![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > frgrncvvdeqlem5 | Structured version Visualization version GIF version |
Description: Lemma 5 for frgrncvvdeq 30106. The mapping of neighbors to neighbors applied on a vertex is the intersection of the corresponding neighborhoods. (Contributed by Alexander van der Vekens, 23-Dec-2017.) (Revised by AV, 10-May-2021.) |
Ref | Expression |
---|---|
frgrncvvdeq.v1 | ⊢ 𝑉 = (Vtx‘𝐺) |
frgrncvvdeq.e | ⊢ 𝐸 = (Edg‘𝐺) |
frgrncvvdeq.nx | ⊢ 𝐷 = (𝐺 NeighbVtx 𝑋) |
frgrncvvdeq.ny | ⊢ 𝑁 = (𝐺 NeighbVtx 𝑌) |
frgrncvvdeq.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
frgrncvvdeq.y | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
frgrncvvdeq.ne | ⊢ (𝜑 → 𝑋 ≠ 𝑌) |
frgrncvvdeq.xy | ⊢ (𝜑 → 𝑌 ∉ 𝐷) |
frgrncvvdeq.f | ⊢ (𝜑 → 𝐺 ∈ FriendGraph ) |
frgrncvvdeq.a | ⊢ 𝐴 = (𝑥 ∈ 𝐷 ↦ (℩𝑦 ∈ 𝑁 {𝑥, 𝑦} ∈ 𝐸)) |
Ref | Expression |
---|---|
frgrncvvdeqlem5 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → {(𝐴‘𝑥)} = ((𝐺 NeighbVtx 𝑥) ∩ 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → 𝑥 ∈ 𝐷) | |
2 | riotaex 7374 | . . . 4 ⊢ (℩𝑦 ∈ 𝑁 {𝑥, 𝑦} ∈ 𝐸) ∈ V | |
3 | frgrncvvdeq.a | . . . . 5 ⊢ 𝐴 = (𝑥 ∈ 𝐷 ↦ (℩𝑦 ∈ 𝑁 {𝑥, 𝑦} ∈ 𝐸)) | |
4 | 3 | fvmpt2 7010 | . . . 4 ⊢ ((𝑥 ∈ 𝐷 ∧ (℩𝑦 ∈ 𝑁 {𝑥, 𝑦} ∈ 𝐸) ∈ V) → (𝐴‘𝑥) = (℩𝑦 ∈ 𝑁 {𝑥, 𝑦} ∈ 𝐸)) |
5 | 1, 2, 4 | sylancl 585 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (𝐴‘𝑥) = (℩𝑦 ∈ 𝑁 {𝑥, 𝑦} ∈ 𝐸)) |
6 | 5 | sneqd 4636 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → {(𝐴‘𝑥)} = {(℩𝑦 ∈ 𝑁 {𝑥, 𝑦} ∈ 𝐸)}) |
7 | frgrncvvdeq.v1 | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
8 | frgrncvvdeq.e | . . 3 ⊢ 𝐸 = (Edg‘𝐺) | |
9 | frgrncvvdeq.nx | . . 3 ⊢ 𝐷 = (𝐺 NeighbVtx 𝑋) | |
10 | frgrncvvdeq.ny | . . 3 ⊢ 𝑁 = (𝐺 NeighbVtx 𝑌) | |
11 | frgrncvvdeq.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
12 | frgrncvvdeq.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
13 | frgrncvvdeq.ne | . . 3 ⊢ (𝜑 → 𝑋 ≠ 𝑌) | |
14 | frgrncvvdeq.xy | . . 3 ⊢ (𝜑 → 𝑌 ∉ 𝐷) | |
15 | frgrncvvdeq.f | . . 3 ⊢ (𝜑 → 𝐺 ∈ FriendGraph ) | |
16 | 7, 8, 9, 10, 11, 12, 13, 14, 15, 3 | frgrncvvdeqlem3 30098 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → {(℩𝑦 ∈ 𝑁 {𝑥, 𝑦} ∈ 𝐸)} = ((𝐺 NeighbVtx 𝑥) ∩ 𝑁)) |
17 | 6, 16 | eqtrd 2767 | 1 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → {(𝐴‘𝑥)} = ((𝐺 NeighbVtx 𝑥) ∩ 𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ≠ wne 2935 ∉ wnel 3041 Vcvv 3469 ∩ cin 3943 {csn 4624 {cpr 4626 ↦ cmpt 5225 ‘cfv 6542 ℩crio 7369 (class class class)co 7414 Vtxcvtx 28796 Edgcedg 28847 NeighbVtx cnbgr 29132 FriendGraph cfrgr 30055 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11186 ax-resscn 11187 ax-1cn 11188 ax-icn 11189 ax-addcl 11190 ax-addrcl 11191 ax-mulcl 11192 ax-mulrcl 11193 ax-mulcom 11194 ax-addass 11195 ax-mulass 11196 ax-distr 11197 ax-i2m1 11198 ax-1ne0 11199 ax-1rid 11200 ax-rnegex 11201 ax-rrecex 11202 ax-cnre 11203 ax-pre-lttri 11204 ax-pre-lttrn 11205 ax-pre-ltadd 11206 ax-pre-mulgt0 11207 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7865 df-1st 7987 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-oadd 8484 df-er 8718 df-en 8956 df-dom 8957 df-sdom 8958 df-fin 8959 df-dju 9916 df-card 9954 df-pnf 11272 df-mnf 11273 df-xr 11274 df-ltxr 11275 df-le 11276 df-sub 11468 df-neg 11469 df-nn 12235 df-2 12297 df-n0 12495 df-xnn0 12567 df-z 12581 df-uz 12845 df-fz 13509 df-hash 14314 df-edg 28848 df-upgr 28882 df-umgr 28883 df-usgr 28951 df-nbgr 29133 df-frgr 30056 |
This theorem is referenced by: frgrncvvdeqlem6 30101 frgrncvvdeqlem7 30102 frgrncvvdeqlem9 30104 |
Copyright terms: Public domain | W3C validator |