MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumwrev Structured version   Visualization version   GIF version

Theorem gsumwrev 18712
Description: A sum in an opposite monoid is the regular sum of a reversed word. (Contributed by Stefan O'Rear, 27-Aug-2015.) (Proof shortened by Mario Carneiro, 28-Feb-2016.)
Hypotheses
Ref Expression
gsumwrev.b 𝐵 = (Base‘𝑀)
gsumwrev.o 𝑂 = (oppg𝑀)
Assertion
Ref Expression
gsumwrev ((𝑀 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵) → (𝑂 Σg 𝑊) = (𝑀 Σg (reverse‘𝑊)))

Proof of Theorem gsumwrev
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7199 . . . . 5 (𝑥 = ∅ → (𝑂 Σg 𝑥) = (𝑂 Σg ∅))
2 fveq2 6695 . . . . . . 7 (𝑥 = ∅ → (reverse‘𝑥) = (reverse‘∅))
3 rev0 14294 . . . . . . 7 (reverse‘∅) = ∅
42, 3eqtrdi 2787 . . . . . 6 (𝑥 = ∅ → (reverse‘𝑥) = ∅)
54oveq2d 7207 . . . . 5 (𝑥 = ∅ → (𝑀 Σg (reverse‘𝑥)) = (𝑀 Σg ∅))
61, 5eqeq12d 2752 . . . 4 (𝑥 = ∅ → ((𝑂 Σg 𝑥) = (𝑀 Σg (reverse‘𝑥)) ↔ (𝑂 Σg ∅) = (𝑀 Σg ∅)))
76imbi2d 344 . . 3 (𝑥 = ∅ → ((𝑀 ∈ Mnd → (𝑂 Σg 𝑥) = (𝑀 Σg (reverse‘𝑥))) ↔ (𝑀 ∈ Mnd → (𝑂 Σg ∅) = (𝑀 Σg ∅))))
8 oveq2 7199 . . . . 5 (𝑥 = 𝑦 → (𝑂 Σg 𝑥) = (𝑂 Σg 𝑦))
9 fveq2 6695 . . . . . 6 (𝑥 = 𝑦 → (reverse‘𝑥) = (reverse‘𝑦))
109oveq2d 7207 . . . . 5 (𝑥 = 𝑦 → (𝑀 Σg (reverse‘𝑥)) = (𝑀 Σg (reverse‘𝑦)))
118, 10eqeq12d 2752 . . . 4 (𝑥 = 𝑦 → ((𝑂 Σg 𝑥) = (𝑀 Σg (reverse‘𝑥)) ↔ (𝑂 Σg 𝑦) = (𝑀 Σg (reverse‘𝑦))))
1211imbi2d 344 . . 3 (𝑥 = 𝑦 → ((𝑀 ∈ Mnd → (𝑂 Σg 𝑥) = (𝑀 Σg (reverse‘𝑥))) ↔ (𝑀 ∈ Mnd → (𝑂 Σg 𝑦) = (𝑀 Σg (reverse‘𝑦)))))
13 oveq2 7199 . . . . 5 (𝑥 = (𝑦 ++ ⟨“𝑧”⟩) → (𝑂 Σg 𝑥) = (𝑂 Σg (𝑦 ++ ⟨“𝑧”⟩)))
14 fveq2 6695 . . . . . 6 (𝑥 = (𝑦 ++ ⟨“𝑧”⟩) → (reverse‘𝑥) = (reverse‘(𝑦 ++ ⟨“𝑧”⟩)))
