MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgrncvvdeqlem5 Structured version   Visualization version   GIF version

Theorem frgrncvvdeqlem5 30100
Description: Lemma 5 for frgrncvvdeq 30106. The mapping of neighbors to neighbors applied on a vertex is the intersection of the corresponding neighborhoods. (Contributed by Alexander van der Vekens, 23-Dec-2017.) (Revised by AV, 10-May-2021.)
Hypotheses
Ref Expression
frgrncvvdeq.v1 𝑉 = (Vtx‘𝐺)
frgrncvvdeq.e 𝐸 = (Edg‘𝐺)
frgrncvvdeq.nx 𝐷 = (𝐺 NeighbVtx 𝑋)
frgrncvvdeq.ny 𝑁 = (𝐺 NeighbVtx 𝑌)
frgrncvvdeq.x (𝜑𝑋𝑉)
frgrncvvdeq.y (𝜑𝑌𝑉)
frgrncvvdeq.ne (𝜑𝑋𝑌)
frgrncvvdeq.xy (𝜑𝑌𝐷)
frgrncvvdeq.f (𝜑𝐺 ∈ FriendGraph )
frgrncvvdeq.a 𝐴 = (𝑥𝐷 ↦ (𝑦𝑁 {𝑥, 𝑦} ∈ 𝐸))
Assertion
Ref Expression
frgrncvvdeqlem5 ((𝜑𝑥𝐷) → {(𝐴𝑥)} = ((𝐺 NeighbVtx 𝑥) ∩ 𝑁))
Distinct variable groups:   𝑦,𝐸   𝑦,𝐺   𝑦,𝑉   𝑦,𝑌   𝑥,𝑦,𝑁   𝑥,𝐷   𝑥,𝑁   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑦)   𝐴(𝑥,𝑦)   𝐷(𝑦)   𝐸(𝑥)   𝐺(𝑥)   𝑉(𝑥)   𝑋(𝑥,𝑦)   𝑌(𝑥)

Proof of Theorem frgrncvvdeqlem5
StepHypRef Expression
1 simpr 484 . . . 4 ((𝜑𝑥𝐷) → 𝑥𝐷)
2 riotaex 7374 . . . 4 (𝑦𝑁 {𝑥, 𝑦} ∈ 𝐸) ∈ V
3 frgrncvvdeq.a . . . . 5 𝐴 = (𝑥𝐷 ↦ (𝑦𝑁 {𝑥, 𝑦} ∈ 𝐸))
43fvmpt2 7010 . . . 4 ((𝑥𝐷 ∧ (𝑦𝑁 {𝑥, 𝑦} ∈ 𝐸) ∈ V) → (𝐴𝑥) = (𝑦𝑁 {𝑥, 𝑦} ∈ 𝐸))
51, 2, 4sylancl 585 . . 3 ((𝜑𝑥𝐷) → (𝐴𝑥) = (𝑦𝑁 {𝑥, 𝑦} ∈ 𝐸))
65sneqd 4636 . 2 ((𝜑𝑥𝐷) → {(𝐴𝑥)} = {(𝑦𝑁 {𝑥, 𝑦} ∈ 𝐸)})
7 frgrncvvdeq.v1 . . 3 𝑉 = (Vtx‘𝐺)
8 frgrncvvdeq.e . . 3 𝐸 = (Edg‘𝐺)
9 frgrncvvdeq.nx . . 3 𝐷 = (𝐺 NeighbVtx 𝑋)
10 frgrncvvdeq.ny . . 3 𝑁 = (𝐺 NeighbVtx 𝑌)
11 frgrncvvdeq.x . . 3 (𝜑𝑋𝑉)
12 frgrncvvdeq.y . . 3 (𝜑𝑌𝑉)
13 frgrncvvdeq.ne . . 3 (𝜑𝑋𝑌)
14 frgrncvvdeq.xy . . 3 (𝜑𝑌𝐷)
15 frgrncvvdeq.f . . 3 (𝜑𝐺 ∈ FriendGraph )
167, 8, 9, 10, 11, 12, 13, 14, 15, 3frgrncvvdeqlem3 30098 . 2 ((𝜑𝑥𝐷) → {(𝑦𝑁 {𝑥, 𝑦} ∈ 𝐸)} = ((𝐺 NeighbVtx 𝑥) ∩ 𝑁))
176, 16eqtrd 2767 1 ((𝜑𝑥𝐷) → {(𝐴𝑥)} = ((𝐺 NeighbVtx 𝑥) ∩ 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1534  wcel 2099  wne 2935  wnel 3041  Vcvv 3469  cin 3943  {csn 4624  {cpr 4626  cmpt 5225  cfv 6542  crio 7369  (class class class)co 7414  Vtxcvtx 28796  Edgcedg 28847   NeighbVtx cnbgr 29132   FriendGraph cfrgr 30055
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11186  ax-resscn 11187  ax-1cn 11188  ax-icn 11189  ax-addcl 11190  ax-addrcl 11191  ax-mulcl 11192  ax-mulrcl 11193  ax-mulcom 11194  ax-addass 11195  ax-mulass 11196  ax-distr 11197  ax-i2m1 11198  ax-1ne0 11199  ax-1rid 11200  ax-rnegex 11201  ax-rrecex 11202  ax-cnre 11203  ax-pre-lttri 11204  ax-pre-lttrn 11205  ax-pre-ltadd 11206  ax-pre-mulgt0 11207
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7865  df-1st 7987  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-oadd 8484  df-er 8718  df-en 8956  df-dom 8957  df-sdom 8958  df-fin 8959  df-dju 9916  df-card 9954  df-pnf 11272  df-mnf 11273  df-xr 11274  df-ltxr 11275  df-le 11276  df-sub 11468  df-neg 11469  df-nn 12235  df-2 12297  df-n0 12495  df-xnn0 12567  df-z 12581  df-uz 12845  df-fz 13509  df-hash 14314  df-edg 28848  df-upgr 28882  df-umgr 28883  df-usgr 28951  df-nbgr 29133  df-frgr 30056
This theorem is referenced by:  frgrncvvdeqlem6  30101  frgrncvvdeqlem7  30102  frgrncvvdeqlem9  30104
  Copyright terms: Public domain W3C validator