Step | Hyp | Ref
| Expression |
1 | | eqid 2726 |
. . . 4
⊢
(ℂfld evalSub1 ℚ) =
(ℂfld evalSub1 ℚ) |
2 | | 2sqr3minply.p |
. . . . 5
⊢ 𝑃 = (Poly1‘𝑄) |
3 | | 2sqr3minply.q |
. . . . . 6
⊢ 𝑄 = (ℂfld
↾s ℚ) |
4 | 3 | fveq2i 6896 |
. . . . 5
⊢
(Poly1‘𝑄) =
(Poly1‘(ℂfld ↾s
ℚ)) |
5 | 2, 4 | eqtri 2754 |
. . . 4
⊢ 𝑃 =
(Poly1‘(ℂfld ↾s
ℚ)) |
6 | | cnfldbas 21343 |
. . . 4
⊢ ℂ =
(Base‘ℂfld) |
7 | | cndrng 21386 |
. . . . . 6
⊢
ℂfld ∈ DivRing |
8 | | cncrng 21376 |
. . . . . 6
⊢
ℂfld ∈ CRing |
9 | | isfld 20714 |
. . . . . 6
⊢
(ℂfld ∈ Field ↔ (ℂfld ∈
DivRing ∧ ℂfld ∈ CRing)) |
10 | 7, 8, 9 | mpbir2an 709 |
. . . . 5
⊢
ℂfld ∈ Field |
11 | 10 | a1i 11 |
. . . 4
⊢ (⊤
→ ℂfld ∈ Field) |
12 | | qsubdrg 21412 |
. . . . . . 7
⊢ (ℚ
∈ (SubRing‘ℂfld) ∧ (ℂfld
↾s ℚ) ∈ DivRing) |
13 | 12 | simpli 482 |
. . . . . 6
⊢ ℚ
∈ (SubRing‘ℂfld) |
14 | 12 | simpri 484 |
. . . . . 6
⊢
(ℂfld ↾s ℚ) ∈
DivRing |
15 | | issdrg 20763 |
. . . . . 6
⊢ (ℚ
∈ (SubDRing‘ℂfld) ↔ (ℂfld
∈ DivRing ∧ ℚ ∈ (SubRing‘ℂfld) ∧
(ℂfld ↾s ℚ) ∈
DivRing)) |
16 | 7, 13, 14, 15 | mpbir3an 1338 |
. . . . 5
⊢ ℚ
∈ (SubDRing‘ℂfld) |
17 | 16 | a1i 11 |
. . . 4
⊢ (⊤
→ ℚ ∈ (SubDRing‘ℂfld)) |
18 | | 2sqr3minply.a |
. . . . . 6
⊢ 𝐴 =
(2↑𝑐(1 / 3)) |
19 | | 2cn 12333 |
. . . . . . 7
⊢ 2 ∈
ℂ |
20 | | 3cn 12339 |
. . . . . . . 8
⊢ 3 ∈
ℂ |
21 | | 3ne0 12364 |
. . . . . . . 8
⊢ 3 ≠
0 |
22 | 20, 21 | reccli 11989 |
. . . . . . 7
⊢ (1 / 3)
∈ ℂ |
23 | | cxpcl 26698 |
. . . . . . 7
⊢ ((2
∈ ℂ ∧ (1 / 3) ∈ ℂ) →
(2↑𝑐(1 / 3)) ∈ ℂ) |
24 | 19, 22, 23 | mp2an 690 |
. . . . . 6
⊢
(2↑𝑐(1 / 3)) ∈ ℂ |
25 | 18, 24 | eqeltri 2822 |
. . . . 5
⊢ 𝐴 ∈ ℂ |
26 | 25 | a1i 11 |
. . . 4
⊢ (⊤
→ 𝐴 ∈
ℂ) |
27 | | cnfld0 21380 |
. . . 4
⊢ 0 =
(0g‘ℂfld) |
28 | | 2sqr3minply.m |
. . . 4
⊢ 𝑀 = (ℂfld
minPoly ℚ) |
29 | | eqid 2726 |
. . . 4
⊢
(0g‘𝑃) = (0g‘𝑃) |
30 | | 2sqr3minply.f |
. . . . . . . 8
⊢ 𝐹 = ((3 ↑ 𝑋) − (𝐾‘2)) |
