MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgrncvvdeqlem5 Structured version   Visualization version   GIF version

Theorem frgrncvvdeqlem5 30169
Description: Lemma 5 for frgrncvvdeq 30175. The mapping of neighbors to neighbors applied on a vertex is the intersection of the corresponding neighborhoods. (Contributed by Alexander van der Vekens, 23-Dec-2017.) (Revised by AV, 10-May-2021.)
Hypotheses
Ref Expression
frgrncvvdeq.v1 𝑉 = (Vtx‘𝐺)
frgrncvvdeq.e 𝐸 = (Edg‘𝐺)
frgrncvvdeq.nx 𝐷 = (𝐺 NeighbVtx 𝑋)
frgrncvvdeq.ny 𝑁 = (𝐺 NeighbVtx 𝑌)
frgrncvvdeq.x (𝜑𝑋𝑉)
frgrncvvdeq.y (𝜑𝑌𝑉)
frgrncvvdeq.ne (𝜑𝑋𝑌)
frgrncvvdeq.xy (𝜑𝑌𝐷)
frgrncvvdeq.f (𝜑𝐺 ∈ FriendGraph )
frgrncvvdeq.a 𝐴 = (𝑥𝐷 ↦ (𝑦𝑁 {𝑥, 𝑦} ∈ 𝐸))
Assertion
Ref Expression
frgrncvvdeqlem5 ((𝜑𝑥𝐷) → {(𝐴𝑥)} = ((𝐺 NeighbVtx 𝑥) ∩ 𝑁))
Distinct variable groups:   𝑦,𝐸   𝑦,𝐺   𝑦,𝑉   𝑦,𝑌   𝑥,𝑦,𝑁   𝑥,𝐷   𝑥,𝑁   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑦)   𝐴(𝑥,𝑦)   𝐷(𝑦)   𝐸(𝑥)   𝐺(𝑥)   𝑉(𝑥)   𝑋(𝑥,𝑦)   𝑌(𝑥)

Proof of Theorem frgrncvvdeqlem5
StepHypRef Expression
1 simpr 483 . . . 4 ((𝜑𝑥𝐷) → 𝑥𝐷)
2 riotaex 7377 . . . 4 (𝑦𝑁 {𝑥, 𝑦} ∈ 𝐸) ∈ V
3 frgrncvvdeq.a . . . . 5 𝐴 = (𝑥𝐷 ↦ (𝑦𝑁 {𝑥, 𝑦} ∈ 𝐸))
43fvmpt2 7013 . . . 4 ((𝑥𝐷 ∧ (𝑦𝑁 {𝑥, 𝑦} ∈ 𝐸) ∈ V) → (𝐴𝑥) = (𝑦𝑁 {𝑥, 𝑦} ∈ 𝐸))
51, 2, 4sylancl 584 . . 3 ((𝜑𝑥𝐷) → (𝐴𝑥) = (𝑦𝑁 {𝑥, 𝑦} ∈ 𝐸))
65sneqd 4641 . 2 ((𝜑𝑥𝐷) → {(𝐴𝑥)} = {(𝑦𝑁 {𝑥, 𝑦} ∈ 𝐸)})
7 frgrncvvdeq.v1 . . 3 𝑉 = (Vtx‘𝐺)
8 frgrncvvdeq.e . . 3 𝐸 = (Edg‘𝐺)
9 frgrncvvdeq.nx . . 3 𝐷 = (𝐺 NeighbVtx 𝑋)
10 frgrncvvdeq.ny . . 3 𝑁 = (𝐺 NeighbVtx 𝑌)
11 frgrncvvdeq.x . . 3 (𝜑𝑋𝑉)
12 frgrncvvdeq.y . . 3 (𝜑𝑌𝑉)
13 frgrncvvdeq.ne . . 3 (𝜑𝑋𝑌)
14 frgrncvvdeq.xy . . 3 (𝜑𝑌𝐷)
15 frgrncvvdeq.f . . 3 (𝜑𝐺 ∈ FriendGraph )
167, 8, 9, 10, 11, 12, 13, 14, 15, 3frgrncvvdeqlem3 30167 . 2 ((𝜑𝑥𝐷) → {(𝑦𝑁 {𝑥, 𝑦} ∈ 𝐸)} = ((𝐺 NeighbVtx 𝑥) ∩ 𝑁))
176, 16eqtrd 2765 1 ((𝜑𝑥𝐷) → {(𝐴𝑥)} = ((𝐺 NeighbVtx 𝑥) ∩ 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  wne 2930  wnel 3036  Vcvv 3463  cin 3944  {csn 4629  {cpr 4631  cmpt 5231  cfv 6547  crio 7372  (class class class)co 7417  Vtxcvtx 28865  Edgcedg 28916   NeighbVtx cnbgr 29201   FriendGraph cfrgr 30124
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5299  ax-nul 5306  ax-pow 5364  ax-pr 5428  ax-un 7739  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3775  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3965  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-int 4950  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6499  df-fun 6549  df-fn 6550  df-f 6551  df-f1 6552  df-fo 6553  df-f1o 6554  df-fv 6555  df-riota 7373  df-ov 7420  df-oprab 7421  df-mpo 7422  df-om 7870  df-1st 7992  df-2nd 7993  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-oadd 8489  df-er 8723  df-en 8963  df-dom 8964  df-sdom 8965  df-fin 8966  df-dju 9924  df-card 9962  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11476  df-neg 11477  df-nn 12243  df-2 12305  df-n0 12503  df-xnn0 12575  df-z 12589  df-uz 12853  df-fz 13517  df-hash 14322  df-edg 28917  df-upgr 28951  df-umgr 28952  df-usgr 29020  df-nbgr 29202  df-frgr 30125
This theorem is referenced by:  frgrncvvdeqlem6  30170  frgrncvvdeqlem7  30171  frgrncvvdeqlem9  30173
  Copyright terms: Public domain W3C validator