| Mathbox for Rohan Ridenour |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > inagrud | Structured version Visualization version GIF version | ||
| Description: Inaccessible levels of the cumulative hierarchy are Grothendieck universes. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
| Ref | Expression |
|---|---|
| inagrud.1 | ⊢ (𝜑 → 𝐼 ∈ Inacc) |
| Ref | Expression |
|---|---|
| inagrud | ⊢ (𝜑 → (𝑅1‘𝐼) ∈ Univ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inagrud.1 | . . 3 ⊢ (𝜑 → 𝐼 ∈ Inacc) | |
| 2 | inatsk 10680 | . . 3 ⊢ (𝐼 ∈ Inacc → (𝑅1‘𝐼) ∈ Tarski) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ (𝜑 → (𝑅1‘𝐼) ∈ Tarski) |
| 4 | r1tr 9680 | . 2 ⊢ Tr (𝑅1‘𝐼) | |
| 5 | grutsk1 10723 | . 2 ⊢ (((𝑅1‘𝐼) ∈ Tarski ∧ Tr (𝑅1‘𝐼)) → (𝑅1‘𝐼) ∈ Univ) | |
| 6 | 3, 4, 5 | sylancl 586 | 1 ⊢ (𝜑 → (𝑅1‘𝐼) ∈ Univ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2113 Tr wtr 5202 ‘cfv 6489 𝑅1cr1 9666 Inacccina 10585 Tarskictsk 10650 Univcgru 10692 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-inf2 9542 ax-ac2 10365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-iin 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-se 5575 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-isom 6498 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-1st 7930 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-smo 8275 df-recs 8300 df-rdg 8338 df-1o 8394 df-2o 8395 df-er 8631 df-map 8761 df-ixp 8832 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-oi 9407 df-har 9454 df-r1 9668 df-rank 9669 df-card 9843 df-aleph 9844 df-cf 9845 df-acn 9846 df-ac 10018 df-wina 10586 df-ina 10587 df-tsk 10651 df-gru 10693 |
| This theorem is referenced by: gruex 44455 |
| Copyright terms: Public domain | W3C validator |