31 | 30 | fveq2i 6896 |
. . . . . . 7
⊢
((ℂfld evalSub1 ℚ)‘𝐹) = ((ℂfld
evalSub1 ℚ)‘((3 ↑ 𝑋) − (𝐾‘2))) |
32 | 31 | fveq1i 6894 |
. . . . . 6
⊢
(((ℂfld evalSub1 ℚ)‘𝐹)‘𝐴) = (((ℂfld
evalSub1 ℚ)‘((3 ↑ 𝑋) − (𝐾‘2)))‘𝐴) |
33 | 32 | a1i 11 |
. . . . 5
⊢ (⊤
→ (((ℂfld evalSub1 ℚ)‘𝐹)‘𝐴) = (((ℂfld
evalSub1 ℚ)‘((3 ↑ 𝑋) − (𝐾‘2)))‘𝐴)) |
34 | | eqid 2726 |
. . . . . 6
⊢
(Base‘𝑃) =
(Base‘𝑃) |
35 | | 2sqr3minply.1 |
. . . . . 6
⊢ − =
(-g‘𝑃) |
36 | | cnfldsub 21385 |
. . . . . 6
⊢ −
= (-g‘ℂfld) |
37 | 8 | a1i 11 |
. . . . . 6
⊢ (⊤
→ ℂfld ∈ CRing) |
38 | 13 | a1i 11 |
. . . . . 6
⊢ (⊤
→ ℚ ∈ (SubRing‘ℂfld)) |
39 | | eqid 2726 |
. . . . . . . 8
⊢
(mulGrp‘𝑃) =
(mulGrp‘𝑃) |
40 | 39, 34 | mgpbas 20119 |
. . . . . . 7
⊢
(Base‘𝑃) =
(Base‘(mulGrp‘𝑃)) |
41 | | 2sqr3minply.2 |
. . . . . . 7
⊢ ↑ =
(.g‘(mulGrp‘𝑃)) |
42 | 3 | qdrng 27646 |
. . . . . . . . . . 11
⊢ 𝑄 ∈ DivRing |
43 | 42 | a1i 11 |
. . . . . . . . . 10
⊢ (⊤
→ 𝑄 ∈
DivRing) |
44 | 43 | drngringd 20711 |
. . . . . . . . 9
⊢ (⊤
→ 𝑄 ∈
Ring) |
45 | 2 | ply1ring 22233 |
. . . . . . . . 9
⊢ (𝑄 ∈ Ring → 𝑃 ∈ Ring) |
46 | 44, 45 | syl 17 |
. . . . . . . 8
⊢ (⊤
→ 𝑃 ∈
Ring) |
47 | 39 | ringmgp 20218 |
. . . . . . . 8
⊢ (𝑃 ∈ Ring →
(mulGrp‘𝑃) ∈
Mnd) |
48 | 46, 47 | syl 17 |
. . . . . . 7
⊢ (⊤
→ (mulGrp‘𝑃)
∈ Mnd) |
49 | | 3nn0 12536 |
. . . . . . . 8
⊢ 3 ∈
ℕ0 |
50 | 49 | a1i 11 |
. . . . . . 7
⊢ (⊤
→ 3 ∈ ℕ0) |
51 | | 2sqr3minply.x |
. . . . . . . . 9
⊢ 𝑋 = (var1‘𝑄) |
52 | 51, 2, 34 | vr1cl 22203 |
. . . . . . . 8
⊢ (𝑄 ∈ Ring → 𝑋 ∈ (Base‘𝑃)) |
53 | 44, 52 | syl 17 |
. . . . . . 7
⊢ (⊤
→ 𝑋 ∈
(Base‘𝑃)) |
54 | 40, 41, 48, 50, 53 | mulgnn0cld 19085 |
. . . . . 6
⊢ (⊤
→ (3 ↑ 𝑋) ∈ (Base‘𝑃)) |
55 | | 2sqr3minply.k |
. . . . . . . 8
⊢ 𝐾 = (algSc‘𝑃) |
56 | 44 | mptru 1541 |
. . . . . . . . 9
⊢ 𝑄 ∈ Ring |
57 | 2 | ply1sca 22238 |
. . . . . . . . 9
⊢ (𝑄 ∈ Ring → 𝑄 = (Scalar‘𝑃)) |
58 | 56, 57 | ax-mp 5 |
