![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > st0 | Structured version Visualization version GIF version |
Description: The state of the zero subspace. (Contributed by NM, 24-Oct-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
st0 | ⊢ (𝑆 ∈ States → (𝑆‘0ℋ) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | helch 31172 | . . . 4 ⊢ ℋ ∈ Cℋ | |
2 | 1 | sto2i 32166 | . . 3 ⊢ (𝑆 ∈ States → (𝑆‘(⊥‘ ℋ)) = (1 − (𝑆‘ ℋ))) |
3 | sthil 32163 | . . . 4 ⊢ (𝑆 ∈ States → (𝑆‘ ℋ) = 1) | |
4 | 3 | oveq2d 7431 | . . 3 ⊢ (𝑆 ∈ States → (1 − (𝑆‘ ℋ)) = (1 − 1)) |
5 | 2, 4 | eqtrd 2766 | . 2 ⊢ (𝑆 ∈ States → (𝑆‘(⊥‘ ℋ)) = (1 − 1)) |
6 | choc1 31256 | . . 3 ⊢ (⊥‘ ℋ) = 0ℋ | |
7 | 6 | fveq2i 6895 | . 2 ⊢ (𝑆‘(⊥‘ ℋ)) = (𝑆‘0ℋ) |
8 | 1m1e0 12329 | . 2 ⊢ (1 − 1) = 0 | |
9 | 5, 7, 8 | 3eqtr3g 2789 | 1 ⊢ (𝑆 ∈ States → (𝑆‘0ℋ) = 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 ‘cfv 6545 (class class class)co 7415 0cc0 11148 1c1 11149 − cmin 11484 ℋchba 30848 ⊥cort 30859 0ℋc0h 30864 Statescst 30891 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5282 ax-sep 5296 ax-nul 5303 ax-pow 5361 ax-pr 5425 ax-un 7737 ax-inf2 9676 ax-cnex 11204 ax-resscn 11205 ax-1cn 11206 ax-icn 11207 ax-addcl 11208 ax-addrcl 11209 ax-mulcl 11210 ax-mulrcl 11211 ax-mulcom 11212 ax-addass 11213 ax-mulass 11214 ax-distr 11215 ax-i2m1 11216 ax-1ne0 11217 ax-1rid 11218 ax-rnegex 11219 ax-rrecex 11220 ax-cnre 11221 ax-pre-lttri 11222 ax-pre-lttrn 11223 ax-pre-ltadd 11224 ax-pre-mulgt0 11225 ax-pre-sup 11226 ax-addf 11227 ax-mulf 11228 ax-hilex 30928 ax-hfvadd 30929 ax-hvcom 30930 ax-hvass 30931 ax-hv0cl 30932 ax-hvaddid 30933 ax-hfvmul 30934 ax-hvmulid 30935 ax-hvmulass 30936 ax-hvdistr1 30937 ax-hvdistr2 30938 ax-hvmul0 30939 ax-hfi 31008 ax-his1 31011 ax-his2 31012 ax-his3 31013 ax-his4 31014 ax-hcompl 31131 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3365 df-reu 3366 df-rab 3421 df-v 3466 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3968 df-nul 4325 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-tp 4630 df-op 4632 df-uni 4908 df-int 4949 df-iun 4997 df-iin 4998 df-br 5146 df-opab 5208 df-mpt 5229 df-tr 5263 df-id 5572 df-eprel 5578 df-po 5586 df-so 5587 df-fr 5629 df-se 5630 df-we 5631 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-res 5686 df-ima 5687 df-pred 6304 df-ord 6370 df-on 6371 df-lim 6372 df-suc 6373 df-iota 6497 df-fun 6547 df-fn 6548 df-f 6549 df-f1 6550 df-fo 6551 df-f1o 6552 df-fv 6553 df-isom 6554 df-riota 7371 df-ov 7418 df-oprab 7419 df-mpo 7420 df-of 7681 df-om 7868 df-1st 7994 df-2nd 7995 df-supp 8166 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-2o 8488 df-er 8725 df-map 8848 df-pm 8849 df-ixp 8918 df-en 8966 df-dom 8967 df-sdom 8968 df-fin 8969 df-fsupp 9398 df-fi 9446 df-sup 9477 df-inf 9478 df-oi 9545 df-card 9974 df-pnf 11290 df-mnf 11291 df-xr 11292 df-ltxr 11293 df-le 11294 df-sub 11486 df-neg 11487 df-div 11912 df-nn 12258 df-2 12320 df-3 12321 df-4 12322 df-5 12323 df-6 12324 df-7 12325 df-8 12326 df-9 12327 df-n0 12518 df-z 12604 df-dec 12723 df-uz 12868 df-q 12978 df-rp 13022 df-xneg 13139 df-xadd 13140 df-xmul 13141 df-ioo 13375 df-icc 13378 df-fz 13532 df-fzo 13675 df-seq 14015 df-exp 14075 df-hash 14342 df-cj 15098 df-re 15099 df-im 15100 df-sqrt 15234 df-abs 15235 df-clim 15484 df-sum 15685 df-struct 17143 df-sets 17160 df-slot 17178 df-ndx 17190 df-base 17208 df-ress 17237 df-plusg 17273 df-mulr 17274 df-starv 17275 df-sca 17276 df-vsca 17277 df-ip 17278 df-tset 17279 df-ple 17280 df-ds 17282 df-unif 17283 df-hom 17284 df-cco 17285 df-rest 17431 df-topn 17432 df-0g 17450 df-gsum 17451 df-topgen 17452 df-pt 17453 df-prds 17456 df-xrs 17511 df-qtop 17516 df-imas 17517 df-xps 17519 df-mre 17593 df-mrc 17594 df-acs 17596 df-mgm 18627 df-sgrp 18706 df-mnd 18722 df-submnd 18768 df-mulg 19057 df-cntz 19306 df-cmn 19775 df-psmet 21330 df-xmet 21331 df-met 21332 df-bl 21333 df-mopn 21334 df-cnfld 21339 df-top 22883 df-topon 22900 df-topsp 22922 df-bases 22936 df-cn 23218 df-cnp 23219 df-lm 23220 df-haus 23306 df-tx 23553 df-hmeo 23746 df-xms 24313 df-ms 24314 df-tms 24315 df-cau 25271 df-grpo 30422 df-gid 30423 df-ginv 30424 df-gdiv 30425 df-ablo 30474 df-vc 30488 df-nv 30521 df-va 30524 df-ba 30525 df-sm 30526 df-0v 30527 df-vs 30528 df-nmcv 30529 df-ims 30530 df-dip 30630 df-hnorm 30897 df-hvsub 30900 df-hlim 30901 df-hcau 30902 df-sh 31136 df-ch 31150 df-oc 31181 df-ch0 31182 df-chj 31239 df-st 32140 |
This theorem is referenced by: largei 32196 |
Copyright terms: Public domain | W3C validator |