![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > frlmplusgval | Structured version Visualization version GIF version |
Description: Addition in a free module. (Contributed by Stefan O'Rear, 1-Feb-2015.) (Revised by Stefan O'Rear, 6-May-2015.) |
Ref | Expression |
---|---|
frlmplusgval.y | ⊢ 𝑌 = (𝑅 freeLMod 𝐼) |
frlmplusgval.b | ⊢ 𝐵 = (Base‘𝑌) |
frlmplusgval.r | ⊢ (𝜑 → 𝑅 ∈ 𝑉) |
frlmplusgval.i | ⊢ (𝜑 → 𝐼 ∈ 𝑊) |
frlmplusgval.f | ⊢ (𝜑 → 𝐹 ∈ 𝐵) |
frlmplusgval.g | ⊢ (𝜑 → 𝐺 ∈ 𝐵) |
frlmplusgval.a | ⊢ + = (+g‘𝑅) |
frlmplusgval.p | ⊢ ✚ = (+g‘𝑌) |
Ref | Expression |
---|---|
frlmplusgval | ⊢ (𝜑 → (𝐹 ✚ 𝐺) = (𝐹 ∘𝑓 + 𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frlmplusgval.r | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ 𝑉) | |
2 | frlmplusgval.i | . . . . . 6 ⊢ (𝜑 → 𝐼 ∈ 𝑊) | |
3 | frlmplusgval.y | . . . . . . 7 ⊢ 𝑌 = (𝑅 freeLMod 𝐼) | |
4 | eqid 2826 | . . . . . . 7 ⊢ (Base‘𝑌) = (Base‘𝑌) | |
5 | 3, 4 | frlmpws 20458 | . . . . . 6 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → 𝑌 = (((ringLMod‘𝑅) ↑s 𝐼) ↾s (Base‘𝑌))) |
6 | 1, 2, 5 | syl2anc 581 | . . . . 5 ⊢ (𝜑 → 𝑌 = (((ringLMod‘𝑅) ↑s 𝐼) ↾s (Base‘𝑌))) |
7 | 6 | fveq2d 6438 | . . . 4 ⊢ (𝜑 → (+g‘𝑌) = (+g‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s (Base‘𝑌)))) |
8 | frlmplusgval.p | . . . 4 ⊢ ✚ = (+g‘𝑌) | |
9 | fvex 6447 | . . . . 5 ⊢ (Base‘𝑌) ∈ V | |
10 | eqid 2826 | . . . . . 6 ⊢ (((ringLMod‘𝑅) ↑s 𝐼) ↾s (Base‘𝑌)) = (((ringLMod‘𝑅) ↑s 𝐼) ↾s (Base‘𝑌)) | |
11 | eqid 2826 | . . . . . 6 ⊢ (+g‘((ringLMod‘𝑅) ↑s 𝐼)) = (+g‘((ringLMod‘𝑅) ↑s 𝐼)) | |
12 | 10, 11 | ressplusg 16353 | . . . . 5 ⊢ ((Base‘𝑌) ∈ V → (+g‘((ringLMod‘𝑅) ↑s 𝐼)) = (+g‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s (Base‘𝑌)))) |
13 | 9, 12 | ax-mp 5 | . . . 4 ⊢ (+g‘((ringLMod‘𝑅) ↑s 𝐼)) = (+g‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s (Base‘𝑌))) |
14 | 7, 8, 13 | 3eqtr4g 2887 | . . 3 ⊢ (𝜑 → ✚ = (+g‘((ringLMod‘𝑅) ↑s 𝐼))) |
15 | 14 | oveqd 6923 | . 2 ⊢ (𝜑 → (𝐹 ✚ 𝐺) = (𝐹(+g‘((ringLMod‘𝑅) ↑s 𝐼))𝐺)) |
16 | eqid 2826 | . . 3 ⊢ ((ringLMod‘𝑅) ↑s 𝐼) = ((ringLMod‘𝑅) ↑s 𝐼) | |
17 | eqid 2826 | . . 3 ⊢ (Base‘((ringLMod‘𝑅) ↑s 𝐼)) = (Base‘((ringLMod‘𝑅) ↑s 𝐼)) | |
18 | fvexd 6449 | . . 3 ⊢ (𝜑 → (ringLMod‘𝑅) ∈ V) | |
19 | frlmplusgval.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑌) | |
20 | 3, 19 | frlmpws 20458 | . . . . . . . 8 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → 𝑌 = (((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵)) |
21 | 1, 2, 20 | syl2anc 581 | . . . . . . 7 ⊢ (𝜑 → 𝑌 = (((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵)) |
22 | 21 | fveq2d 6438 | . . . . . 6 ⊢ (𝜑 → (Base‘𝑌) = (Base‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵))) |
23 | 19, 22 | syl5eq 2874 | . . . . 5 ⊢ (𝜑 → 𝐵 = (Base‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵))) |
24 | eqid 2826 | . . . . . 6 ⊢ (((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵) = (((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵) | |
25 | 24, 17 | ressbasss 16296 | . . . . 5 ⊢ (Base‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵)) ⊆ (Base‘((ringLMod‘𝑅) ↑s 𝐼)) |
26 | 23, 25 | syl6eqss 3881 | . . . 4 ⊢ (𝜑 → 𝐵 ⊆ (Base‘((ringLMod‘𝑅) ↑s 𝐼))) |