. . . . . . . 8
⊢ 𝑄 = (Scalar‘𝑃) |
59 | 2 | ply1lmod 22237 |
. . . . . . . . 9
⊢ (𝑄 ∈ Ring → 𝑃 ∈ LMod) |
60 | 44, 59 | syl 17 |
. . . . . . . 8
⊢ (⊤
→ 𝑃 ∈
LMod) |
61 | 3 | qrngbas 27645 |
. . . . . . . 8
⊢ ℚ =
(Base‘𝑄) |
62 | 55, 58, 46, 60, 61, 34 | asclf 21875 |
. . . . . . 7
⊢ (⊤
→ 𝐾:ℚ⟶(Base‘𝑃)) |
63 | | 2z 12640 |
. . . . . . . 8
⊢ 2 ∈
ℤ |
64 | | zq 12984 |
. . . . . . . 8
⊢ (2 ∈
ℤ → 2 ∈ ℚ) |
65 | 63, 64 | mp1i 13 |
. . . . . . 7
⊢ (⊤
→ 2 ∈ ℚ) |
66 | 62, 65 | ffvelcdmd 7091 |
. . . . . 6
⊢ (⊤
→ (𝐾‘2) ∈
(Base‘𝑃)) |
67 | 1, 6, 2, 3, 34, 35, 36, 37, 38, 54, 66, 26 | evls1subd 33450 |
. . . . 5
⊢ (⊤
→ (((ℂfld evalSub1 ℚ)‘((3 ↑ 𝑋) − (𝐾‘2)))‘𝐴) = ((((ℂfld
evalSub1 ℚ)‘(3 ↑ 𝑋))‘𝐴) − (((ℂfld
evalSub1 ℚ)‘(𝐾‘2))‘𝐴))) |
68 | | eqid 2726 |
. . . . . . . . . 10
⊢
(.g‘(mulGrp‘ℂfld)) =
(.g‘(mulGrp‘ℂfld)) |
69 | 1, 6, 2, 3, 34, 37, 38, 41, 68, 50, 53, 26 | evls1expd 22355 |
. . . . . . . . 9
⊢ (⊤
→ (((ℂfld evalSub1 ℚ)‘(3 ↑ 𝑋))‘𝐴) =
(3(.g‘(mulGrp‘ℂfld))(((ℂfld
evalSub1 ℚ)‘𝑋)‘𝐴))) |
70 | 1, 51, 3, 6, 37, 38 | evls1var 22326 |
. . . . . . . . . . . 12
⊢ (⊤
→ ((ℂfld evalSub1 ℚ)‘𝑋) = ( I ↾
ℂ)) |
71 | 70 | fveq1d 6895 |
. . . . . . . . . . 11
⊢ (⊤
→ (((ℂfld evalSub1 ℚ)‘𝑋)‘𝐴) = (( I ↾ ℂ)‘𝐴)) |
72 | | fvresi 7179 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ ℂ → (( I
↾ ℂ)‘𝐴) =
𝐴) |
73 | 25, 72 | mp1i 13 |
. . . . . . . . . . 11
⊢ (⊤
→ (( I ↾ ℂ)‘𝐴) = 𝐴) |
74 | 71, 73 | eqtrd 2766 |
. . . . . . . . . 10
⊢ (⊤
→ (((ℂfld evalSub1 ℚ)‘𝑋)‘𝐴) = 𝐴) |
75 | 74 | oveq2d 7432 |
. . . . . . . . 9
⊢ (⊤
→
(3(.g‘(mulGrp‘ℂfld))(((ℂfld
evalSub1 ℚ)‘𝑋)‘𝐴)) =
(3(.g‘(mulGrp‘ℂfld))𝐴)) |
76 | | cnfldexp 21392 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℂ ∧ 3 ∈
ℕ0) →
(3(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴↑3)) |
77 | 26, 50, 76 | syl2anc 582 |
. . . . . . . . 9
⊢ (⊤
→ (3(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴↑3)) |
