| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > recld | Structured version Visualization version GIF version | ||
| Description: The real part of a complex number is real (closure law). (Contributed by Mario Carneiro, 29-May-2016.) |
| Ref | Expression |
|---|---|
| recld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| Ref | Expression |
|---|---|
| recld | ⊢ (𝜑 → (ℜ‘𝐴) ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | recld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | recl 15076 | . 2 ⊢ (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (ℜ‘𝐴) ∈ ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ‘cfv 6511 ℂcc 11066 ℝcr 11067 ℜcre 15063 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-cj 15065 df-re 15066 |
| This theorem is referenced by: abstri 15297 sqreulem 15326 eqsqrt2d 15335 rlimrege0 15545 recoscl 16109 cos01bnd 16154 cnsubrg 21344 mbfeqa 25544 mbfss 25547 mbfmulc2re 25549 mbfadd 25562 mbfmulc2 25564 mbflim 25569 mbfmul 25627 iblcn 25700 itgcnval 25701 itgre 25702 itgim 25703 iblneg 25704 itgneg 25705 iblss 25706 itgeqa 25715 iblconst 25719 ibladd 25722 itgadd 25726 iblabs 25730 iblabsr 25731 iblmulc2 25732 itgmulc2 25735 itgabs 25736 itgsplit 25737 bddiblnc 25743 dvlip 25898 tanregt0 26448 efif1olem4 26454 eff1olem 26457 lognegb 26499 relog 26506 efiarg 26516 cosarg0d 26518 argregt0 26519 argrege0 26520 abslogle 26527 logcnlem4 26554 cxpsqrtlem 26611 cxpcn3lem 26657 abscxpbnd 26663 cosangneg2d 26717 angrtmuld 26718 lawcoslem1 26725 isosctrlem1 26728 asinlem3a 26780 asinlem3 26781 asinneg 26796 asinsinlem 26801 asinsin 26802 acosbnd 26810 atanlogaddlem 26823 atanlogadd 26824 atanlogsublem 26825 atanlogsub 26826 atantan 26833 o1cxp 26885 cxploglim2 26889 zetacvg 26925 lgamgulmlem2 26940 constrrecl 33759 constrimcl 33760 constrmulcl 33761 sqsscirc2 33899 ibladdnc 37671 itgaddnc 37674 iblabsnc 37678 iblmulc2nc 37679 itgmulc2nc 37682 itgabsnc 37683 ftc1anclem2 37688 ftc1anclem5 37691 ftc1anclem6 37692 ftc1anclem8 37694 cntotbnd 37790 sqrtcvallem1 43620 sqrtcvallem4 43628 isosctrlem1ALT 44923 iblsplit 45964 |
| Copyright terms: Public domain | W3C validator |