![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > recld | Structured version Visualization version GIF version |
Description: The real part of a complex number is real (closure law). (Contributed by Mario Carneiro, 29-May-2016.) |
Ref | Expression |
---|---|
recld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
Ref | Expression |
---|---|
recld | ⊢ (𝜑 → (ℜ‘𝐴) ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | recld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | recl 15145 | . 2 ⊢ (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (ℜ‘𝐴) ∈ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2105 ‘cfv 6562 ℂcc 11150 ℝcr 11151 ℜcre 15132 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-resscn 11209 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-addrcl 11213 ax-mulcl 11214 ax-mulrcl 11215 ax-mulcom 11216 ax-addass 11217 ax-mulass 11218 ax-distr 11219 ax-i2m1 11220 ax-1ne0 11221 ax-1rid 11222 ax-rnegex 11223 ax-rrecex 11224 ax-cnre 11225 ax-pre-lttri 11226 ax-pre-lttrn 11227 ax-pre-ltadd 11228 ax-pre-mulgt0 11229 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3377 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5582 df-po 5596 df-so 5597 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-riota 7387 df-ov 7433 df-oprab 7434 df-mpo 7435 df-er 8743 df-en 8984 df-dom 8985 df-sdom 8986 df-pnf 11294 df-mnf 11295 df-xr 11296 df-ltxr 11297 df-le 11298 df-sub 11491 df-neg 11492 df-div 11918 df-2 12326 df-cj 15134 df-re 15135 |
This theorem is referenced by: abstri 15365 sqreulem 15394 eqsqrt2d 15403 rlimrege0 15611 recoscl 16173 cos01bnd 16218 cnsubrg 21462 mbfeqa 25691 mbfss 25694 mbfmulc2re 25696 mbfadd 25709 mbfmulc2 25711 mbflim 25716 mbfmul 25775 iblcn 25848 itgcnval 25849 itgre 25850 itgim 25851 iblneg 25852 itgneg 25853 iblss 25854 itgeqa 25863 iblconst 25867 ibladd 25870 itgadd 25874 iblabs 25878 iblabsr 25879 iblmulc2 25880 itgmulc2 25883 itgabs 25884 itgsplit 25885 bddiblnc 25891 dvlip 26046 tanregt0 26595 efif1olem4 26601 eff1olem 26604 lognegb 26646 relog 26653 efiarg 26663 cosarg0d 26665 argregt0 26666 argrege0 26667 abslogle 26674 logcnlem4 26701 cxpsqrtlem 26758 cxpcn3lem 26804 abscxpbnd 26810 cosangneg2d 26864 angrtmuld 26865 lawcoslem1 26872 isosctrlem1 26875 asinlem3a 26927 asinlem3 26928 asinneg 26943 asinsinlem 26948 asinsin 26949 acosbnd 26957 atanlogaddlem 26970 atanlogadd 26971 atanlogsublem 26972 atanlogsub 26973 atantan 26980 o1cxp 27032 cxploglim2 27036 zetacvg 27072 lgamgulmlem2 27087 sqsscirc2 33869 ibladdnc 37663 itgaddnc 37666 iblabsnc 37670 iblmulc2nc 37671 itgmulc2nc 37674 itgabsnc 37675 ftc1anclem2 37680 ftc1anclem5 37683 ftc1anclem6 37684 ftc1anclem8 37686 cntotbnd 37782 sqrtcvallem1 43620 sqrtcvallem4 43628 isosctrlem1ALT 44931 iblsplit 45921 |
Copyright terms: Public domain | W3C validator |