![]() |
Mathbox for Rohan Ridenour |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > inagrud | Structured version Visualization version GIF version |
Description: Inaccessible levels of the cumulative hierarchy are Grothendieck universes. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
Ref | Expression |
---|---|
inagrud.1 | ⊢ (𝜑 → 𝐼 ∈ Inacc) |
Ref | Expression |
---|---|
inagrud | ⊢ (𝜑 → (𝑅1‘𝐼) ∈ Univ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inagrud.1 | . . 3 ⊢ (𝜑 → 𝐼 ∈ Inacc) | |
2 | inatsk 10841 | . . 3 ⊢ (𝐼 ∈ Inacc → (𝑅1‘𝐼) ∈ Tarski) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝜑 → (𝑅1‘𝐼) ∈ Tarski) |
4 | r1tr 9839 | . 2 ⊢ Tr (𝑅1‘𝐼) | |
5 | grutsk1 10884 | . 2 ⊢ (((𝑅1‘𝐼) ∈ Tarski ∧ Tr (𝑅1‘𝐼)) → (𝑅1‘𝐼) ∈ Univ) | |
6 | 3, 4, 5 | sylancl 585 | 1 ⊢ (𝜑 → (𝑅1‘𝐼) ∈ Univ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 Tr wtr 5283 ‘cfv 6568 𝑅1cr1 9825 Inacccina 10746 Tarskictsk 10811 Univcgru 10853 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7764 ax-inf2 9704 ax-ac2 10526 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5650 df-se 5651 df-we 5652 df-xp 5701 df-rel 5702 df-cnv 5703 df-co 5704 df-dm 5705 df-rn 5706 df-res 5707 df-ima 5708 df-pred 6327 df-ord 6393 df-on 6394 df-lim 6395 df-suc 6396 df-iota 6520 df-fun 6570 df-fn 6571 df-f 6572 df-f1 6573 df-fo 6574 df-f1o 6575 df-fv 6576 df-isom 6577 df-riota 7399 df-ov 7446 df-oprab 7447 df-mpo 7448 df-om 7898 df-1st 8024 df-2nd 8025 df-frecs 8316 df-wrecs 8347 df-smo 8396 df-recs 8421 df-rdg 8460 df-1o 8516 df-2o 8517 df-er 8757 df-map 8880 df-ixp 8950 df-en 8998 df-dom 8999 df-sdom 9000 df-fin 9001 df-oi 9573 df-har 9620 df-r1 9827 df-rank 9828 df-card 10002 df-aleph 10003 df-cf 10004 df-acn 10005 df-ac 10179 df-wina 10747 df-ina 10748 df-tsk 10812 df-gru 10854 |
This theorem is referenced by: gruex 44262 |
Copyright terms: Public domain | W3C validator |