Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > recld | Structured version Visualization version GIF version |
Description: The real part of a complex number is real (closure law). (Contributed by Mario Carneiro, 29-May-2016.) |
Ref | Expression |
---|---|
recld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
Ref | Expression |
---|---|
recld | ⊢ (𝜑 → (ℜ‘𝐴) ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | recld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | recl 14562 | . 2 ⊢ (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (ℜ‘𝐴) ∈ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2114 ‘cfv 6340 ℂcc 10616 ℝcr 10617 ℜcre 14549 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2711 ax-sep 5168 ax-nul 5175 ax-pow 5233 ax-pr 5297 ax-un 7482 ax-resscn 10675 ax-1cn 10676 ax-icn 10677 ax-addcl 10678 ax-addrcl 10679 ax-mulcl 10680 ax-mulrcl 10681 ax-mulcom 10682 ax-addass 10683 ax-mulass 10684 ax-distr 10685 ax-i2m1 10686 ax-1ne0 10687 ax-1rid 10688 ax-rnegex 10689 ax-rrecex 10690 ax-cnre 10691 ax-pre-lttri 10692 ax-pre-lttrn 10693 ax-pre-ltadd 10694 ax-pre-mulgt0 10695 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2541 df-eu 2571 df-clab 2718 df-cleq 2731 df-clel 2812 df-nfc 2882 df-ne 2936 df-nel 3040 df-ral 3059 df-rex 3060 df-reu 3061 df-rmo 3062 df-rab 3063 df-v 3401 df-sbc 3682 df-csb 3792 df-dif 3847 df-un 3849 df-in 3851 df-ss 3861 df-nul 4213 df-if 4416 df-pw 4491 df-sn 4518 df-pr 4520 df-op 4524 df-uni 4798 df-br 5032 df-opab 5094 df-mpt 5112 df-id 5430 df-po 5443 df-so 5444 df-xp 5532 df-rel 5533 df-cnv 5534 df-co 5535 df-dm 5536 df-rn 5537 df-res 5538 df-ima 5539 df-iota 6298 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-riota 7130 df-ov 7176 df-oprab 7177 df-mpo 7178 df-er 8323 df-en 8559 df-dom 8560 df-sdom 8561 df-pnf 10758 df-mnf 10759 df-xr 10760 df-ltxr 10761 df-le 10762 df-sub 10953 df-neg 10954 df-div 11379 df-2 11782 df-cj 14551 df-re 14552 |
This theorem is referenced by: abstri 14783 sqreulem 14812 eqsqrt2d 14821 rlimrege0 15029 recoscl 15589 cos01bnd 15634 cnsubrg 20280 mbfeqa 24398 mbfss 24401 mbfmulc2re 24403 mbfadd 24416 mbfmulc2 24418 mbflim 24423 mbfmul 24482 iblcn 24554 itgcnval 24555 itgre 24556 itgim 24557 iblneg 24558 itgneg 24559 iblss 24560 itgeqa 24569 iblconst 24573 ibladd 24576 itgadd 24580 iblabs 24584 iblabsr 24585 iblmulc2 24586 itgmulc2 24589 itgabs 24590 itgsplit 24591 bddiblnc 24597 dvlip 24748 tanregt0 25286 efif1olem4 25292 eff1olem 25295 lognegb 25336 relog 25343 efiarg 25353 cosarg0d 25355 argregt0 25356 argrege0 25357 abslogle 25364 logcnlem4 25391 cxpsqrtlem 25448 cxpcn3lem 25491 abscxpbnd 25497 cosangneg2d 25548 angrtmuld 25549 lawcoslem1 25556 isosctrlem1 25559 asinlem3a 25611 asinlem3 25612 asinneg 25627 asinsinlem 25632 asinsin 25633 acosbnd 25641 atanlogaddlem 25654 atanlogadd 25655 atanlogsublem 25656 atanlogsub 25657 atantan 25664 o1cxp 25715 cxploglim2 25719 zetacvg 25755 lgamgulmlem2 25770 sqsscirc2 31434 ibladdnc 35480 itgaddnc 35483 iblabsnc 35487 iblmulc2nc 35488 itgmulc2nc 35491 itgabsnc 35492 ftc1anclem2 35497 ftc1anclem5 35500 ftc1anclem6 35501 ftc1anclem8 35503 cntotbnd 35600 sqrtcvallem1 40807 sqrtcvallem4 40815 isosctrlem1ALT 42115 iblsplit 43072 |
Copyright terms: Public domain | W3C validator |