Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > recld | Structured version Visualization version GIF version |
Description: The real part of a complex number is real (closure law). (Contributed by Mario Carneiro, 29-May-2016.) |
Ref | Expression |
---|---|
recld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
Ref | Expression |
---|---|
recld | ⊢ (𝜑 → (ℜ‘𝐴) ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | recld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | recl 14749 | . 2 ⊢ (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (ℜ‘𝐴) ∈ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ‘cfv 6418 ℂcc 10800 ℝcr 10801 ℜcre 14736 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-po 5494 df-so 5495 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-2 11966 df-cj 14738 df-re 14739 |
This theorem is referenced by: abstri 14970 sqreulem 14999 eqsqrt2d 15008 rlimrege0 15216 recoscl 15778 cos01bnd 15823 cnsubrg 20570 mbfeqa 24712 mbfss 24715 mbfmulc2re 24717 mbfadd 24730 mbfmulc2 24732 mbflim 24737 mbfmul 24796 iblcn 24868 itgcnval 24869 itgre 24870 itgim 24871 iblneg 24872 itgneg 24873 iblss 24874 itgeqa 24883 iblconst 24887 ibladd 24890 itgadd 24894 iblabs 24898 iblabsr 24899 iblmulc2 24900 itgmulc2 24903 itgabs 24904 itgsplit 24905 bddiblnc 24911 dvlip 25062 tanregt0 25600 efif1olem4 25606 eff1olem 25609 lognegb 25650 relog 25657 efiarg 25667 cosarg0d 25669 argregt0 25670 argrege0 25671 abslogle 25678 logcnlem4 25705 cxpsqrtlem 25762 cxpcn3lem 25805 abscxpbnd 25811 cosangneg2d 25862 angrtmuld 25863 lawcoslem1 25870 isosctrlem1 25873 asinlem3a 25925 asinlem3 25926 asinneg 25941 asinsinlem 25946 asinsin 25947 acosbnd 25955 atanlogaddlem 25968 atanlogadd 25969 atanlogsublem 25970 atanlogsub 25971 atantan 25978 o1cxp 26029 cxploglim2 26033 zetacvg 26069 lgamgulmlem2 26084 sqsscirc2 31761 ibladdnc 35761 itgaddnc 35764 iblabsnc 35768 iblmulc2nc 35769 itgmulc2nc 35772 itgabsnc 35773 ftc1anclem2 35778 ftc1anclem5 35781 ftc1anclem6 35782 ftc1anclem8 35784 cntotbnd 35881 sqrtcvallem1 41128 sqrtcvallem4 41136 isosctrlem1ALT 42443 iblsplit 43397 |
Copyright terms: Public domain | W3C validator |