σg (𝑦 ++ ⟨“𝑧”⟩)) = (𝑀 Σg (reverse‘(𝑦 ++ ⟨“𝑧”⟩))))))
6665a2d 29 . . 3 ((𝑦 ∈ Word 𝐵𝑧𝐵) → ((𝑀 ∈ Mnd → (𝑂 Σg 𝑦) = (𝑀 Σg (reverse‘𝑦))) → (𝑀 ∈ Mnd → (𝑂 Σg (𝑦 ++ ⟨“𝑧”⟩)) = (𝑀 Σg (reverse‘(𝑦 ++ ⟨“𝑧”⟩))))))
677, 12, 17, 22, 29, 66wrdind 14363 . 2 (𝑊 ∈ Word 𝐵 → (𝑀 ∈ Mnd → (𝑂 Σg 𝑊) = (𝑀 Σg (reverse‘𝑊))))
6867impcom 407 1 ((𝑀 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵) → (𝑂 Σg 𝑊) = (𝑀 Σg (reverse‘𝑊)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  c0 4253  cfv 6418  (class class class)co 7255  Word cword 14145   ++ cconcat 14201  ⟨“cs1 14228  reversecreverse 14399  Basecbs 16840  +gcplusg 16888  0gc0g 17067   Σg cgsu 17068  Mndcmnd 18300  oppgcoppg 18864
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-tpos 8013  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-n0 12164  df-xnn0 12236  df-z 12250  df-uz 12512  df-fz 13169  df-fzo 13312  df-seq 13650  df-hash 13973  df-word 14146  df-lsw 14194  df-concat 14202  df-s1 14229  df-substr 14282  df-pfx 14312  df-reverse 14400  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-0g 17069  df-gsum 17070  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-oppg 18865
This theorem is referenced by:  symgtrinv  18995
  Copyright terms: Public domain W3C validator