1514oveq2d 7207 . . . . 5 (𝑥 = (𝑦 ++ ⟨“𝑧”⟩) → (𝑀 Σg (reverse‘𝑥)) = (𝑀 Σg (reverse‘(𝑦 ++ ⟨“𝑧”⟩))))
1613, 15eqeq12d 2752 . . . 4 (𝑥 = (𝑦 ++ ⟨“𝑧”⟩) → ((𝑂 Σg 𝑥) = (𝑀 Σg (reverse‘𝑥)) ↔ (𝑂 Σg (𝑦 ++ ⟨“𝑧”⟩)) = (𝑀 Σg (reverse‘(𝑦 ++ ⟨“𝑧”⟩)))))
1716imbi2d 344 . . 3 (𝑥 = (𝑦 ++ ⟨“𝑧”⟩) → ((𝑀 ∈ Mnd → (𝑂 Σg 𝑥) = (𝑀 Σg (reverse‘𝑥))) ↔ (𝑀 ∈ Mnd → (𝑂 Σg (𝑦 ++ ⟨“𝑧”⟩)) = (𝑀 Σg (reverse‘(𝑦 ++ ⟨“𝑧”⟩))))))
18 oveq2 7199 . . . . 5 (𝑥 = 𝑊 → (𝑂 Σg 𝑥) = (𝑂 Σg 𝑊))
19 fveq2 6695 . . . . . 6 (𝑥 = 𝑊 → (reverse‘𝑥) = (reverse‘𝑊))
2019oveq2d 7207 . . . . 5 (𝑥 = 𝑊 → (𝑀 Σg (reverse‘𝑥)) = (𝑀 Σg (reverse‘𝑊)))
2118, 20eqeq12d 2752 . . . 4 (𝑥 = 𝑊 → ((𝑂 Σg 𝑥) = (𝑀 Σg (reverse‘𝑥)) ↔ (𝑂 Σg 𝑊) = (𝑀 Σg (reverse‘𝑊))))
2221imbi2d 344 . . 3 (𝑥 = 𝑊 → ((𝑀 ∈ Mnd → (𝑂 Σg 𝑥) = (𝑀 Σg (reverse‘𝑥))) ↔ (𝑀 ∈ Mnd → (𝑂 Σg 𝑊) = (𝑀 Σg (reverse‘𝑊)))))
23 gsumwrev.o . . . . . . 7 𝑂 = (oppg𝑀)
24 eqid 2736 . . . . . . 7 (0g𝑀) = (0g𝑀)
2523, 24oppgid 18702 . . . . . 6 (0g𝑀) = (0g𝑂)
2625gsum0 18110 . . . . 5 (𝑂 Σg ∅) = (0g𝑀)
2724gsum0 18110 . . . . 5 (𝑀 Σg ∅) = (0g𝑀)
2826, 27eqtr4i 2762 . . . 4 (𝑂 Σg ∅) = (𝑀 Σg ∅)
2928a1i 11 . . 3 (𝑀 ∈ Mnd → (𝑂 Σg ∅) = (𝑀 Σg ∅))
30 oveq2 7199 . . . . . 6 ((𝑂 Σg 𝑦) = (𝑀 Σg (reverse‘𝑦)) → (𝑧(+g𝑀)(𝑂 Σg 𝑦)) = (𝑧(+g𝑀)(𝑀 Σg (reverse‘𝑦))))
3123oppgmnd 18700 . . . . . . . . . 10 (𝑀 ∈ Mnd → 𝑂 ∈ Mnd)
3231adantr 484 . . . . . . . . 9 ((𝑀 ∈ Mnd ∧ (𝑦 ∈ Word 𝐵𝑧𝐵)) → 𝑂 ∈ Mnd)
33 simprl 771 . . . . . . . . 9 ((𝑀 ∈ Mnd ∧ (𝑦 ∈ Word 𝐵𝑧𝐵)) → 𝑦 ∈ Word 𝐵)
34 simprr 773 . . . . . . . . . 10 ((𝑀 ∈ Mnd ∧ (𝑦 ∈ Word 𝐵𝑧𝐵)) → 𝑧𝐵)
3534s1cld 14125 . . . . . . . . 9 ((𝑀 ∈ Mnd ∧ (𝑦 ∈ Word 𝐵𝑧𝐵)) → ⟨“𝑧”⟩ ∈ Word 𝐵)
36 gsumwrev.b . . . . . . . . . . 11 𝐵 = (Base‘𝑀)
3723, 36oppgbas 18697 . . . . . . . . . 10 𝐵 = (Base‘𝑂)