78 | 69, 75, 77 | 3eqtrd 2770 |
. . . . . . . 8
⊢ (⊤
→ (((ℂfld evalSub1 ℚ)‘(3 ↑ 𝑋))‘𝐴) = (𝐴↑3)) |
79 | 18 | oveq1i 7426 |
. . . . . . . . 9
⊢ (𝐴↑3) =
((2↑𝑐(1 / 3))↑3) |
80 | | 3nn 12337 |
. . . . . . . . . 10
⊢ 3 ∈
ℕ |
81 | | cxproot 26714 |
. . . . . . . . . 10
⊢ ((2
∈ ℂ ∧ 3 ∈ ℕ) → ((2↑𝑐(1 /
3))↑3) = 2) |
82 | 19, 80, 81 | mp2an 690 |
. . . . . . . . 9
⊢
((2↑𝑐(1 / 3))↑3) = 2 |
83 | 79, 82 | eqtri 2754 |
. . . . . . . 8
⊢ (𝐴↑3) = 2 |
84 | 78, 83 | eqtrdi 2782 |
. . . . . . 7
⊢ (⊤
→ (((ℂfld evalSub1 ℚ)‘(3 ↑ 𝑋))‘𝐴) = 2) |
85 | 1, 2, 3, 6, 55, 37, 38, 65, 26 | evls1scafv 22354 |
. . . . . . 7
⊢ (⊤
→ (((ℂfld evalSub1 ℚ)‘(𝐾‘2))‘𝐴) = 2) |
86 | 84, 85 | oveq12d 7434 |
. . . . . 6
⊢ (⊤
→ ((((ℂfld evalSub1 ℚ)‘(3 ↑ 𝑋))‘𝐴) − (((ℂfld
evalSub1 ℚ)‘(𝐾‘2))‘𝐴)) = (2 − 2)) |
87 | 19 | subidi 11572 |
. . . . . 6
⊢ (2
− 2) = 0 |
88 | 86, 87 | eqtrdi 2782 |
. . . . 5
⊢ (⊤
→ ((((ℂfld evalSub1 ℚ)‘(3 ↑ 𝑋))‘𝐴) − (((ℂfld
evalSub1 ℚ)‘(𝐾‘2))‘𝐴)) = 0) |
89 | 33, 67, 88 | 3eqtrd 2770 |
. . . 4
⊢ (⊤
→ (((ℂfld evalSub1 ℚ)‘𝐹)‘𝐴) = 0) |
90 | 3 | qrng0 27647 |
. . . . 5
⊢ 0 =
(0g‘𝑄) |
91 | | eqid 2726 |
. . . . 5
⊢
(eval1‘𝑄) = (eval1‘𝑄) |
92 | | 2sqr3minply.d |
. . . . 5
⊢ 𝐷 = (deg1‘𝑄) |
93 | | fldsdrgfld 20773 |
. . . . . . . 8
⊢
((ℂfld ∈ Field ∧ ℚ ∈
(SubDRing‘ℂfld)) → (ℂfld
↾s ℚ) ∈ Field) |
94 | 10, 16, 93 | mp2an 690 |
. . . . . . 7
⊢
(ℂfld ↾s ℚ) ∈
Field |
95 | 3, 94 | eqeltri 2822 |
. . . . . 6
⊢ 𝑄 ∈ Field |
96 | 95 | a1i 11 |
. . . . 5
⊢ (⊤
→ 𝑄 ∈
Field) |
97 | 46 | ringgrpd 20221 |
. . . . . . 7
⊢ (⊤
→ 𝑃 ∈
Grp) |
98 | 34, 35 | grpsubcl 19010 |
. . . . . . 7
⊢ ((𝑃 ∈ Grp ∧ (3 ↑ 𝑋) ∈ (Base‘𝑃) ∧ (𝐾‘2) ∈ (Base‘𝑃)) → ((3 ↑ 𝑋) − (𝐾‘2)) ∈ (Base‘𝑃)) |
99 | 97, 54, 66, 98 | syl3anc 1368 |
. . . . . 6
⊢ (⊤
→ ((3 ↑ 𝑋) − (𝐾‘2)) ∈ (Base‘𝑃)) |
100 | 30, 99 | eqeltrid 2830 |
. . . . 5
⊢ (⊤
→ 𝐹 ∈
(Base‘𝑃)) |
101 | 96 | fldcrngd 20716 |
