MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frlmplusgval Structured version   Visualization version   GIF version

Theorem frlmplusgval 20453
Description: Addition in a free module. (Contributed by Stefan O'Rear, 1-Feb-2015.) (Revised by Stefan O'Rear, 6-May-2015.)
Hypotheses
Ref Expression
frlmplusgval.y 𝑌 = (𝑅 freeLMod 𝐼)
frlmplusgval.b 𝐵 = (Base‘𝑌)
frlmplusgval.r (𝜑𝑅𝑉)
frlmplusgval.i (𝜑𝐼𝑊)
frlmplusgval.f (𝜑𝐹𝐵)
frlmplusgval.g (𝜑𝐺𝐵)
frlmplusgval.a + = (+g𝑅)
frlmplusgval.p = (+g𝑌)
Assertion
Ref Expression
frlmplusgval (𝜑 → (𝐹 𝐺) = (𝐹f + 𝐺))

Proof of Theorem frlmplusgval
StepHypRef Expression
1 frlmplusgval.r . . . . . 6 (𝜑𝑅𝑉)
2 frlmplusgval.i . . . . . 6 (𝜑𝐼𝑊)
3 frlmplusgval.y . . . . . . 7 𝑌 = (𝑅 freeLMod 𝐼)
4 eqid 2798 . . . . . . 7 (Base‘𝑌) = (Base‘𝑌)
53, 4frlmpws 20439 . . . . . 6 ((𝑅𝑉𝐼𝑊) → 𝑌 = (((ringLMod‘𝑅) ↑s 𝐼) ↾s (Base‘𝑌)))
61, 2, 5syl2anc 587 . . . . 5 (𝜑𝑌 = (((ringLMod‘𝑅) ↑s 𝐼) ↾s (Base‘𝑌)))
76fveq2d 6649 . . . 4 (𝜑 → (+g𝑌) = (+g‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s (Base‘𝑌))))
8 frlmplusgval.p . . . 4 = (+g𝑌)
9 fvex 6658 . . . . 5 (Base‘𝑌) ∈ V
10 eqid 2798 . . . . . 6 (((ringLMod‘𝑅) ↑s 𝐼) ↾s (Base‘𝑌)) = (((ringLMod‘𝑅) ↑s 𝐼) ↾s (Base‘𝑌))
11 eqid 2798 . . . . . 6 (+g‘((ringLMod‘𝑅) ↑s 𝐼)) = (+g‘((ringLMod‘𝑅) ↑s 𝐼))
1210, 11ressplusg 16604 . . . . 5 ((Base‘𝑌) ∈ V → (+g‘((ringLMod‘𝑅) ↑s 𝐼)) = (+g‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s (Base‘𝑌))))
139, 12ax-mp 5 . . . 4 (+g‘((ringLMod‘𝑅) ↑s 𝐼)) = (+g‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s (Base‘𝑌)))
147, 8, 133eqtr4g 2858 . . 3 (𝜑 = (+g‘((ringLMod‘𝑅) ↑s 𝐼)))
1514oveqd 7152 . 2 (𝜑 → (𝐹 𝐺) = (𝐹(+g‘((ringLMod‘𝑅) ↑s 𝐼))𝐺))
16 eqid 2798 . . 3 ((ringLMod‘𝑅) ↑s 𝐼) = ((ringLMod‘𝑅) ↑s 𝐼)
17 eqid 2798 . . 3 (Base‘((ringLMod‘𝑅) ↑s 𝐼)) = (Base‘((ringLMod‘𝑅) ↑s 𝐼))
18 fvexd 6660 . . 3 (𝜑 → (ringLMod‘𝑅) ∈ V)
19 frlmplusgval.b . . . . . 6 𝐵 = (Base‘𝑌)
203, 19frlmpws 20439 . . . . . . . 8 ((𝑅𝑉𝐼𝑊) → 𝑌 = (((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵))
211, 2, 20syl2anc 587 . . . . . . 7 (𝜑𝑌 = (((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵))
2221fveq2d 6649 . . . . . 6 (𝜑 → (Base‘𝑌) = (Base‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵)))
2319, 22syl5eq 2845 . . . . 5 (𝜑𝐵 = (Base‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵)))
24 eqid 2798 . . . . . 6 (((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵) = (((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵)
2524, 17ressbasss 16548 . . . . 5 (Base‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵)) ⊆ (Base‘((ringLMod‘𝑅) ↑s 𝐼))
2623, 25eqsstrdi 3969 . . . 4 (𝜑𝐵 ⊆ (Base‘((ringLMod‘𝑅) ↑s 𝐼)))
27 frlmplusgval.f . . . 4 (𝜑𝐹𝐵)
2826, 27sseldd 3916 . . 3 (𝜑𝐹 ∈ (Base‘((ringLMod‘𝑅) ↑s 𝐼)))
29 frlmplusgval.g . . . 4 (𝜑𝐺𝐵)
3026, 29sseldd 3916 . . 3 (𝜑𝐺 ∈ (Base‘((ringLMod‘𝑅) ↑s 𝐼)))
31 frlmplusgval.a . . . 4 + = (+g𝑅)
32 rlmplusg 19961 . . . 4 (+g𝑅) = (+g‘(ringLMod‘𝑅))
3331, 32eqtri 2821 . . 3 + = (+g‘(ringLMod‘𝑅))
3416, 17, 18, 2, 28, 30, 33, 11pwsplusgval 16755 . 2 (𝜑 → (𝐹(+g‘((ringLMod‘𝑅) ↑s 𝐼))𝐺) = (𝐹f + 𝐺))
3515, 34eqtrd 2833 1 (𝜑 → (𝐹 𝐺) = (𝐹f + 𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1538  wcel 2111  Vcvv 3441  cfv 6324  (class class class)co 7135  f cof 7387  Basecbs 16475  s cress 16476  +gcplusg 16557  s cpws 16712  ringLModcrglmod 19934   freeLMod cfrlm 20435
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-fz 12886  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-hom 16581  df-cco 16582  df-prds 16713  df-pws 16715  df-sra 19937  df-rgmod 19938  df-dsmm 20421  df-frlm 20436
This theorem is referenced by:  frlmvplusgvalc  20456  frlmphl  20470  frlmup1  20487  matplusg2  21032  zlmodzxzadd  44760
  Copyright terms: Public domain W3C validator