MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frlmplusgval Structured version   Visualization version   GIF version

Theorem frlmplusgval 21807
Description: Addition in a free module. (Contributed by Stefan O'Rear, 1-Feb-2015.) (Revised by Stefan O'Rear, 6-May-2015.)
Hypotheses
Ref Expression
frlmplusgval.y 𝑌 = (𝑅 freeLMod 𝐼)
frlmplusgval.b 𝐵 = (Base‘𝑌)
frlmplusgval.r (𝜑𝑅𝑉)
frlmplusgval.i (𝜑𝐼𝑊)
frlmplusgval.f (𝜑𝐹𝐵)
frlmplusgval.g (𝜑𝐺𝐵)
frlmplusgval.a + = (+g𝑅)
frlmplusgval.p = (+g𝑌)
Assertion
Ref Expression
frlmplusgval (𝜑 → (𝐹 𝐺) = (𝐹f + 𝐺))

Proof of Theorem frlmplusgval
StepHypRef Expression
1 frlmplusgval.r . . . . . 6 (𝜑𝑅𝑉)
2 frlmplusgval.i . . . . . 6 (𝜑𝐼𝑊)
3 frlmplusgval.y . . . . . . 7 𝑌 = (𝑅 freeLMod 𝐼)
4 eqid 2740 . . . . . . 7 (Base‘𝑌) = (Base‘𝑌)
53, 4frlmpws 21793 . . . . . 6 ((𝑅𝑉𝐼𝑊) → 𝑌 = (((ringLMod‘𝑅) ↑s 𝐼) ↾s (Base‘𝑌)))
61, 2, 5syl2anc 583 . . . . 5 (𝜑𝑌 = (((ringLMod‘𝑅) ↑s 𝐼) ↾s (Base‘𝑌)))
76fveq2d 6924 . . . 4 (𝜑 → (+g𝑌) = (+g‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s (Base‘𝑌))))
8 frlmplusgval.p . . . 4 = (+g𝑌)
9 fvex 6933 . . . . 5 (Base‘𝑌) ∈ V
10 eqid 2740 . . . . . 6 (((ringLMod‘𝑅) ↑s 𝐼) ↾s (Base‘𝑌)) = (((ringLMod‘𝑅) ↑s 𝐼) ↾s (Base‘𝑌))
11 eqid 2740 . . . . . 6 (+g‘((ringLMod‘𝑅) ↑s 𝐼)) = (+g‘((ringLMod‘𝑅) ↑s 𝐼))
1210, 11ressplusg 17349 . . . . 5 ((Base‘𝑌) ∈ V → (+g‘((ringLMod‘𝑅) ↑s 𝐼)) = (+g‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s (Base‘𝑌))))
139, 12ax-mp 5 . . . 4 (+g‘((ringLMod‘𝑅) ↑s 𝐼)) = (+g‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s (Base‘𝑌)))
147, 8, 133eqtr4g 2805 . . 3 (𝜑 = (+g‘((ringLMod‘𝑅) ↑s 𝐼)))
1514oveqd 7465 . 2 (𝜑 → (𝐹 𝐺) = (𝐹(+g‘((ringLMod‘𝑅) ↑s 𝐼))𝐺))
16 eqid 2740 . . 3 ((ringLMod‘𝑅) ↑s 𝐼) = ((ringLMod‘𝑅) ↑s 𝐼)
17 eqid 2740 . . 3 (Base‘((ringLMod‘𝑅) ↑s 𝐼)) = (Base‘((ringLMod‘𝑅) ↑s 𝐼))
18 fvexd 6935 . . 3 (𝜑 → (ringLMod‘𝑅) ∈ V)
19 frlmplusgval.b . . . . . 6 𝐵 = (Base‘𝑌)
203, 19frlmpws 21793 . . . . . . . 8 ((𝑅𝑉𝐼𝑊) → 𝑌 = (((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵))
211, 2, 20syl2anc 583 . . . . . . 7 (𝜑𝑌 = (((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵))
2221fveq2d 6924 . . . . . 6 (𝜑 → (Base‘𝑌) = (Base‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵)))
2319, 22eqtrid 2792 . . . . 5 (𝜑𝐵 = (Base‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵)))
24 eqid 2740 . . . . . 6 (((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵) = (((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵)
2524, 17ressbasss 17297 . . . . 5 (Base‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵)) ⊆ (Base‘((ringLMod‘𝑅) ↑s 𝐼))
2623, 25eqsstrdi 4063 . . . 4 (𝜑𝐵 ⊆ (Base‘((ringLMod‘𝑅) ↑s 𝐼)))
27 frlmplusgval.f . . . 4 (𝜑𝐹𝐵)
2826, 27sseldd 4009 . . 3 (𝜑𝐹 ∈ (Base‘((ringLMod‘𝑅) ↑s 𝐼)))
29 frlmplusgval.g . . . 4 (𝜑𝐺𝐵)
3026, 29sseldd 4009 . . 3 (𝜑𝐺 ∈ (Base‘((ringLMod‘𝑅) ↑s 𝐼)))
31 frlmplusgval.a . . . 4 + = (+g𝑅)
32 rlmplusg 21224 . . . 4 (+g𝑅) = (+g‘(ringLMod‘𝑅))
3331, 32eqtri 2768 . . 3 + = (+g‘(ringLMod‘𝑅))
3416, 17, 18, 2, 28, 30, 33, 11pwsplusgval 17550 . 2 (𝜑 → (𝐹(+g‘((ringLMod‘𝑅) ↑s 𝐼))𝐺) = (𝐹f + 𝐺))
3515, 34eqtrd 2780 1 (𝜑 → (𝐹 𝐺) = (𝐹f + 𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  Vcvv 3488  cfv 6573  (class class class)co 7448  f cof 7712  Basecbs 17258  s cress 17287  +gcplusg 17311  s cpws 17506  ringLModcrglmod 21194   freeLMod cfrlm 21789
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-fz 13568  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-hom 17335  df-cco 17336  df-prds 17507  df-pws 17509  df-sra 21195  df-rgmod 21196  df-dsmm 21775  df-frlm 21790
This theorem is referenced by:  frlmvplusgvalc  21810  frlmphl  21824  frlmup1  21841  matplusg2  22454  zlmodzxzadd  48083
  Copyright terms: Public domain W3C validator