| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > recld | Structured version Visualization version GIF version | ||
| Description: The real part of a complex number is real (closure law). (Contributed by Mario Carneiro, 29-May-2016.) |
| Ref | Expression |
|---|---|
| recld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| Ref | Expression |
|---|---|
| recld | ⊢ (𝜑 → (ℜ‘𝐴) ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | recld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | recl 15014 | . 2 ⊢ (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (ℜ‘𝐴) ∈ ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 ‘cfv 6481 ℂcc 11001 ℝcr 11002 ℜcre 15001 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-div 11772 df-nn 12123 df-2 12185 df-cj 15003 df-re 15004 |
| This theorem is referenced by: abstri 15235 sqreulem 15264 eqsqrt2d 15273 rlimrege0 15483 recoscl 16047 cos01bnd 16092 cnsubrg 21362 mbfeqa 25569 mbfss 25572 mbfmulc2re 25574 mbfadd 25587 mbfmulc2 25589 mbflim 25594 mbfmul 25652 iblcn 25725 itgcnval 25726 itgre 25727 itgim 25728 iblneg 25729 itgneg 25730 iblss 25731 itgeqa 25740 iblconst 25744 ibladd 25747 itgadd 25751 iblabs 25755 iblabsr 25756 iblmulc2 25757 itgmulc2 25760 itgabs 25761 itgsplit 25762 bddiblnc 25768 dvlip 25923 tanregt0 26473 efif1olem4 26479 eff1olem 26482 lognegb 26524 relog 26531 efiarg 26541 cosarg0d 26543 argregt0 26544 argrege0 26545 abslogle 26552 logcnlem4 26579 cxpsqrtlem 26636 cxpcn3lem 26682 abscxpbnd 26688 cosangneg2d 26742 angrtmuld 26743 lawcoslem1 26750 isosctrlem1 26753 asinlem3a 26805 asinlem3 26806 asinneg 26821 asinsinlem 26826 asinsin 26827 acosbnd 26835 atanlogaddlem 26848 atanlogadd 26849 atanlogsublem 26850 atanlogsub 26851 atantan 26858 o1cxp 26910 cxploglim2 26914 zetacvg 26950 lgamgulmlem2 26965 constrrecl 33777 constrimcl 33778 constrmulcl 33779 sqsscirc2 33917 ibladdnc 37716 itgaddnc 37719 iblabsnc 37723 iblmulc2nc 37724 itgmulc2nc 37727 itgabsnc 37728 ftc1anclem2 37733 ftc1anclem5 37736 ftc1anclem6 37737 ftc1anclem8 37739 cntotbnd 37835 sqrtcvallem1 43663 sqrtcvallem4 43671 isosctrlem1ALT 44965 iblsplit 46003 |
| Copyright terms: Public domain | W3C validator |