| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > frlmplusgval | Structured version Visualization version GIF version | ||
| Description: Addition in a free module. (Contributed by Stefan O'Rear, 1-Feb-2015.) (Revised by Stefan O'Rear, 6-May-2015.) |
| Ref | Expression |
|---|---|
| frlmplusgval.y | ⊢ 𝑌 = (𝑅 freeLMod 𝐼) |
| frlmplusgval.b | ⊢ 𝐵 = (Base‘𝑌) |
| frlmplusgval.r | ⊢ (𝜑 → 𝑅 ∈ 𝑉) |
| frlmplusgval.i | ⊢ (𝜑 → 𝐼 ∈ 𝑊) |
| frlmplusgval.f | ⊢ (𝜑 → 𝐹 ∈ 𝐵) |
| frlmplusgval.g | ⊢ (𝜑 → 𝐺 ∈ 𝐵) |
| frlmplusgval.a | ⊢ + = (+g‘𝑅) |
| frlmplusgval.p | ⊢ ✚ = (+g‘𝑌) |
| Ref | Expression |
|---|---|
| frlmplusgval | ⊢ (𝜑 → (𝐹 ✚ 𝐺) = (𝐹 ∘f + 𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frlmplusgval.r | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ 𝑉) | |
| 2 | frlmplusgval.i | . . . . . 6 ⊢ (𝜑 → 𝐼 ∈ 𝑊) | |
| 3 | frlmplusgval.y | . . . . . . 7 ⊢ 𝑌 = (𝑅 freeLMod 𝐼) | |
| 4 | eqid 2729 | . . . . . . 7 ⊢ (Base‘𝑌) = (Base‘𝑌) | |
| 5 | 3, 4 | frlmpws 21675 | . . . . . 6 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → 𝑌 = (((ringLMod‘𝑅) ↑s 𝐼) ↾s (Base‘𝑌))) |
| 6 | 1, 2, 5 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → 𝑌 = (((ringLMod‘𝑅) ↑s 𝐼) ↾s (Base‘𝑌))) |
| 7 | 6 | fveq2d 6830 | . . . 4 ⊢ (𝜑 → (+g‘𝑌) = (+g‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s (Base‘𝑌)))) |
| 8 | frlmplusgval.p | . . . 4 ⊢ ✚ = (+g‘𝑌) | |
| 9 | fvex 6839 | . . . . 5 ⊢ (Base‘𝑌) ∈ V | |
| 10 | eqid 2729 | . . . . . 6 ⊢ (((ringLMod‘𝑅) ↑s 𝐼) ↾s (Base‘𝑌)) = (((ringLMod‘𝑅) ↑s 𝐼) ↾s (Base‘𝑌)) | |
| 11 | eqid 2729 | . . . . . 6 ⊢ (+g‘((ringLMod‘𝑅) ↑s 𝐼)) = (+g‘((ringLMod‘𝑅) ↑s 𝐼)) | |
| 12 | 10, 11 | ressplusg 17213 | . . . . 5 ⊢ ((Base‘𝑌) ∈ V → (+g‘((ringLMod‘𝑅) ↑s 𝐼)) = (+g‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s (Base‘𝑌)))) |
| 13 | 9, 12 | ax-mp 5 | . . . 4 ⊢ (+g‘((ringLMod‘𝑅) ↑s 𝐼)) = (+g‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s (Base‘𝑌))) |
| 14 | 7, 8, 13 | 3eqtr4g 2789 | . . 3 ⊢ (𝜑 → ✚ = (+g‘((ringLMod‘𝑅) ↑s 𝐼))) |
| 15 | 14 | oveqd 7370 | . 2 ⊢ (𝜑 → (𝐹 ✚ 𝐺) = (𝐹(+g‘((ringLMod‘𝑅) ↑s 𝐼))𝐺)) |
| 16 | eqid 2729 | . . 3 ⊢ ((ringLMod‘𝑅) ↑s 𝐼) = ((ringLMod‘𝑅) ↑s 𝐼) | |
| 17 | eqid 2729 | . . 3 ⊢ (Base‘((ringLMod‘𝑅) ↑s 𝐼)) = (Base‘((ringLMod‘𝑅) ↑s 𝐼)) | |
| 18 | fvexd 6841 | . . 3 ⊢ (𝜑 → (ringLMod‘𝑅) ∈ V) | |
| 19 | frlmplusgval.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑌) | |
| 20 | 3, 19 | frlmpws 21675 | . . . . . . . 8 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → 𝑌 = (((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵)) |
