![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > shseli | Structured version Visualization version GIF version |
Description: Membership in subspace sum. (Contributed by NM, 4-May-2000.) (New usage is discouraged.) |
Ref | Expression |
---|---|
shscl.1 | ⊢ 𝐴 ∈ Sℋ |
shscl.2 | ⊢ 𝐵 ∈ Sℋ |
Ref | Expression |
---|---|
shseli | ⊢ (𝐶 ∈ (𝐴 +ℋ 𝐵) ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝐶 = (𝑥 +ℎ 𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | shscl.1 | . 2 ⊢ 𝐴 ∈ Sℋ | |
2 | shscl.2 | . 2 ⊢ 𝐵 ∈ Sℋ | |
3 | shsel 28724 | . 2 ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝐶 ∈ (𝐴 +ℋ 𝐵) ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝐶 = (𝑥 +ℎ 𝑦))) | |
4 | 1, 2, 3 | mp2an 683 | 1 ⊢ (𝐶 ∈ (𝐴 +ℋ 𝐵) ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝐶 = (𝑥 +ℎ 𝑦)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 = wceq 1656 ∈ wcel 2164 ∃wrex 3118 (class class class)co 6910 +ℎ cva 28328 Sℋ csh 28336 +ℋ cph 28339 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-rep 4996 ax-sep 5007 ax-nul 5015 ax-pow 5067 ax-pr 5129 ax-un 7214 ax-resscn 10316 ax-1cn 10317 ax-icn 10318 ax-addcl 10319 ax-addrcl 10320 ax-mulcl 10321 ax-mulrcl 10322 ax-mulcom 10323 ax-addass 10324 ax-mulass 10325 ax-distr 10326 ax-i2m1 10327 ax-1ne0 10328 ax-1rid 10329 ax-rnegex 10330 ax-rrecex 10331 ax-cnre 10332 ax-pre-lttri 10333 ax-pre-lttrn 10334 ax-pre-ltadd 10335 ax-hilex 28407 ax-hfvadd 28408 ax-hvcom 28409 ax-hvass 28410 ax-hv0cl 28411 ax-hvaddid 28412 ax-hfvmul 28413 ax-hvmulid 28414 ax-hvdistr2 28417 ax-hvmul0 28418 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3or 1112 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-nel 3103 df-ral 3122 df-rex 3123 df-reu 3124 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4147 df-if 4309 df-pw 4382 df-sn 4400 df-pr 4402 df-op 4406 df-uni 4661 df-iun 4744 df-br 4876 df-opab 4938 df-mpt 4955 df-id 5252 df-po 5265 df-so 5266 df-xp 5352 df-rel 5353 df-cnv 5354 df-co 5355 df-dm 5356 df-rn 5357 df-res 5358 df-ima 5359 df-iota 6090 df-fun 6129 df-fn 6130 df-f 6131 df-f1 6132 df-fo 6133 df-f1o 6134 df-fv 6135 df-riota 6871 df-ov 6913 df-oprab 6914 df-mpt2 6915 df-er 8014 df-en 8229 df-dom 8230 df-sdom 8231 df-pnf 10400 df-mnf 10401 df-ltxr 10403 df-sub 10594 df-neg 10595 df-grpo 27899 df-ablo 27951 df-hvsub 28379 df-sh 28615 df-shs 28718 |
This theorem is referenced by: shscli 28727 shunssi 28778 shsleji 28780 shsidmi 28794 shmodsi 28799 chseli 28869 spanuni 28954 spanunsni 28989 5oalem7 29070 pjjsi 29110 cdjreui 29842 cdj3lem2a 29846 cdj3lem2b 29847 cdj3lem3a 29849 |
Copyright terms: Public domain | W3C validator |