MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumwrev Structured version   Visualization version   GIF version

Theorem gsumwrev 19400
Description: A sum in an opposite monoid is the regular sum of a reversed word. (Contributed by Stefan O'Rear, 27-Aug-2015.) (Proof shortened by Mario Carneiro, 28-Feb-2016.)
Hypotheses
Ref Expression
gsumwrev.b 𝐵 = (Base‘𝑀)
gsumwrev.o 𝑂 = (oppg𝑀)
Assertion
Ref Expression
gsumwrev ((𝑀 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵) → (𝑂 Σg 𝑊) = (𝑀 Σg (reverse‘𝑊)))

Proof of Theorem gsumwrev
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7439 . . . . 5 (𝑥 = ∅ → (𝑂 Σg 𝑥) = (𝑂 Σg ∅))
2 fveq2 6907 . . . . . . 7 (𝑥 = ∅ → (reverse‘𝑥) = (reverse‘∅))
3 rev0 14799 . . . . . . 7 (reverse‘∅) = ∅
42, 3eqtrdi 2791 . . . . . 6 (𝑥 = ∅ → (reverse‘𝑥) = ∅)
54oveq2d 7447 . . . . 5 (𝑥 = ∅ → (𝑀 Σg (reverse‘𝑥)) = (𝑀 Σg ∅))
61, 5eqeq12d 2751 . . . 4 (𝑥 = ∅ → ((𝑂 Σg 𝑥) = (𝑀 Σg (reverse‘𝑥)) ↔ (𝑂 Σg ∅) = (𝑀 Σg ∅)))
76imbi2d 340 . . 3 (𝑥 = ∅ → ((𝑀 ∈ Mnd → (𝑂 Σg 𝑥) = (𝑀 Σg (reverse‘𝑥))) ↔ (𝑀 ∈ Mnd → (𝑂 Σg ∅) = (𝑀 Σg ∅))))
8 oveq2 7439 . . . . 5 (𝑥 = 𝑦 → (𝑂 Σg 𝑥) = (𝑂 Σg 𝑦))
9 fveq2 6907 . . . . . 6 (𝑥 = 𝑦 → (reverse‘𝑥) = (reverse‘𝑦))
109oveq2d 7447 . . . . 5 (𝑥 = 𝑦 → (𝑀 Σg (reverse‘𝑥)) = (𝑀 Σg (reverse‘𝑦)))
118, 10eqeq12d 2751 . . . 4 (𝑥 = 𝑦 → ((𝑂 Σg 𝑥) = (𝑀 Σg (reverse‘𝑥)) ↔ (𝑂 Σg 𝑦) = (𝑀 Σg (reverse‘𝑦))))
1211imbi2d 340 . . 3 (𝑥 = 𝑦 → ((𝑀 ∈ Mnd → (𝑂 Σg 𝑥) = (𝑀 Σg (reverse‘𝑥))) ↔ (𝑀 ∈ Mnd → (𝑂 Σg 𝑦) = (𝑀 Σg (reverse‘𝑦)))))
13 oveq2 7439 . . . . 5 (𝑥 = (𝑦 ++ ⟨“𝑧”⟩) → (𝑂 Σg 𝑥) = (𝑂 Σg (𝑦 ++ ⟨“𝑧”⟩)))
14 fveq2 6907 . . . . . 6 (𝑥 = (𝑦 ++ ⟨“𝑧”⟩) → (reverse‘𝑥) = (reverse‘(𝑦 ++ ⟨“𝑧”⟩)))
1514oveq2d 7447 . . . . 5 (𝑥 = (𝑦 ++ ⟨“𝑧”⟩) → (𝑀 Σg (reverse‘𝑥)) = (𝑀 Σg (reverse‘(𝑦 ++ ⟨“𝑧”⟩))))
1613, 15eqeq12d 2751 . . . 4 (𝑥 = (𝑦 ++ ⟨“𝑧”⟩) → ((𝑂 Σg 𝑥) = (𝑀 Σg (reverse‘𝑥)) ↔ (𝑂 Σg (𝑦 ++ ⟨“𝑧”⟩)) = (𝑀 Σg (reverse‘(𝑦 ++ ⟨“𝑧”⟩)))))
