| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > recld | Structured version Visualization version GIF version | ||
| Description: The real part of a complex number is real (closure law). (Contributed by Mario Carneiro, 29-May-2016.) |
| Ref | Expression |
|---|---|
| recld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| Ref | Expression |
|---|---|
| recld | ⊢ (𝜑 → (ℜ‘𝐴) ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | recld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | recl 15083 | . 2 ⊢ (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (ℜ‘𝐴) ∈ ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ‘cfv 6514 ℂcc 11073 ℝcr 11074 ℜcre 15070 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-cj 15072 df-re 15073 |
| This theorem is referenced by: abstri 15304 sqreulem 15333 eqsqrt2d 15342 rlimrege0 15552 recoscl 16116 cos01bnd 16161 cnsubrg 21351 mbfeqa 25551 mbfss 25554 mbfmulc2re 25556 mbfadd 25569 mbfmulc2 25571 mbflim 25576 mbfmul 25634 iblcn 25707 itgcnval 25708 itgre 25709 itgim 25710 iblneg 25711 itgneg 25712 iblss 25713 itgeqa 25722 iblconst 25726 ibladd 25729 itgadd 25733 iblabs 25737 iblabsr 25738 iblmulc2 25739 itgmulc2 25742 itgabs 25743 itgsplit 25744 bddiblnc 25750 dvlip 25905 tanregt0 26455 efif1olem4 26461 eff1olem 26464 lognegb 26506 relog 26513 efiarg 26523 cosarg0d 26525 argregt0 26526 argrege0 26527 abslogle 26534 logcnlem4 26561 cxpsqrtlem 26618 cxpcn3lem 26664 abscxpbnd 26670 cosangneg2d 26724 angrtmuld 26725 lawcoslem1 26732 isosctrlem1 26735 asinlem3a 26787 asinlem3 26788 asinneg 26803 asinsinlem 26808 asinsin 26809 acosbnd 26817 atanlogaddlem 26830 atanlogadd 26831 atanlogsublem 26832 atanlogsub 26833 atantan 26840 o1cxp 26892 cxploglim2 26896 zetacvg 26932 lgamgulmlem2 26947 constrrecl 33766 constrimcl 33767 constrmulcl 33768 sqsscirc2 33906 ibladdnc 37678 itgaddnc 37681 iblabsnc 37685 iblmulc2nc 37686 itgmulc2nc 37689 itgabsnc 37690 ftc1anclem2 37695 ftc1anclem5 37698 ftc1anclem6 37699 ftc1anclem8 37701 cntotbnd 37797 sqrtcvallem1 43627 sqrtcvallem4 43635 isosctrlem1ALT 44930 iblsplit 45971 |
| Copyright terms: Public domain | W3C validator |