HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  shseli Structured version   Visualization version   GIF version

Theorem shseli 29253
Description: Membership in subspace sum. (Contributed by NM, 4-May-2000.) (New usage is discouraged.)
Hypotheses
Ref Expression
shscl.1 𝐴S
shscl.2 𝐵S
Assertion
Ref Expression
shseli (𝐶 ∈ (𝐴 + 𝐵) ↔ ∃𝑥𝐴𝑦𝐵 𝐶 = (𝑥 + 𝑦))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦

Proof of Theorem shseli
StepHypRef Expression
1 shscl.1 . 2 𝐴S
2 shscl.2 . 2 𝐵S
3 shsel 29251 . 2 ((𝐴S𝐵S ) → (𝐶 ∈ (𝐴 + 𝐵) ↔ ∃𝑥𝐴𝑦𝐵 𝐶 = (𝑥 + 𝑦)))
41, 2, 3mp2an 692 1 (𝐶 ∈ (𝐴 + 𝐵) ↔ ∃𝑥𝐴𝑦𝐵 𝐶 = (𝑥 + 𝑦))
Colors of variables: wff setvar class
Syntax hints:  wb 209   = wceq 1542  wcel 2114  wrex 3054  (class class class)co 7172   + cva 28857   S csh 28865   + cph 28868
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7481  ax-resscn 10674  ax-1cn 10675  ax-icn 10676  ax-addcl 10677  ax-addrcl 10678  ax-mulcl 10679  ax-mulrcl 10680  ax-mulcom 10681  ax-addass 10682  ax-mulass 10683  ax-distr 10684  ax-i2m1 10685  ax-1ne0 10686  ax-1rid 10687  ax-rnegex 10688  ax-rrecex 10689  ax-cnre 10690  ax-pre-lttri 10691  ax-pre-lttrn 10692  ax-pre-ltadd 10693  ax-hilex 28936  ax-hfvadd 28937  ax-hvcom 28938  ax-hvass 28939  ax-hv0cl 28940  ax-hvaddid 28941  ax-hfvmul 28942  ax-hvmulid 28943  ax-hvdistr2 28946  ax-hvmul0 28947
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-op 4523  df-uni 4797  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5429  df-po 5442  df-so 5443  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-riota 7129  df-ov 7175  df-oprab 7176  df-mpo 7177  df-er 8322  df-en 8558  df-dom 8559  df-sdom 8560  df-pnf 10757  df-mnf 10758  df-ltxr 10760  df-sub 10952  df-neg 10953  df-grpo 28430  df-ablo 28482  df-hvsub 28908  df-sh 29144  df-shs 29245
This theorem is referenced by:  shscli  29254  shunssi  29305  shsleji  29307  shsidmi  29321  shmodsi  29326  chseli  29396  spanuni  29481  spanunsni  29516  5oalem7  29597  pjjsi  29637  cdjreui  30369  cdj3lem2a  30373  cdj3lem2b  30374  cdj3lem3a  30376
  Copyright terms: Public domain W3C validator