38 eqid 2736 . . . . . . . . . 10 (+g𝑂) = (+g𝑂)
3937, 38gsumccat 18222 . . . . . . . . 9 ((𝑂 ∈ Mnd ∧ 𝑦 ∈ Word 𝐵 ∧ ⟨“𝑧”⟩ ∈ Word 𝐵) → (𝑂 Σg (𝑦 ++ ⟨“𝑧”⟩)) = ((𝑂 Σg 𝑦)(+g𝑂)(𝑂 Σg ⟨“𝑧”⟩)))
4032, 33, 35, 39syl3anc 1373 . . . . . . . 8 ((𝑀 ∈ Mnd ∧ (𝑦 ∈ Word 𝐵𝑧𝐵)) → (𝑂 Σg (𝑦 ++ ⟨“𝑧”⟩)) = ((𝑂 Σg 𝑦)(+g𝑂)(𝑂 Σg ⟨“𝑧”⟩)))
4137gsumws1 18218 . . . . . . . . . . 11 (𝑧𝐵 → (𝑂 Σg ⟨“𝑧”⟩) = 𝑧)
4241ad2antll 729 . . . . . . . . . 10 ((𝑀 ∈ Mnd ∧ (𝑦 ∈ Word 𝐵𝑧𝐵)) → (𝑂 Σg ⟨“𝑧”⟩) = 𝑧)
4342oveq2d 7207 . . . . . . . . 9 ((𝑀 ∈ Mnd ∧ (𝑦 ∈ Word 𝐵𝑧𝐵)) → ((𝑂 Σg 𝑦)(+g𝑂)(𝑂 Σg ⟨“𝑧”⟩)) = ((𝑂 Σg 𝑦)(+g𝑂)𝑧))
44 eqid 2736 . . . . . . . . . 10 (+g𝑀) = (+g𝑀)
4544, 23, 38oppgplus 18695 . . . . . . . . 9 ((𝑂 Σg 𝑦)(+g𝑂)𝑧) = (𝑧(+g𝑀)(𝑂 Σg 𝑦))
4643, 45eqtrdi 2787 . . . . . . . 8 ((𝑀 ∈ Mnd ∧ (𝑦 ∈ Word 𝐵𝑧𝐵)) → ((𝑂 Σg 𝑦)(+g𝑂)(𝑂 Σg ⟨“𝑧”⟩)) = (𝑧(+g𝑀)(𝑂 Σg 𝑦)))
4740, 46eqtrd 2771 . . . . . . 7 ((𝑀 ∈ Mnd ∧ (𝑦 ∈ Word 𝐵𝑧𝐵)) → (𝑂 Σg (𝑦 ++ ⟨“𝑧”⟩)) = (𝑧(+g𝑀)(𝑂 Σg 𝑦)))
48 revccat 14296 . . . . . . . . . . 11 ((𝑦 ∈ Word 𝐵 ∧ ⟨“𝑧”⟩ ∈ Word 𝐵) → (reverse‘(𝑦 ++ ⟨“𝑧”⟩)) = ((reverse‘⟨“𝑧”⟩) ++ (reverse‘𝑦)))
4933, 35, 48syl2anc 587 . . . . . . . . . 10 ((𝑀 ∈ Mnd ∧ (𝑦 ∈ Word 𝐵𝑧𝐵)) → (reverse‘(𝑦 ++ ⟨“𝑧”⟩)) = ((reverse‘⟨“𝑧”⟩) ++ (reverse‘𝑦)))
50 revs1 14295 . . . . . . . . . . 11 (reverse‘⟨“𝑧”⟩) = ⟨“𝑧”⟩
5150oveq1i 7201 . . . . . . . . . 10 ((reverse‘⟨“𝑧”⟩) ++ (reverse‘𝑦)) = (⟨“𝑧”⟩ ++ (reverse‘𝑦))
5249, 51eqtrdi 2787 . . . . . . . . 9 ((𝑀 ∈ Mnd ∧ (𝑦 ∈ Word 𝐵𝑧𝐵)) → (reverse‘(𝑦 ++ ⟨“𝑧”⟩)) = (⟨“𝑧”⟩ ++ (reverse‘𝑦)))
5352oveq2d 7207 . . . . . . . 8 ((𝑀 ∈ Mnd ∧ (𝑦 ∈ Word 𝐵𝑧𝐵)) → (𝑀 Σg (reverse‘(𝑦 ++ ⟨“𝑧”⟩))) = (𝑀 Σg (⟨“𝑧”⟩ ++ (reverse‘𝑦))))
54 simpl 486 . . . . . . . . 9 ((𝑀 ∈ Mnd ∧ (𝑦 ∈ Word 𝐵𝑧𝐵)) → 𝑀 ∈ Mnd)
