| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > recld | Structured version Visualization version GIF version | ||
| Description: The real part of a complex number is real (closure law). (Contributed by Mario Carneiro, 29-May-2016.) |
| Ref | Expression |
|---|---|
| recld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| Ref | Expression |
|---|---|
| recld | ⊢ (𝜑 → (ℜ‘𝐴) ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | recld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | recl 15035 | . 2 ⊢ (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (ℜ‘𝐴) ∈ ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ‘cfv 6486 ℂcc 11026 ℝcr 11027 ℜcre 15022 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-div 11796 df-nn 12147 df-2 12209 df-cj 15024 df-re 15025 |
| This theorem is referenced by: abstri 15256 sqreulem 15285 eqsqrt2d 15294 rlimrege0 15504 recoscl 16068 cos01bnd 16113 cnsubrg 21352 mbfeqa 25560 mbfss 25563 mbfmulc2re 25565 mbfadd 25578 mbfmulc2 25580 mbflim 25585 mbfmul 25643 iblcn 25716 itgcnval 25717 itgre 25718 itgim 25719 iblneg 25720 itgneg 25721 iblss 25722 itgeqa 25731 iblconst 25735 ibladd 25738 itgadd 25742 iblabs 25746 iblabsr 25747 iblmulc2 25748 itgmulc2 25751 itgabs 25752 itgsplit 25753 bddiblnc 25759 dvlip 25914 tanregt0 26464 efif1olem4 26470 eff1olem 26473 lognegb 26515 relog 26522 efiarg 26532 cosarg0d 26534 argregt0 26535 argrege0 26536 abslogle 26543 logcnlem4 26570 cxpsqrtlem 26627 cxpcn3lem 26673 abscxpbnd 26679 cosangneg2d 26733 angrtmuld 26734 lawcoslem1 26741 isosctrlem1 26744 asinlem3a 26796 asinlem3 26797 asinneg 26812 asinsinlem 26817 asinsin 26818 acosbnd 26826 atanlogaddlem 26839 atanlogadd 26840 atanlogsublem 26841 atanlogsub 26842 atantan 26849 o1cxp 26901 cxploglim2 26905 zetacvg 26941 lgamgulmlem2 26956 constrrecl 33735 constrimcl 33736 constrmulcl 33737 sqsscirc2 33875 ibladdnc 37656 itgaddnc 37659 iblabsnc 37663 iblmulc2nc 37664 itgmulc2nc 37667 itgabsnc 37668 ftc1anclem2 37673 ftc1anclem5 37676 ftc1anclem6 37677 ftc1anclem8 37679 cntotbnd 37775 sqrtcvallem1 43604 sqrtcvallem4 43612 isosctrlem1ALT 44907 iblsplit 45948 |
| Copyright terms: Public domain | W3C validator |