1716imbi2d 340 . . 3 (𝑥 = (𝑦 ++ ⟨“𝑧”⟩) → ((𝑀 ∈ Mnd → (𝑂 Σg 𝑥) = (𝑀 Σg (reverse‘𝑥))) ↔ (𝑀 ∈ Mnd → (𝑂 Σg (𝑦 ++ ⟨“𝑧”⟩)) = (𝑀 Σg (reverse‘(𝑦 ++ ⟨“𝑧”⟩))))))
18 oveq2 7439 . . . . 5 (𝑥 = 𝑊 → (𝑂 Σg 𝑥) = (𝑂 Σg 𝑊))
19 fveq2 6907 . . . . . 6 (𝑥 = 𝑊 → (reverse‘𝑥) = (reverse‘𝑊))
2019oveq2d 7447 . . . . 5 (𝑥 = 𝑊 → (𝑀 Σg (reverse‘𝑥)) = (𝑀 Σg (reverse‘𝑊)))
2118, 20eqeq12d 2751 . . . 4 (𝑥 = 𝑊 → ((𝑂 Σg 𝑥) = (𝑀 Σg (reverse‘𝑥)) ↔ (𝑂 Σg 𝑊) = (𝑀 Σg (reverse‘𝑊))))
2221imbi2d 340 . . 3 (𝑥 = 𝑊 → ((𝑀 ∈ Mnd → (𝑂 Σg 𝑥) = (𝑀 Σg (reverse‘𝑥))) ↔ (𝑀 ∈ Mnd → (𝑂 Σg 𝑊) = (𝑀 Σg (reverse‘𝑊)))))
23 gsumwrev.o . . . . . . 7 𝑂 = (oppg𝑀)
24 eqid 2735 . . . . . . 7 (0g𝑀) = (0g𝑀)
2523, 24oppgid 19390 . . . . . 6 (0g𝑀) = (0g𝑂)
2625gsum0 18710 . . . . 5 (𝑂 Σg ∅) = (0g𝑀)
2724gsum0 18710 . . . . 5 (𝑀 Σg ∅) = (0g𝑀)
2826, 27eqtr4i 2766 . . . 4 (𝑂 Σg ∅) = (𝑀 Σg ∅)
2928a1i 11 . . 3 (𝑀 ∈ Mnd → (𝑂 Σg ∅) = (𝑀 Σg ∅))
30 oveq2 7439 . . . . . 6 ((𝑂 Σg 𝑦) = (𝑀 Σg (reverse‘𝑦)) → (𝑧(+g𝑀)(𝑂 Σg 𝑦)) = (𝑧(+g𝑀)(𝑀 Σg (reverse‘𝑦))))
3123oppgmnd 19388 . . . . . . . . . 10 (𝑀 ∈ Mnd → 𝑂 ∈ Mnd)
3231adantr 480 . . . . . . . . 9 ((𝑀 ∈ Mnd ∧ (𝑦 ∈ Word 𝐵𝑧𝐵)) → 𝑂 ∈ Mnd)
33 simprl 771 . . . . . . . . 9 ((𝑀 ∈ Mnd ∧ (𝑦 ∈ Word 𝐵𝑧𝐵)) → 𝑦 ∈ Word 𝐵)
34 simprr 773 . . . . . . . . . 10 ((𝑀 ∈ Mnd ∧ (𝑦 ∈ Word 𝐵𝑧𝐵)) → 𝑧𝐵)
3534s1cld 14638 . . . . . . . . 9 ((𝑀 ∈ Mnd ∧ (𝑦 ∈ Word 𝐵𝑧𝐵)) → ⟨“𝑧”⟩ ∈ Word 𝐵)
36 gsumwrev.b . . . . . . . . . . 11 𝐵 = (Base‘𝑀)
3723, 36oppgbas 19383 . . . . . . . . . 10 𝐵 = (Base‘𝑂)
38 eqid 2735 . . . . . . . . . 10 (+g𝑂) = (+g𝑂)
3937, 38gsumccat 18867 . . . . . . . . 9 ((𝑂 ∈ Mnd ∧ 𝑦 ∈ Word 𝐵 ∧ ⟨“𝑧”⟩ ∈ Word 𝐵) → (𝑂 Σg (𝑦 ++ ⟨“𝑧”⟩)) = ((𝑂 Σg 𝑦)(+g𝑂)(𝑂 Σg ⟨“𝑧”⟩)))
4032, 33, 35, 39syl3anc 1370 . . . . . . . 8 ((𝑀 ∈ Mnd ∧ (𝑦 ∈ Word 𝐵𝑧𝐵)) → (𝑂 Σg (𝑦 ++ ⟨“𝑧”⟩)) = ((𝑂 Σg 𝑦)(+g𝑂)(𝑂 Σg ⟨“𝑧”⟩)))
4137gsumws1 18864 . . . . . . . . . . 11 (𝑧𝐵 → (𝑂 Σg ⟨“𝑧”⟩) = 𝑧)
4241ad2antll 729 . . . . . . . . . 10 ((𝑀 ∈ Mnd ∧ (𝑦 ∈ Word 𝐵𝑧𝐵)) → (𝑂 Σg ⟨“𝑧”⟩) = 𝑧)
