Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > recld | Structured version Visualization version GIF version |
Description: The real part of a complex number is real (closure law). (Contributed by Mario Carneiro, 29-May-2016.) |
Ref | Expression |
---|---|
recld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
Ref | Expression |
---|---|
recld | ⊢ (𝜑 → (ℜ‘𝐴) ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | recld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | recl 14821 | . 2 ⊢ (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (ℜ‘𝐴) ∈ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 ‘cfv 6433 ℂcc 10869 ℝcr 10870 ℜcre 14808 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-po 5503 df-so 5504 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-2 12036 df-cj 14810 df-re 14811 |
This theorem is referenced by: abstri 15042 sqreulem 15071 eqsqrt2d 15080 rlimrege0 15288 recoscl 15850 cos01bnd 15895 cnsubrg 20658 mbfeqa 24807 mbfss 24810 mbfmulc2re 24812 mbfadd 24825 mbfmulc2 24827 mbflim 24832 mbfmul 24891 iblcn 24963 itgcnval 24964 itgre 24965 itgim 24966 iblneg 24967 itgneg 24968 iblss 24969 itgeqa 24978 iblconst 24982 ibladd 24985 itgadd 24989 iblabs 24993 iblabsr 24994 iblmulc2 24995 itgmulc2 24998 itgabs 24999 itgsplit 25000 bddiblnc 25006 dvlip 25157 tanregt0 25695 efif1olem4 25701 eff1olem 25704 lognegb 25745 relog 25752 efiarg 25762 cosarg0d 25764 argregt0 25765 argrege0 25766 abslogle 25773 logcnlem4 25800 cxpsqrtlem 25857 cxpcn3lem 25900 abscxpbnd 25906 cosangneg2d 25957 angrtmuld 25958 lawcoslem1 25965 isosctrlem1 25968 asinlem3a 26020 asinlem3 26021 asinneg 26036 asinsinlem 26041 asinsin 26042 acosbnd 26050 atanlogaddlem 26063 atanlogadd 26064 atanlogsublem 26065 atanlogsub 26066 atantan 26073 o1cxp 26124 cxploglim2 26128 zetacvg 26164 lgamgulmlem2 26179 sqsscirc2 31859 ibladdnc 35834 itgaddnc 35837 iblabsnc 35841 iblmulc2nc 35842 itgmulc2nc 35845 itgabsnc 35846 ftc1anclem2 35851 ftc1anclem5 35854 ftc1anclem6 35855 ftc1anclem8 35857 cntotbnd 35954 sqrtcvallem1 41239 sqrtcvallem4 41247 isosctrlem1ALT 42554 iblsplit 43507 |
Copyright terms: Public domain | W3C validator |