55 revcl 14291 . . . . . . . . . 10 (𝑦 ∈ Word 𝐵 → (reverse‘𝑦) ∈ Word 𝐵)
5655ad2antrl 728 . . . . . . . . 9 ((𝑀 ∈ Mnd ∧ (𝑦 ∈ Word 𝐵𝑧𝐵)) → (reverse‘𝑦) ∈ Word 𝐵)
5736, 44gsumccat 18222 . . . . . . . . 9 ((𝑀 ∈ Mnd ∧ ⟨“𝑧”⟩ ∈ Word 𝐵 ∧ (reverse‘𝑦) ∈ Word 𝐵) → (𝑀 Σg (⟨“𝑧”⟩ ++ (reverse‘𝑦))) = ((𝑀 Σg ⟨“𝑧”⟩)(+g𝑀)(𝑀 Σg (reverse‘𝑦))))
5854, 35, 56, 57syl3anc 1373 . . . . . . . 8 ((𝑀 ∈ Mnd ∧ (𝑦 ∈ Word 𝐵𝑧𝐵)) → (𝑀 Σg (⟨“𝑧”⟩ ++ (reverse‘𝑦))) = ((𝑀 Σg ⟨“𝑧”⟩)(+g𝑀)(𝑀 Σg (reverse‘𝑦))))
5936gsumws1 18218 . . . . . . . . . 10 (𝑧𝐵 → (𝑀 Σg ⟨“𝑧”⟩) = 𝑧)
6059ad2antll 729 . . . . . . . . 9 ((𝑀 ∈ Mnd ∧ (𝑦 ∈ Word 𝐵𝑧𝐵)) → (𝑀 Σg ⟨“𝑧”⟩) = 𝑧)
6160oveq1d 7206 . . . . . . . 8 ((𝑀 ∈ Mnd ∧ (𝑦 ∈ Word 𝐵𝑧𝐵)) → ((𝑀 Σg ⟨“𝑧”⟩)(+g𝑀)(𝑀 Σg (reverse‘𝑦))) = (𝑧(+g𝑀)(𝑀 Σg (reverse‘𝑦))))
6253, 58, 613eqtrd 2775 . . . . . . 7 ((𝑀 ∈ Mnd ∧ (𝑦 ∈ Word 𝐵𝑧𝐵)) → (𝑀 Σg (reverse‘(𝑦 ++ ⟨“𝑧”⟩))) = (𝑧(+g𝑀)(𝑀 Σg (reverse‘𝑦))))
6347, 62eqeq12d 2752 . . . . . 6 ((𝑀 ∈ Mnd ∧ (𝑦 ∈ Word 𝐵𝑧𝐵)) → ((𝑂 Σg (𝑦 ++ ⟨“𝑧”⟩)) = (𝑀 Σg (reverse‘(𝑦 ++ ⟨“𝑧”⟩))) ↔ (𝑧(+g𝑀)(𝑂 Σg 𝑦)) = (𝑧(+g𝑀)(𝑀 Σg (reverse‘𝑦)))))
6430, 63syl5ibr 249 . . . . 5 ((𝑀 ∈ Mnd ∧ (𝑦 ∈ Word 𝐵𝑧𝐵)) → ((𝑂 Σg 𝑦) = (𝑀 Σg (reverse‘𝑦)) → (𝑂 Σg (𝑦 ++ ⟨“𝑧”⟩)) = (𝑀 Σg (reverse‘(𝑦 ++ ⟨“𝑧”⟩)))))
6564expcom 417 . . . 4 ((𝑦 ∈ Word 𝐵𝑧𝐵) → (𝑀 ∈ Mnd → ((𝑂 Σg 𝑦) = (𝑀 Σg (reverse‘𝑦)) → (𝑂 Σg (𝑦 ++ ⟨“𝑧”⟩)) = (𝑀 Σg (reverse‘(𝑦 ++ ⟨“𝑧”⟩))))))
6665a2d 29 . . 3 ((𝑦 ∈ Word 𝐵𝑧𝐵) → ((𝑀 ∈ Mnd → (𝑂 Σg 𝑦) = (𝑀 Σg (reverse‘𝑦))) → (𝑀 ∈ Mnd → (𝑂 Σg (𝑦 ++ ⟨“𝑧”⟩)) = (𝑀 Σg (reverse‘(𝑦 ++ ⟨“𝑧”⟩))))))
677, 12, 17, 22, 29, 66wrdind 14252 . 2 (𝑊 ∈ Word 𝐵 → (𝑀 ∈ Mnd → (𝑂 Σg 𝑊) = (𝑀 Σg (reverse‘𝑊))))