4342oveq2d 7447 . . . . . . . . 9 ((𝑀 ∈ Mnd ∧ (𝑦 ∈ Word 𝐵𝑧𝐵)) → ((𝑂 Σg 𝑦)(+g𝑂)(𝑂 Σg ⟨“𝑧”⟩)) = ((𝑂 Σg 𝑦)(+g𝑂)𝑧))
44 eqid 2735 . . . . . . . . . 10 (+g𝑀) = (+g𝑀)
4544, 23, 38oppgplus 19380 . . . . . . . . 9 ((𝑂 Σg 𝑦)(+g𝑂)𝑧) = (𝑧(+g𝑀)(𝑂 Σg 𝑦))
4643, 45eqtrdi 2791 . . . . . . . 8 ((𝑀 ∈ Mnd ∧ (𝑦 ∈ Word 𝐵𝑧𝐵)) → ((𝑂 Σg 𝑦)(+g𝑂)(𝑂 Σg ⟨“𝑧”⟩)) = (𝑧(+g𝑀)(𝑂 Σg 𝑦)))
4740, 46eqtrd 2775 . . . . . . 7 ((𝑀 ∈ Mnd ∧ (𝑦 ∈ Word 𝐵𝑧𝐵)) → (𝑂 Σg (𝑦 ++ ⟨“𝑧”⟩)) = (𝑧(+g𝑀)(𝑂 Σg 𝑦)))
48 revccat 14801 . . . . . . . . . . 11 ((𝑦 ∈ Word 𝐵 ∧ ⟨“𝑧”⟩ ∈ Word 𝐵) → (reverse‘(𝑦 ++ ⟨“𝑧”⟩)) = ((reverse‘⟨“𝑧”⟩) ++ (reverse‘𝑦)))
4933, 35, 48syl2anc 584 . . . . . . . . . 10 ((𝑀 ∈ Mnd ∧ (𝑦 ∈ Word 𝐵𝑧𝐵)) → (reverse‘(𝑦 ++ ⟨“𝑧”⟩)) = ((reverse‘⟨“𝑧”⟩) ++ (reverse‘𝑦)))
50 revs1 14800 . . . . . . . . . . 11 (reverse‘⟨“𝑧”⟩) = ⟨“𝑧”⟩
5150oveq1i 7441 . . . . . . . . . 10 ((reverse‘⟨“𝑧”⟩) ++ (reverse‘𝑦)) = (⟨“𝑧”⟩ ++ (reverse‘𝑦))
5249, 51eqtrdi 2791 . . . . . . . . 9 ((𝑀 ∈ Mnd ∧ (𝑦 ∈ Word 𝐵𝑧𝐵)) → (reverse‘(𝑦 ++ ⟨“𝑧”⟩)) = (⟨“𝑧”⟩ ++ (reverse‘𝑦)))
5352oveq2d 7447 . . . . . . . 8 ((𝑀 ∈ Mnd ∧ (𝑦 ∈ Word 𝐵𝑧𝐵)) → (𝑀 Σg (reverse‘(𝑦 ++ ⟨“𝑧”⟩))) = (𝑀 Σg (⟨“𝑧”⟩ ++ (reverse‘𝑦))))
54 simpl 482 . . . . . . . . 9 ((𝑀 ∈ Mnd ∧ (𝑦 ∈ Word 𝐵𝑧𝐵)) → 𝑀 ∈ Mnd)
55 revcl 14796 . . . . . . . . . 10 (𝑦 ∈ Word 𝐵 → (reverse‘𝑦) ∈ Word 𝐵)
5655ad2antrl 728 . . . . . . . . 9 ((𝑀 ∈ Mnd ∧ (𝑦 ∈ Word 𝐵𝑧𝐵)) → (reverse‘𝑦) ∈ Word 𝐵)
5736, 44gsumccat 18867 . . . . . . . . 9 ((𝑀 ∈ Mnd ∧ ⟨“𝑧”⟩ ∈ Word 𝐵 ∧ (reverse‘𝑦) ∈ Word 𝐵) → (𝑀 Σg (⟨“𝑧”⟩ ++ (reverse‘𝑦))) = ((𝑀 Σg ⟨“𝑧”⟩)(+g𝑀)(𝑀 Σg (reverse‘𝑦))))
5854, 35, 56, 57syl3anc 1370 . . . . . . . 8 ((𝑀 ∈ Mnd ∧ (𝑦 ∈ Word 𝐵𝑧𝐵)) → (𝑀 Σg (⟨“𝑧”⟩ ++ (reverse‘𝑦))) = ((𝑀 Σg ⟨“𝑧”⟩)(+g𝑀)(𝑀 Σg (reverse‘𝑦))))
5936gsumws1 18864 . . . . . . . . . 10 (𝑧𝐵 → (𝑀 Σg ⟨“𝑧”⟩) = 𝑧)
6059ad2antll 729 . . . . . . . . 9 ((𝑀 ∈ Mnd ∧ (𝑦 ∈ Word 𝐵𝑧𝐵)) → (𝑀 Σg ⟨“𝑧”⟩) = 𝑧)
