MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subnegi Structured version   Visualization version   GIF version

Theorem subnegi 11449
Description: Relationship between subtraction and negative. (Contributed by NM, 1-Dec-2005.)
Hypotheses
Ref Expression
negidi.1 𝐴 ∈ ℂ
pncan3i.2 𝐵 ∈ ℂ
Assertion
Ref Expression
subnegi (𝐴 − -𝐵) = (𝐴 + 𝐵)

Proof of Theorem subnegi
StepHypRef Expression
1 negidi.1 . 2 𝐴 ∈ ℂ
2 pncan3i.2 . 2 𝐵 ∈ ℂ
3 subneg 11419 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 − -𝐵) = (𝐴 + 𝐵))
41, 2, 3mp2an 692 1 (𝐴 − -𝐵) = (𝐴 + 𝐵)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wcel 2113  (class class class)co 7354  cc 11013   + caddc 11018  cmin 11353  -cneg 11354
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676  ax-resscn 11072  ax-1cn 11073  ax-icn 11074  ax-addcl 11075  ax-addrcl 11076  ax-mulcl 11077  ax-mulrcl 11078  ax-mulcom 11079  ax-addass 11080  ax-mulass 11081  ax-distr 11082  ax-i2m1 11083  ax-1ne0 11084  ax-1rid 11085  ax-rnegex 11086  ax-rrecex 11087  ax-cnre 11088  ax-pre-lttri 11089  ax-pre-lttrn 11090  ax-pre-ltadd 11091
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-po 5529  df-so 5530  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-riota 7311  df-ov 7357  df-oprab 7358  df-mpo 7359  df-er 8630  df-en 8878  df-dom 8879  df-sdom 8880  df-pnf 11157  df-mnf 11158  df-ltxr 11160  df-sub 11355  df-neg 11356
This theorem is referenced by:  sqeqori  14125  divalglem6  16313  vitalilem4  25542  sinord  26473  resinf1o  26475  acoscos  26833  atanlogsublem  26855  log2cnv  26884  sgnneg  32823  areacirc  37776  dvradcnv2  44467  binomcxplemnotnn0  44476  itgsin0pilem1  46075  fourierdlem94  46325  fourierdlem102  46333  fourierdlem103  46334  fourierdlem111  46342  fourierdlem112  46343  fourierdlem113  46344  fourierdlem114  46345  sqwvfoura  46353  sqwvfourb  46354  modm2nep1  47493  modm1nep2  47495
  Copyright terms: Public domain W3C validator