Users' Mathboxes Mathbox for Rohan Ridenour < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  inagrud Structured version   Visualization version   GIF version

Theorem inagrud 44278
Description: Inaccessible levels of the cumulative hierarchy are Grothendieck universes. (Contributed by Rohan Ridenour, 13-Aug-2023.)
Hypothesis
Ref Expression
inagrud.1 (𝜑𝐼 ∈ Inacc)
Assertion
Ref Expression
inagrud (𝜑 → (𝑅1𝐼) ∈ Univ)

Proof of Theorem inagrud
StepHypRef Expression
1 inagrud.1 . . 3 (𝜑𝐼 ∈ Inacc)
2 inatsk 10737 . . 3 (𝐼 ∈ Inacc → (𝑅1𝐼) ∈ Tarski)
31, 2syl 17 . 2 (𝜑 → (𝑅1𝐼) ∈ Tarski)
4 r1tr 9735 . 2 Tr (𝑅1𝐼)
5 grutsk1 10780 . 2 (((𝑅1𝐼) ∈ Tarski ∧ Tr (𝑅1𝐼)) → (𝑅1𝐼) ∈ Univ)
63, 4, 5sylancl 586 1 (𝜑 → (𝑅1𝐼) ∈ Univ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  Tr wtr 5216  cfv 6513  𝑅1cr1 9721  Inacccina 10642  Tarskictsk 10707  Univcgru 10749
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713  ax-inf2 9600  ax-ac2 10422
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-int 4913  df-iun 4959  df-iin 4960  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-se 5594  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-isom 6522  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-om 7845  df-1st 7970  df-2nd 7971  df-frecs 8262  df-wrecs 8293  df-smo 8317  df-recs 8342  df-rdg 8380  df-1o 8436  df-2o 8437  df-er 8673  df-map 8803  df-ixp 8873  df-en 8921  df-dom 8922  df-sdom 8923  df-fin 8924  df-oi 9469  df-har 9516  df-r1 9723  df-rank 9724  df-card 9898  df-aleph 9899  df-cf 9900  df-acn 9901  df-ac 10075  df-wina 10643  df-ina 10644  df-tsk 10708  df-gru 10750
This theorem is referenced by:  gruex  44280
  Copyright terms: Public domain W3C validator