| 21 | 1, 2, 20 | syl2anc 584 | . . . . . . 7 ⊢ (𝜑 → 𝑌 = (((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵)) |
| 22 | 21 | fveq2d 6830 | . . . . . 6 ⊢ (𝜑 → (Base‘𝑌) = (Base‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵))) |
| 23 | 19, 22 | eqtrid 2776 | . . . . 5 ⊢ (𝜑 → 𝐵 = (Base‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵))) |
| 24 | eqid 2729 | . . . . . 6 ⊢ (((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵) = (((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵) | |
| 25 | 24, 17 | ressbasss 17168 | . . . . 5 ⊢ (Base‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵)) ⊆ (Base‘((ringLMod‘𝑅) ↑s 𝐼)) |
| 26 | 23, 25 | eqsstrdi 3982 | . . . 4 ⊢ (𝜑 → 𝐵 ⊆ (Base‘((ringLMod‘𝑅) ↑s 𝐼))) |
| 27 | frlmplusgval.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ 𝐵) | |
| 28 | 26, 27 | sseldd 3938 | . . 3 ⊢ (𝜑 → 𝐹 ∈ (Base‘((ringLMod‘𝑅) ↑s 𝐼))) |
| 29 | frlmplusgval.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ 𝐵) | |
| 30 | 26, 29 | sseldd 3938 | . . 3 ⊢ (𝜑 → 𝐺 ∈ (Base‘((ringLMod‘𝑅) ↑s 𝐼))) |
| 31 | frlmplusgval.a | . . . 4 ⊢ + = (+g‘𝑅) | |
| 32 | rlmplusg 21116 | . . . 4 ⊢ (+g‘𝑅) = (+g‘(ringLMod‘𝑅)) | |
| 33 | 31, 32 | eqtri 2752 | . . 3 ⊢ + = (+g‘(ringLMod‘𝑅)) |
| 34 | 16, 17, 18, 2, 28, 30, 33, 11 | pwsplusgval 17412 | . 2 ⊢ (𝜑 → (𝐹(+g‘((ringLMod‘𝑅) ↑s 𝐼))𝐺) = (𝐹 ∘f + 𝐺)) |
| 35 | 15, 34 | eqtrd 2764 | 1 ⊢ (𝜑 → (𝐹 ✚ 𝐺) = (𝐹 ∘f + 𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3438 ‘cfv 6486 (class class class)co 7353 ∘f cof 7615 Basecbs 17138 ↾s cress 17159 +gcplusg 17179 ↑s cpws 17368 ringLModcrglmod 21094 freeLMod cfrlm 21671 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-of 7617 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-er 8632 df-map 8762 df-ixp 8832 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-sup 9351 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-7 12214 df-8 12215 df-9 12216 df-n0 12403 df-z 12490 df-dec 12610 df-uz 12754 df-fz 13429 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17139 df-ress 17160 df-plusg 17192 df-mulr 17193 df-sca 17195 df-vsca 17196 df-ip 17197 df-tset 17198 df-ple 17199 df-ds 17201 df-hom 17203 df-cco 17204 df-prds 17369 df-pws 17371 df-sra 21095 df-rgmod 21096 df-dsmm 21657 df-frlm 21672 |
| This theorem is referenced by: frlmvplusgvalc 21692 frlmphl 21706 frlmup1 21723 matplusg2 22330 zlmodzxzadd 48346 |
| Copyright terms: Public domain | W3C validator |