6867impcom 411 1 ((𝑀 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵) → (𝑂 Σg 𝑊) = (𝑀 Σg (reverse‘𝑊)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2112  c0 4223  cfv 6358  (class class class)co 7191  Word cword 14034   ++ cconcat 14090  ⟨“cs1 14117  reversecreverse 14288  Basecbs 16666  +gcplusg 16749  0gc0g 16898   Σg cgsu 16899  Mndcmnd 18127  oppgcoppg 18691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-cnex 10750  ax-resscn 10751  ax-1cn 10752  ax-icn 10753  ax-addcl 10754  ax-addrcl 10755  ax-mulcl 10756  ax-mulrcl 10757  ax-mulcom 10758  ax-addass 10759  ax-mulass 10760  ax-distr 10761  ax-i2m1 10762  ax-1ne0 10763  ax-1rid 10764  ax-rnegex 10765  ax-rrecex 10766  ax-cnre 10767  ax-pre-lttri 10768  ax-pre-lttrn 10769  ax-pre-ltadd 10770  ax-pre-mulgt0 10771
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-int 4846  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-om 7623  df-1st 7739  df-2nd 7740  df-tpos 7946  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-1o 8180  df-er 8369  df-en 8605  df-dom 8606  df-sdom 8607  df-fin 8608  df-card 9520  df-pnf 10834  df-mnf 10835  df-xr 10836  df-ltxr 10837  df-le 10838  df-sub 11029  df-neg 11030  df-nn 11796  df-2 11858  df-n0 12056  df-xnn0 12128  df-z 12142  df-uz 12404  df-fz 13061  df-fzo 13204  df-seq 13540  df-hash 13862  df-word 14035  df-lsw 14083  df-concat 14091  df-s1 14118  df-substr 14171  df-pfx 14201  df-reverse 14289  df-ndx 16669  df-slot 16670  df-base 16672  df-sets 16673  df-ress 16674  df-plusg 16762  df-0g 16900  df-gsum 16901  df-mgm 18068  df-sgrp 18117  df-mnd 18128  df-submnd 18173  df-oppg 18692
This theorem is referenced by:  symgtrinv  18818
  Copyright terms: Public domain W3C validator