MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgrncvvdeqlem5 Structured version   Visualization version   GIF version

Theorem frgrncvvdeqlem5 30335
Description: Lemma 5 for frgrncvvdeq 30341. The mapping of neighbors to neighbors applied on a vertex is the intersection of the corresponding neighborhoods. (Contributed by Alexander van der Vekens, 23-Dec-2017.) (Revised by AV, 10-May-2021.)
Hypotheses
Ref Expression
frgrncvvdeq.v1 𝑉 = (Vtx‘𝐺)
frgrncvvdeq.e 𝐸 = (Edg‘𝐺)
frgrncvvdeq.nx 𝐷 = (𝐺 NeighbVtx 𝑋)
frgrncvvdeq.ny 𝑁 = (𝐺 NeighbVtx 𝑌)
frgrncvvdeq.x (𝜑𝑋𝑉)
frgrncvvdeq.y (𝜑𝑌𝑉)
frgrncvvdeq.ne (𝜑𝑋𝑌)
frgrncvvdeq.xy (𝜑𝑌𝐷)
frgrncvvdeq.f (𝜑𝐺 ∈ FriendGraph )
frgrncvvdeq.a 𝐴 = (𝑥𝐷 ↦ (𝑦𝑁 {𝑥, 𝑦} ∈ 𝐸))
Assertion
Ref Expression
frgrncvvdeqlem5 ((𝜑𝑥𝐷) → {(𝐴𝑥)} = ((𝐺 NeighbVtx 𝑥) ∩ 𝑁))
Distinct variable groups:   𝑦,𝐸   𝑦,𝐺   𝑦,𝑉   𝑦,𝑌   𝑥,𝑦,𝑁   𝑥,𝐷   𝑥,𝑁   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑦)   𝐴(𝑥,𝑦)   𝐷(𝑦)   𝐸(𝑥)   𝐺(𝑥)   𝑉(𝑥)   𝑋(𝑥,𝑦)   𝑌(𝑥)

Proof of Theorem frgrncvvdeqlem5
StepHypRef Expression
1 simpr 484 . . . 4 ((𝜑𝑥𝐷) → 𝑥𝐷)
2 riotaex 7408 . . . 4 (𝑦𝑁 {𝑥, 𝑦} ∈ 𝐸) ∈ V
3 frgrncvvdeq.a . . . . 5 𝐴 = (𝑥𝐷 ↦ (𝑦𝑁 {𝑥, 𝑦} ∈ 𝐸))
43fvmpt2 7040 . . . 4 ((𝑥𝐷 ∧ (𝑦𝑁 {𝑥, 𝑦} ∈ 𝐸) ∈ V) → (𝐴𝑥) = (𝑦𝑁 {𝑥, 𝑦} ∈ 𝐸))
51, 2, 4sylancl 585 . . 3 ((𝜑𝑥𝐷) → (𝐴𝑥) = (𝑦𝑁 {𝑥, 𝑦} ∈ 𝐸))
65sneqd 4660 . 2 ((𝜑𝑥𝐷) → {(𝐴𝑥)} = {(𝑦𝑁 {𝑥, 𝑦} ∈ 𝐸)})
7 frgrncvvdeq.v1 . . 3 𝑉 = (Vtx‘𝐺)
8 frgrncvvdeq.e . . 3 𝐸 = (Edg‘𝐺)
9 frgrncvvdeq.nx . . 3 𝐷 = (𝐺 NeighbVtx 𝑋)
10 frgrncvvdeq.ny . . 3 𝑁 = (𝐺 NeighbVtx 𝑌)
11 frgrncvvdeq.x . . 3 (𝜑𝑋𝑉)
12 frgrncvvdeq.y . . 3 (𝜑𝑌𝑉)
13 frgrncvvdeq.ne . . 3 (𝜑𝑋𝑌)
14 frgrncvvdeq.xy . . 3 (𝜑𝑌𝐷)
15 frgrncvvdeq.f . . 3 (𝜑𝐺 ∈ FriendGraph )
167, 8, 9, 10, 11, 12, 13, 14, 15, 3frgrncvvdeqlem3 30333 . 2 ((𝜑𝑥𝐷) → {(𝑦𝑁 {𝑥, 𝑦} ∈ 𝐸)} = ((𝐺 NeighbVtx 𝑥) ∩ 𝑁))
176, 16eqtrd 2780 1 ((𝜑𝑥𝐷) → {(𝐴𝑥)} = ((𝐺 NeighbVtx 𝑥) ∩ 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wne 2946  wnel 3052  Vcvv 3488  cin 3975  {csn 4648  {cpr 4650  cmpt 5249  cfv 6573  crio 7403  (class class class)co 7448  Vtxcvtx 29031  Edgcedg 29082   NeighbVtx cnbgr 29367   FriendGraph cfrgr 30290
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-oadd 8526  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-dju 9970  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-n0 12554  df-xnn0 12626  df-z 12640  df-uz 12904  df-fz 13568  df-hash 14380  df-edg 29083  df-upgr 29117  df-umgr 29118  df-usgr 29186  df-nbgr 29368  df-frgr 30291
This theorem is referenced by:  frgrncvvdeqlem6  30336  frgrncvvdeqlem7  30337  frgrncvvdeqlem9  30339
  Copyright terms: Public domain W3C validator