Colors of
variables: wff
setvar class |
Syntax hints:
→ wi 4 ∈ wcel 2106
‘cfv 6540 ℂcc 11104 ℝcr 11105
ℜcre 15040 |
This theorem was proved from axioms:
ax-mp 5 ax-1 6 ax-2 7
ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913
ax-6 1971 ax-7 2011 ax-8 2108
ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions:
df-bi 206 df-an 397
df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-po 5587 df-so 5588 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-div 11868 df-2 12271
df-cj 15042 df-re 15043 |
This theorem is referenced by: abstri
15273 sqreulem
15302 eqsqrt2d
15311 rlimrege0
15519 recoscl
16080 cos01bnd
16125 cnsubrg
20997 mbfeqa
25151 mbfss
25154 mbfmulc2re
25156 mbfadd
25169 mbfmulc2
25171 mbflim
25176 mbfmul
25235 iblcn
25307 itgcnval
25308 itgre
25309 itgim
25310 iblneg
25311 itgneg
25312 iblss
25313 itgeqa
25322 iblconst
25326 ibladd
25329 itgadd
25333 iblabs
25337 iblabsr
25338 iblmulc2
25339 itgmulc2
25342 itgabs
25343 itgsplit
25344 bddiblnc
25350 dvlip
25501 tanregt0
26039 efif1olem4
26045 eff1olem
26048 lognegb
26089 relog
26096 efiarg
26106 cosarg0d
26108 argregt0
26109 argrege0
26110 abslogle
26117 logcnlem4
26144 cxpsqrtlem
26201 cxpcn3lem
26244 abscxpbnd
26250 cosangneg2d
26301 angrtmuld
26302 lawcoslem1
26309 isosctrlem1
26312 asinlem3a
26364 asinlem3
26365 asinneg
26380 asinsinlem
26385 asinsin
26386 acosbnd
26394 atanlogaddlem
26407 atanlogadd
26408 atanlogsublem
26409 atanlogsub
26410 atantan
26417 o1cxp
26468 cxploglim2
26472 zetacvg
26508 lgamgulmlem2
26523 sqsscirc2
32877 ibladdnc
36533 itgaddnc
36536 iblabsnc
36540 iblmulc2nc
36541 itgmulc2nc
36544 itgabsnc
36545 ftc1anclem2
36550 ftc1anclem5
36553 ftc1anclem6
36554 ftc1anclem8
36556 cntotbnd
36652 sqrtcvallem1
42367 sqrtcvallem4
42375 isosctrlem1ALT
43680 iblsplit
44668 |