Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mplsubrgcl Structured version   Visualization version   GIF version

Theorem mplsubrgcl 42518
Description: An element of a polynomial algebra over a subring is an element of the polynomial algebra. (Contributed by SN, 9-Feb-2025.)
Hypotheses
Ref Expression
mplsubrgcl.w 𝑊 = (𝐼 mPoly 𝑈)
mplsubrgcl.u 𝑈 = (𝑆s 𝑅)
mplsubrgcl.b 𝐵 = (Base‘𝑊)
mplsubrgcl.p 𝑃 = (𝐼 mPoly 𝑆)
mplsubrgcl.c 𝐶 = (Base‘𝑃)
mplsubrgcl.i (𝜑𝐼𝑉)
mplsubrgcl.r (𝜑𝑅 ∈ (SubRing‘𝑆))
mplsubrgcl.f (𝜑𝐹𝐵)
Assertion
Ref Expression
mplsubrgcl (𝜑𝐹𝐶)

Proof of Theorem mplsubrgcl
StepHypRef Expression
1 mplsubrgcl.p . . . 4 𝑃 = (𝐼 mPoly 𝑆)
2 mplsubrgcl.u . . . 4 𝑈 = (𝑆s 𝑅)
3 mplsubrgcl.w . . . 4 𝑊 = (𝐼 mPoly 𝑈)
4 mplsubrgcl.b . . . 4 𝐵 = (Base‘𝑊)
5 mplsubrgcl.i . . . 4 (𝜑𝐼𝑉)
6 mplsubrgcl.r . . . 4 (𝜑𝑅 ∈ (SubRing‘𝑆))
7 eqid 2735 . . . 4 (𝑃s 𝐵) = (𝑃s 𝐵)
81, 2, 3, 4, 5, 6, 7ressmplbas 21984 . . 3 (𝜑𝐵 = (Base‘(𝑃s 𝐵)))
9 mplsubrgcl.c . . . 4 𝐶 = (Base‘𝑃)
107, 9ressbasss 17258 . . 3 (Base‘(𝑃s 𝐵)) ⊆ 𝐶
118, 10eqsstrdi 4003 . 2 (𝜑𝐵𝐶)
12 mplsubrgcl.f . 2 (𝜑𝐹𝐵)
1311, 12sseldd 3959 1 (𝜑𝐹𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  cfv 6530  (class class class)co 7403  Basecbs 17226  s cress 17249  SubRingcsubrg 20527   mPoly cmpl 21864
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-isom 6539  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-of 7669  df-ofr 7670  df-om 7860  df-1st 7986  df-2nd 7987  df-supp 8158  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-2o 8479  df-er 8717  df-map 8840  df-pm 8841  df-ixp 8910  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-fsupp 9372  df-sup 9452  df-oi 9522  df-card 9951  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-nn 12239  df-2 12301  df-3 12302  df-4 12303  df-5 12304  df-6 12305  df-7 12306  df-8 12307  df-9 12308  df-n0 12500  df-z 12587  df-dec 12707  df-uz 12851  df-fz 13523  df-fzo 13670  df-seq 14018  df-hash 14347  df-struct 17164  df-sets 17181  df-slot 17199  df-ndx 17211  df-base 17227  df-ress 17250  df-plusg 17282  df-mulr 17283  df-sca 17285  df-vsca 17286  df-ip 17287  df-tset 17288  df-ple 17289  df-ds 17291  df-hom 17293  df-cco 17294  df-0g 17453  df-gsum 17454  df-prds 17459  df-pws 17461  df-mre 17596  df-mrc 17597  df-acs 17599  df-mgm 18616  df-sgrp 18695  df-mnd 18711  df-mhm 18759  df-submnd 18760  df-grp 18917  df-minusg 18918  df-mulg 19049  df-subg 19104  df-ghm 19194  df-cntz 19298  df-cmn 19761  df-abl 19762  df-mgp 20099  df-rng 20111  df-ur 20140  df-ring 20193  df-subrng 20504  df-subrg 20528  df-psr 21867  df-mpl 21869
This theorem is referenced by:  evlsevl  42541
  Copyright terms: Public domain W3C validator