27 | frlmplusgval.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ 𝐵) | |
28 | 26, 27 | sseldd 3829 | . . 3 ⊢ (𝜑 → 𝐹 ∈ (Base‘((ringLMod‘𝑅) ↑s 𝐼))) |
29 | frlmplusgval.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ 𝐵) | |
30 | 26, 29 | sseldd 3829 | . . 3 ⊢ (𝜑 → 𝐺 ∈ (Base‘((ringLMod‘𝑅) ↑s 𝐼))) |
31 | frlmplusgval.a | . . . 4 ⊢ + = (+g‘𝑅) | |
32 | rlmplusg 19558 | . . . 4 ⊢ (+g‘𝑅) = (+g‘(ringLMod‘𝑅)) | |
33 | 31, 32 | eqtri 2850 | . . 3 ⊢ + = (+g‘(ringLMod‘𝑅)) |
34 | 16, 17, 18, 2, 28, 30, 33, 11 | pwsplusgval 16504 | . 2 ⊢ (𝜑 → (𝐹(+g‘((ringLMod‘𝑅) ↑s 𝐼))𝐺) = (𝐹 ∘𝑓 + 𝐺)) |
35 | 15, 34 | eqtrd 2862 | 1 ⊢ (𝜑 → (𝐹 ✚ 𝐺) = (𝐹 ∘𝑓 + 𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1658 ∈ wcel 2166 Vcvv 3415 ‘cfv 6124 (class class class)co 6906 ∘𝑓 cof 7156 Basecbs 16223 ↾s cress 16224 +gcplusg 16306 ↑s cpws 16461 ringLModcrglmod 19531 freeLMod cfrlm 20454 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2804 ax-rep 4995 ax-sep 5006 ax-nul 5014 ax-pow 5066 ax-pr 5128 ax-un 7210 ax-cnex 10309 ax-resscn 10310 ax-1cn 10311 ax-icn 10312 ax-addcl 10313 ax-addrcl 10314 ax-mulcl 10315 ax-mulrcl 10316 ax-mulcom 10317 ax-addass 10318 ax-mulass 10319 ax-distr 10320 ax-i2m1 10321 ax-1ne0 10322 ax-1rid 10323 ax-rnegex 10324 ax-rrecex 10325 ax-cnre 10326 ax-pre-lttri 10327 ax-pre-lttrn 10328 ax-pre-ltadd 10329 ax-pre-mulgt0 10330 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3or 1114 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2606 df-eu 2641 df-clab 2813 df-cleq 2819 df-clel 2822 df-nfc 2959 df-ne 3001 df-nel 3104 df-ral 3123 df-rex 3124 df-reu 3125 df-rab 3127 df-v 3417 df-sbc 3664 df-csb 3759 df-dif 3802 df-un 3804 df-in 3806 df-ss 3813 df-pss 3815 df-nul 4146 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4660 df-int 4699 df-iun 4743 df-br 4875 df-opab 4937 df-mpt 4954 df-tr 4977 df-id 5251 df-eprel 5256 df-po 5264 df-so 5265 df-fr 5302 df-we 5304 df-xp 5349 df-rel 5350 df-cnv 5351 df-co 5352 df-dm 5353 df-rn 5354 df-res 5355 df-ima 5356 df-pred 5921 df-ord 5967 df-on 5968 df-lim 5969 df-suc 5970 df-iota 6087 df-fun 6126 df-fn 6127 df-f 6128 df-f1 6129 df-fo 6130 df-f1o 6131 df-fv 6132 df-riota 6867 df-ov 6909 df-oprab 6910 df-mpt2 6911 df-of 7158 df-om 7328 df-1st 7429 df-2nd 7430 df-wrecs 7673 df-recs 7735 df-rdg 7773 df-1o 7827 df-oadd 7831 df-er 8010 df-map 8125 df-ixp 8177 df-en 8224 df-dom 8225 df-sdom 8226 df-fin 8227 df-sup 8618 df-pnf 10394 df-mnf 10395 df-xr 10396 df-ltxr 10397 df-le 10398 df-sub 10588 df-neg 10589 df-nn 11352 df-2 11415 df-3 11416 df-4 11417 df-5 11418 df-6 11419 df-7 11420 df-8 11421 df-9 11422 df-n0 11620 df-z 11706 df-dec 11823 df-uz 11970 df-fz 12621 df-struct 16225 df-ndx 16226 df-slot 16227 df-base 16229 df-sets 16230 df-ress 16231 df-plusg 16319 df-mulr 16320 df-sca 16322 df-vsca 16323 df-ip 16324 df-tset 16325 df-ple 16326 df-ds 16328 df-hom 16330 df-cco 16331 df-prds 16462 df-pws 16464 df-sra 19534 df-rgmod 19535 df-dsmm 20440 df-frlm 20455 |
This theorem is referenced by: frlmvplusgvalc 20474 frlmphl 20488 frlmup1 20505 matplusg2 20601 zlmodzxzadd 42984 |
Copyright terms: Public domain | W3C validator |