Colors of
variables: wff
setvar class |
Syntax hints:
→ wi 4 ∈ wcel 2107
‘cfv 6497 ℂcc 11050 ℝcr 11051
ℜcre 14983 |
This theorem was proved from axioms:
ax-mp 5 ax-1 6 ax-2 7
ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914
ax-6 1972 ax-7 2012 ax-8 2109
ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-sep 5257 ax-nul 5264 ax-pow 5321 ax-pr 5385 ax-un 7673 ax-resscn 11109 ax-1cn 11110 ax-icn 11111 ax-addcl 11112 ax-addrcl 11113 ax-mulcl 11114 ax-mulrcl 11115 ax-mulcom 11116 ax-addass 11117 ax-mulass 11118 ax-distr 11119 ax-i2m1 11120 ax-1ne0 11121 ax-1rid 11122 ax-rnegex 11123 ax-rrecex 11124 ax-cnre 11125 ax-pre-lttri 11126 ax-pre-lttrn 11127 ax-pre-ltadd 11128 ax-pre-mulgt0 11129 |
This theorem depends on definitions:
df-bi 206 df-an 398
df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3066 df-rex 3075 df-rmo 3354 df-reu 3355 df-rab 3409 df-v 3448 df-sbc 3741 df-csb 3857 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4284 df-if 4488 df-pw 4563 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-br 5107 df-opab 5169 df-mpt 5190 df-id 5532 df-po 5546 df-so 5547 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-f1 6502 df-fo 6503 df-f1o 6504 df-fv 6505 df-riota 7314 df-ov 7361 df-oprab 7362 df-mpo 7363 df-er 8649 df-en 8885 df-dom 8886 df-sdom 8887 df-pnf 11192 df-mnf 11193 df-xr 11194 df-ltxr 11195 df-le 11196 df-sub 11388 df-neg 11389 df-div 11814 df-2 12217
df-cj 14985 df-re 14986 |
This theorem is referenced by: abstri
15216 sqreulem
15245 eqsqrt2d
15254 rlimrege0
15462 recoscl
16024 cos01bnd
16069 cnsubrg
20860 mbfeqa
25010 mbfss
25013 mbfmulc2re
25015 mbfadd
25028 mbfmulc2
25030 mbflim
25035 mbfmul
25094 iblcn
25166 itgcnval
25167 itgre
25168 itgim
25169 iblneg
25170 itgneg
25171 iblss
25172 itgeqa
25181 iblconst
25185 ibladd
25188 itgadd
25192 iblabs
25196 iblabsr
25197 iblmulc2
25198 itgmulc2
25201 itgabs
25202 itgsplit
25203 bddiblnc
25209 dvlip
25360 tanregt0
25898 efif1olem4
25904 eff1olem
25907 lognegb
25948 relog
25955 efiarg
25965 cosarg0d
25967 argregt0
25968 argrege0
25969 abslogle
25976 logcnlem4
26003 cxpsqrtlem
26060 cxpcn3lem
26103 abscxpbnd
26109 cosangneg2d
26160 angrtmuld
26161 lawcoslem1
26168 isosctrlem1
26171 asinlem3a
26223 asinlem3
26224 asinneg
26239 asinsinlem
26244 asinsin
26245 acosbnd
26253 atanlogaddlem
26266 atanlogadd
26267 atanlogsublem
26268 atanlogsub
26269 atantan
26276 o1cxp
26327 cxploglim2
26331 zetacvg
26367 lgamgulmlem2
26382 sqsscirc2
32493 ibladdnc
36138 itgaddnc
36141 iblabsnc
36145 iblmulc2nc
36146 itgmulc2nc
36149 itgabsnc
36150 ftc1anclem2
36155 ftc1anclem5
36158 ftc1anclem6
36159 ftc1anclem8
36161 cntotbnd
36258 sqrtcvallem1
41910 sqrtcvallem4
41918 isosctrlem1ALT
43223 iblsplit
44214 |