Colors of
variables: wff
setvar class |
Syntax hints:
→ wi 4 ∈ wcel 2107
‘cfv 6544 ℂcc 11108 ℝcr 11109
ℜcre 15044 |
This theorem was proved from axioms:
ax-mp 5 ax-1 6 ax-2 7
ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914
ax-6 1972 ax-7 2012 ax-8 2109
ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 |
This theorem depends on definitions:
df-bi 206 df-an 398
df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-po 5589 df-so 5590 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-div 11872 df-2 12275
df-cj 15046 df-re 15047 |
This theorem is referenced by: abstri
15277 sqreulem
15306 eqsqrt2d
15315 rlimrege0
15523 recoscl
16084 cos01bnd
16129 cnsubrg
21005 mbfeqa
25160 mbfss
25163 mbfmulc2re
25165 mbfadd
25178 mbfmulc2
25180 mbflim
25185 mbfmul
25244 iblcn
25316 itgcnval
25317 itgre
25318 itgim
25319 iblneg
25320 itgneg
25321 iblss
25322 itgeqa
25331 iblconst
25335 ibladd
25338 itgadd
25342 iblabs
25346 iblabsr
25347 iblmulc2
25348 itgmulc2
25351 itgabs
25352 itgsplit
25353 bddiblnc
25359 dvlip
25510 tanregt0
26048 efif1olem4
26054 eff1olem
26057 lognegb
26098 relog
26105 efiarg
26115 cosarg0d
26117 argregt0
26118 argrege0
26119 abslogle
26126 logcnlem4
26153 cxpsqrtlem
26210 cxpcn3lem
26255 abscxpbnd
26261 cosangneg2d
26312 angrtmuld
26313 lawcoslem1
26320 isosctrlem1
26323 asinlem3a
26375 asinlem3
26376 asinneg
26391 asinsinlem
26396 asinsin
26397 acosbnd
26405 atanlogaddlem
26418 atanlogadd
26419 atanlogsublem
26420 atanlogsub
26421 atantan
26428 o1cxp
26479 cxploglim2
26483 zetacvg
26519 lgamgulmlem2
26534 sqsscirc2
32889 ibladdnc
36545 itgaddnc
36548 iblabsnc
36552 iblmulc2nc
36553 itgmulc2nc
36556 itgabsnc
36557 ftc1anclem2
36562 ftc1anclem5
36565 ftc1anclem6
36566 ftc1anclem8
36568 cntotbnd
36664 sqrtcvallem1
42382 sqrtcvallem4
42390 isosctrlem1ALT
43695 iblsplit
44682 |