![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lshpkrlem2 | Structured version Visualization version GIF version |
Description: Lemma for lshpkrex 37976. The value of tentative functional 𝐺 is a scalar. (Contributed by NM, 16-Jul-2014.) |
Ref | Expression |
---|---|
lshpkrlem.v | ⊢ 𝑉 = (Base‘𝑊) |
lshpkrlem.a | ⊢ + = (+g‘𝑊) |
lshpkrlem.n | ⊢ 𝑁 = (LSpan‘𝑊) |
lshpkrlem.p | ⊢ ⊕ = (LSSum‘𝑊) |
lshpkrlem.h | ⊢ 𝐻 = (LSHyp‘𝑊) |
lshpkrlem.w | ⊢ (𝜑 → 𝑊 ∈ LVec) |
lshpkrlem.u | ⊢ (𝜑 → 𝑈 ∈ 𝐻) |
lshpkrlem.z | ⊢ (𝜑 → 𝑍 ∈ 𝑉) |
lshpkrlem.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
lshpkrlem.e | ⊢ (𝜑 → (𝑈 ⊕ (𝑁‘{𝑍})) = 𝑉) |
lshpkrlem.d | ⊢ 𝐷 = (Scalar‘𝑊) |
lshpkrlem.k | ⊢ 𝐾 = (Base‘𝐷) |
lshpkrlem.t | ⊢ · = ( ·𝑠 ‘𝑊) |
lshpkrlem.o | ⊢ 0 = (0g‘𝐷) |
lshpkrlem.g | ⊢ 𝐺 = (𝑥 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝐾 ∃𝑦 ∈ 𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍)))) |
Ref | Expression |
---|---|
lshpkrlem2 | ⊢ (𝜑 → (𝐺‘𝑋) ∈ 𝐾) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lshpkrlem.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
2 | eqeq1 2736 | . . . . . 6 ⊢ (𝑥 = 𝑋 → (𝑥 = (𝑦 + (𝑘 · 𝑍)) ↔ 𝑋 = (𝑦 + (𝑘 · 𝑍)))) | |
3 | 2 | rexbidv 3178 | . . . . 5 ⊢ (𝑥 = 𝑋 → (∃𝑦 ∈ 𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍)) ↔ ∃𝑦 ∈ 𝑈 𝑋 = (𝑦 + (𝑘 · 𝑍)))) |
4 | 3 | riotabidv 7363 | . . . 4 ⊢ (𝑥 = 𝑋 → (℩𝑘 ∈ 𝐾 ∃𝑦 ∈ 𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍))) = (℩𝑘 ∈ 𝐾 ∃𝑦 ∈ 𝑈 𝑋 = (𝑦 + (𝑘 · 𝑍)))) |
5 | lshpkrlem.g | . . . 4 ⊢ 𝐺 = (𝑥 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝐾 ∃𝑦 ∈ 𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍)))) | |
6 | riotaex 7365 | . . . 4 ⊢ (℩𝑘 ∈ 𝐾 ∃𝑦 ∈ 𝑈 𝑋 = (𝑦 + (𝑘 · 𝑍))) ∈ V | |
7 | 4, 5, 6 | fvmpt 6995 | . . 3 ⊢ (𝑋 ∈ 𝑉 → (𝐺‘𝑋) = (℩𝑘 ∈ 𝐾 ∃𝑦 ∈ 𝑈 𝑋 = (𝑦 + (𝑘 · 𝑍)))) |
8 | 1, 7 | syl 17 | . 2 ⊢ (𝜑 → (𝐺‘𝑋) = (℩𝑘 ∈ 𝐾 ∃𝑦 ∈ 𝑈 𝑋 = (𝑦 + (𝑘 · 𝑍)))) |
9 | lshpkrlem.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
10 | lshpkrlem.a | . . . 4 ⊢ + = (+g‘𝑊) | |
11 | lshpkrlem.n | . . . 4 ⊢ 𝑁 = (LSpan‘𝑊) | |
12 | lshpkrlem.p | . . . 4 ⊢ ⊕ = (LSSum‘𝑊) | |
13 | lshpkrlem.h | . . . 4 ⊢ 𝐻 = (LSHyp‘𝑊) | |
14 | lshpkrlem.w | . . . 4 ⊢ (𝜑 → 𝑊 ∈ LVec) | |
15 | lshpkrlem.u | . . . 4 ⊢ (𝜑 → 𝑈 ∈ 𝐻) | |
16 | lshpkrlem.z | . . . 4 ⊢ (𝜑 → 𝑍 ∈ 𝑉) | |
17 | lshpkrlem.e | . . . 4 ⊢ (𝜑 → (𝑈 ⊕ (𝑁‘{𝑍})) = 𝑉) | |
18 | lshpkrlem.d | . . . 4 ⊢ 𝐷 = (Scalar‘𝑊) | |
19 | lshpkrlem.k | . . . 4 ⊢ 𝐾 = (Base‘𝐷) | |
20 | lshpkrlem.t | . . . 4 ⊢ · = ( ·𝑠 ‘𝑊) | |
21 | 9, 10, 11, 12, 13, 14, 15, 16, 1, 17, 18, 19, 20 | lshpsmreu 37967 | . . 3 ⊢ (𝜑 → ∃!𝑘 ∈ 𝐾 ∃𝑦 ∈ 𝑈 𝑋 = (𝑦 + (𝑘 · 𝑍))) |
22 | riotacl 7379 | . . 3 ⊢ (∃!𝑘 ∈ 𝐾 ∃𝑦 ∈ 𝑈 𝑋 = (𝑦 + (𝑘 · 𝑍)) → (℩𝑘 ∈ 𝐾 ∃𝑦 ∈ 𝑈 𝑋 = (𝑦 + (𝑘 · 𝑍))) ∈ 𝐾) | |
23 | 21, 22 | syl 17 | . 2 ⊢ (𝜑 → (℩𝑘 ∈ 𝐾 ∃𝑦 ∈ 𝑈 𝑋 = (𝑦 + (𝑘 · 𝑍))) ∈ 𝐾) |
24 | 8, 23 | eqeltrd 2833 | 1 ⊢ (𝜑 → (𝐺‘𝑋) ∈ 𝐾) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 ∃wrex 3070 ∃!wreu 3374 {csn 4627 ↦ cmpt 5230 ‘cfv 6540 ℩crio 7360 (class class class)co 7405 Basecbs 17140 +gcplusg 17193 Scalarcsca 17196 ·𝑠 cvsca 17197 0gc0g 17381 LSSumclsm 19496 LSpanclspn 20574 LVecclvec 20705 LSHypclsh 37833 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-1st 7971 df-2nd 7972 df-tpos 8207 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-2 12271 df-3 12272 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17141 df-ress 17170 df-plusg 17206 df-mulr 17207 df-0g 17383 df-mgm 18557 df-sgrp 18606 df-mnd 18622 df-submnd 18668 df-grp 18818 df-minusg 18819 df-sbg 18820 df-subg 18997 df-cntz 19175 df-lsm 19498 df-cmn 19644 df-abl 19645 df-mgp 19982 df-ur 19999 df-ring 20051 df-oppr 20142 df-dvdsr 20163 df-unit 20164 df-invr 20194 df-drng 20309 df-lmod 20465 df-lss 20535 df-lsp 20575 df-lvec 20706 df-lshyp 37835 |
This theorem is referenced by: lshpkrlem4 37971 lshpkrlem5 37972 |
Copyright terms: Public domain | W3C validator |