| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > recld | Structured version Visualization version GIF version | ||
| Description: The real part of a complex number is real (closure law). (Contributed by Mario Carneiro, 29-May-2016.) |
| Ref | Expression |
|---|---|
| recld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| Ref | Expression |
|---|---|
| recld | ⊢ (𝜑 → (ℜ‘𝐴) ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | recld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | recl 15149 | . 2 ⊢ (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (ℜ‘𝐴) ∈ ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 ‘cfv 6561 ℂcc 11153 ℝcr 11154 ℜcre 15136 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-po 5592 df-so 5593 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-div 11921 df-2 12329 df-cj 15138 df-re 15139 |
| This theorem is referenced by: abstri 15369 sqreulem 15398 eqsqrt2d 15407 rlimrege0 15615 recoscl 16177 cos01bnd 16222 cnsubrg 21445 mbfeqa 25678 mbfss 25681 mbfmulc2re 25683 mbfadd 25696 mbfmulc2 25698 mbflim 25703 mbfmul 25761 iblcn 25834 itgcnval 25835 itgre 25836 itgim 25837 iblneg 25838 itgneg 25839 iblss 25840 itgeqa 25849 iblconst 25853 ibladd 25856 itgadd 25860 iblabs 25864 iblabsr 25865 iblmulc2 25866 itgmulc2 25869 itgabs 25870 itgsplit 25871 bddiblnc 25877 dvlip 26032 tanregt0 26581 efif1olem4 26587 eff1olem 26590 lognegb 26632 relog 26639 efiarg 26649 cosarg0d 26651 argregt0 26652 argrege0 26653 abslogle 26660 logcnlem4 26687 cxpsqrtlem 26744 cxpcn3lem 26790 abscxpbnd 26796 cosangneg2d 26850 angrtmuld 26851 lawcoslem1 26858 isosctrlem1 26861 asinlem3a 26913 asinlem3 26914 asinneg 26929 asinsinlem 26934 asinsin 26935 acosbnd 26943 atanlogaddlem 26956 atanlogadd 26957 atanlogsublem 26958 atanlogsub 26959 atantan 26966 o1cxp 27018 cxploglim2 27022 zetacvg 27058 lgamgulmlem2 27073 sqsscirc2 33908 ibladdnc 37684 itgaddnc 37687 iblabsnc 37691 iblmulc2nc 37692 itgmulc2nc 37695 itgabsnc 37696 ftc1anclem2 37701 ftc1anclem5 37704 ftc1anclem6 37705 ftc1anclem8 37707 cntotbnd 37803 sqrtcvallem1 43644 sqrtcvallem4 43652 isosctrlem1ALT 44954 iblsplit 45981 |
| Copyright terms: Public domain | W3C validator |