6160oveq1d 7446 . . . . . . . 8 ((𝑀 ∈ Mnd ∧ (𝑦 ∈ Word 𝐵𝑧𝐵)) → ((𝑀 Σg ⟨“𝑧”⟩)(+g𝑀)(𝑀 Σg (reverse‘𝑦))) = (𝑧(+g𝑀)(𝑀 Σg (reverse‘𝑦))))
6253, 58, 613eqtrd 2779 . . . . . . 7 ((𝑀 ∈ Mnd ∧ (𝑦 ∈ Word 𝐵𝑧𝐵)) → (𝑀 Σg (reverse‘(𝑦 ++ ⟨“𝑧”⟩))) = (𝑧(+g𝑀)(𝑀 Σg (reverse‘𝑦))))
6347, 62eqeq12d 2751 . . . . . 6 ((𝑀 ∈ Mnd ∧ (𝑦 ∈ Word 𝐵𝑧𝐵)) → ((𝑂 Σg (𝑦 ++ ⟨“𝑧”⟩)) = (𝑀 Σg (reverse‘(𝑦 ++ ⟨“𝑧”⟩))) ↔ (𝑧(+g𝑀)(𝑂 Σg 𝑦)) = (𝑧(+g𝑀)(𝑀 Σg (reverse‘𝑦)))))
6430, 63imbitrrid 246 . . . . 5 ((𝑀 ∈ Mnd ∧ (𝑦 ∈ Word 𝐵𝑧𝐵)) → ((𝑂 Σg 𝑦) = (𝑀 Σg (reverse‘𝑦)) → (𝑂 Σg (𝑦 ++ ⟨“𝑧”⟩)) = (𝑀 Σg (reverse‘(𝑦 ++ ⟨“𝑧”⟩)))))
6564expcom 413 . . . 4 ((𝑦 ∈ Word 𝐵𝑧𝐵) → (𝑀 ∈ Mnd → ((𝑂 Σg 𝑦) = (𝑀 Σg (reverse‘𝑦)) → (𝑂 Σg (𝑦 ++ ⟨“𝑧”⟩)) = (𝑀 Σg (reverse‘(𝑦 ++ ⟨“𝑧”⟩))))))
6665a2d 29 . . 3 ((𝑦 ∈ Word 𝐵𝑧𝐵) → ((𝑀 ∈ Mnd → (𝑂 Σg 𝑦) = (𝑀 Σg (reverse‘𝑦))) → (𝑀 ∈ Mnd → (𝑂 Σg (𝑦 ++ ⟨“𝑧”⟩)) = (𝑀 Σg (reverse‘(𝑦 ++ ⟨“𝑧”⟩))))))
677, 12, 17, 22, 29, 66wrdind 14757 . 2 (𝑊 ∈ Word 𝐵 → (𝑀 ∈ Mnd → (𝑂 Σg 𝑊) = (𝑀 Σg (reverse‘𝑊))))
6867impcom 407 1 ((𝑀 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵) → (𝑂 Σg 𝑊) = (𝑀 Σg (reverse‘𝑊)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  c0 4339  cfv 6563  (class class class)co 7431  Word cword 14549   ++ cconcat 14605  ⟨“cs1 14630  reversecreverse 14793  Basecbs 17245  +gcplusg 17298  0gc0g 17486   Σg cgsu 17487  Mndcmnd 18760  oppgcoppg 19376
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-tpos 8250  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-n0 12525  df-xnn0 12598  df-z 12612  df-uz 12877  df-fz 13545  df-fzo 13692  df-seq 14040  df-hash 14367  df-word 14550  df-lsw 14598  df-concat 14606  df-s1 14631  df-substr 14676  df-pfx 14706  df-reverse 14794  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-0g 17488  df-gsum 17489  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-submnd 18810  df-oppg 19377
This theorem is referenced by:  symgtrinv  19505
  Copyright terms: Public domain W3C validator