| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > recld | Structured version Visualization version GIF version | ||
| Description: The real part of a complex number is real (closure law). (Contributed by Mario Carneiro, 29-May-2016.) |
| Ref | Expression |
|---|---|
| recld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| Ref | Expression |
|---|---|
| recld | ⊢ (𝜑 → (ℜ‘𝐴) ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | recld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | recl 15019 | . 2 ⊢ (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (ℜ‘𝐴) ∈ ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2113 ‘cfv 6486 ℂcc 11011 ℝcr 11012 ℜcre 15006 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-div 11782 df-nn 12133 df-2 12195 df-cj 15008 df-re 15009 |
| This theorem is referenced by: abstri 15240 sqreulem 15269 eqsqrt2d 15278 rlimrege0 15488 recoscl 16052 cos01bnd 16097 cnsubrg 21366 mbfeqa 25572 mbfss 25575 mbfmulc2re 25577 mbfadd 25590 mbfmulc2 25592 mbflim 25597 mbfmul 25655 iblcn 25728 itgcnval 25729 itgre 25730 itgim 25731 iblneg 25732 itgneg 25733 iblss 25734 itgeqa 25743 iblconst 25747 ibladd 25750 itgadd 25754 iblabs 25758 iblabsr 25759 iblmulc2 25760 itgmulc2 25763 itgabs 25764 itgsplit 25765 bddiblnc 25771 dvlip 25926 tanregt0 26476 efif1olem4 26482 eff1olem 26485 lognegb 26527 relog 26534 efiarg 26544 cosarg0d 26546 argregt0 26547 argrege0 26548 abslogle 26555 logcnlem4 26582 cxpsqrtlem 26639 cxpcn3lem 26685 abscxpbnd 26691 cosangneg2d 26745 angrtmuld 26746 lawcoslem1 26753 isosctrlem1 26756 asinlem3a 26808 asinlem3 26809 asinneg 26824 asinsinlem 26829 asinsin 26830 acosbnd 26838 atanlogaddlem 26851 atanlogadd 26852 atanlogsublem 26853 atanlogsub 26854 atantan 26861 o1cxp 26913 cxploglim2 26917 zetacvg 26953 lgamgulmlem2 26968 constrrecl 33803 constrimcl 33804 constrmulcl 33805 sqsscirc2 33943 ibladdnc 37737 itgaddnc 37740 iblabsnc 37744 iblmulc2nc 37745 itgmulc2nc 37748 itgabsnc 37749 ftc1anclem2 37754 ftc1anclem5 37757 ftc1anclem6 37758 ftc1anclem8 37760 cntotbnd 37856 sqrtcvallem1 43748 sqrtcvallem4 43756 isosctrlem1ALT 45050 iblsplit 46088 |
| Copyright terms: Public domain | W3C validator |