MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgrncvvdeqlem5 Structured version   Visualization version   GIF version

Theorem frgrncvvdeqlem5 28667
Description: Lemma 5 for frgrncvvdeq 28673. The mapping of neighbors to neighbors applied on a vertex is the intersection of the corresponding neighborhoods. (Contributed by Alexander van der Vekens, 23-Dec-2017.) (Revised by AV, 10-May-2021.)
Hypotheses
Ref Expression
frgrncvvdeq.v1 𝑉 = (Vtx‘𝐺)
frgrncvvdeq.e 𝐸 = (Edg‘𝐺)
frgrncvvdeq.nx 𝐷 = (𝐺 NeighbVtx 𝑋)
frgrncvvdeq.ny 𝑁 = (𝐺 NeighbVtx 𝑌)
frgrncvvdeq.x (𝜑𝑋𝑉)
frgrncvvdeq.y (𝜑𝑌𝑉)
frgrncvvdeq.ne (𝜑𝑋𝑌)
frgrncvvdeq.xy (𝜑𝑌𝐷)
frgrncvvdeq.f (𝜑𝐺 ∈ FriendGraph )
frgrncvvdeq.a 𝐴 = (𝑥𝐷 ↦ (𝑦𝑁 {𝑥, 𝑦} ∈ 𝐸))
Assertion
Ref Expression
frgrncvvdeqlem5 ((𝜑𝑥𝐷) → {(𝐴𝑥)} = ((𝐺 NeighbVtx 𝑥) ∩ 𝑁))
Distinct variable groups:   𝑦,𝐸   𝑦,𝐺   𝑦,𝑉   𝑦,𝑌   𝑥,𝑦,𝑁   𝑥,𝐷   𝑥,𝑁   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑦)   𝐴(𝑥,𝑦)   𝐷(𝑦)   𝐸(𝑥)   𝐺(𝑥)   𝑉(𝑥)   𝑋(𝑥,𝑦)   𝑌(𝑥)

Proof of Theorem frgrncvvdeqlem5
StepHypRef Expression
1 simpr 485 . . . 4 ((𝜑𝑥𝐷) → 𝑥𝐷)
2 riotaex 7236 . . . 4 (𝑦𝑁 {𝑥, 𝑦} ∈ 𝐸) ∈ V
3 frgrncvvdeq.a . . . . 5 𝐴 = (𝑥𝐷 ↦ (𝑦𝑁 {𝑥, 𝑦} ∈ 𝐸))
43fvmpt2 6886 . . . 4 ((𝑥𝐷 ∧ (𝑦𝑁 {𝑥, 𝑦} ∈ 𝐸) ∈ V) → (𝐴𝑥) = (𝑦𝑁 {𝑥, 𝑦} ∈ 𝐸))
51, 2, 4sylancl 586 . . 3 ((𝜑𝑥𝐷) → (𝐴𝑥) = (𝑦𝑁 {𝑥, 𝑦} ∈ 𝐸))
65sneqd 4573 . 2 ((𝜑𝑥𝐷) → {(𝐴𝑥)} = {(𝑦𝑁 {𝑥, 𝑦} ∈ 𝐸)})
7 frgrncvvdeq.v1 . . 3 𝑉 = (Vtx‘𝐺)
8 frgrncvvdeq.e . . 3 𝐸 = (Edg‘𝐺)
9 frgrncvvdeq.nx . . 3 𝐷 = (𝐺 NeighbVtx 𝑋)
10 frgrncvvdeq.ny . . 3 𝑁 = (𝐺 NeighbVtx 𝑌)
11 frgrncvvdeq.x . . 3 (𝜑𝑋𝑉)
12 frgrncvvdeq.y . . 3 (𝜑𝑌𝑉)
13 frgrncvvdeq.ne . . 3 (𝜑𝑋𝑌)
14 frgrncvvdeq.xy . . 3 (𝜑𝑌𝐷)
15 frgrncvvdeq.f . . 3 (𝜑𝐺 ∈ FriendGraph )
167, 8, 9, 10, 11, 12, 13, 14, 15, 3frgrncvvdeqlem3 28665 . 2 ((𝜑𝑥𝐷) → {(𝑦𝑁 {𝑥, 𝑦} ∈ 𝐸)} = ((𝐺 NeighbVtx 𝑥) ∩ 𝑁))
176, 16eqtrd 2778 1 ((𝜑𝑥𝐷) → {(𝐴𝑥)} = ((𝐺 NeighbVtx 𝑥) ∩ 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wne 2943  wnel 3049  Vcvv 3432  cin 3886  {csn 4561  {cpr 4563  cmpt 5157  cfv 6433  crio 7231  (class class class)co 7275  Vtxcvtx 27366  Edgcedg 27417   NeighbVtx cnbgr 27699   FriendGraph cfrgr 28622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-oadd 8301  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-dju 9659  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-n0 12234  df-xnn0 12306  df-z 12320  df-uz 12583  df-fz 13240  df-hash 14045  df-edg 27418  df-upgr 27452  df-umgr 27453  df-usgr 27521  df-nbgr 27700  df-frgr 28623
This theorem is referenced by:  frgrncvvdeqlem6  28668  frgrncvvdeqlem7  28669  frgrncvvdeqlem9  28671
  Copyright terms: Public domain W3C validator