. . . . . . . . 9
⊢ (⊤
→ 𝑄 ∈
CRing) |
102 | 91, 2, 34, 101, 61, 100 | evl1fvf 33442 |
. . . . . . . 8
⊢ (⊤
→ ((eval1‘𝑄)‘𝐹):ℚ⟶ℚ) |
103 | 102 | ffnd 6721 |
. . . . . . 7
⊢ (⊤
→ ((eval1‘𝑄)‘𝐹) Fn ℚ) |
104 | | fniniseg2 7067 |
. . . . . . 7
⊢
(((eval1‘𝑄)‘𝐹) Fn ℚ → (◡((eval1‘𝑄)‘𝐹) “ {0}) = {𝑥 ∈ ℚ ∣
(((eval1‘𝑄)‘𝐹)‘𝑥) = 0}) |
105 | 103, 104 | syl 17 |
. . . . . 6
⊢ (⊤
→ (◡((eval1‘𝑄)‘𝐹) “ {0}) = {𝑥 ∈ ℚ ∣
(((eval1‘𝑄)‘𝐹)‘𝑥) = 0}) |
106 | | cnfldmul 21347 |
. . . . . . . . . . . . . . 15
⊢ ·
= (.r‘ℂfld) |
107 | 3, 106 | ressmulr 17316 |
. . . . . . . . . . . . . 14
⊢ (ℚ
∈ (SubRing‘ℂfld) → · =
(.r‘𝑄)) |
108 | 13, 107 | ax-mp 5 |
. . . . . . . . . . . . 13
⊢ ·
= (.r‘𝑄) |
109 | | cnfldadd 21345 |
. . . . . . . . . . . . . . 15
⊢ + =
(+g‘ℂfld) |
110 | 3, 109 | ressplusg 17299 |
. . . . . . . . . . . . . 14
⊢ (ℚ
∈ (SubRing‘ℂfld) → + =
(+g‘𝑄)) |
111 | 13, 110 | ax-mp 5 |
. . . . . . . . . . . . 13
⊢ + =
(+g‘𝑄) |
112 | | eqid 2726 |
. . . . . . . . . . . . 13
⊢
(.g‘(mulGrp‘𝑄)) =
(.g‘(mulGrp‘𝑄)) |
113 | | eqid 2726 |
. . . . . . . . . . . . 13
⊢
(coe1‘𝐹) = (coe1‘𝐹) |
114 | 30 | fveq2i 6896 |
. . . . . . . . . . . . . . . . . 18
⊢
(coe1‘𝐹) = (coe1‘((3 ↑ 𝑋) − (𝐾‘2))) |
115 | 114 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ (⊤
→ (coe1‘𝐹) = (coe1‘((3 ↑ 𝑋) − (𝐾‘2)))) |
116 | 30 | fveq2i 6896 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐷‘𝐹) = (𝐷‘((3 ↑ 𝑋) − (𝐾‘2))) |
117 | 116 | a1i 11 |
. . . . . . . . . . . . . . . . . 18
⊢ (⊤
→ (𝐷‘𝐹) = (𝐷‘((3 ↑ 𝑋) − (𝐾‘2)))) |
118 | | 3pos 12363 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 0 <
3 |
119 | 118 | a1i 11 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (⊤
→ 0 < 3) |
120 | | 2ne0 12362 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 2 ≠
0 |
121 | 120 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (⊤
→ 2 ≠ 0) |
122 | 92, 2, 61, 55, 90 | deg1scl 26137 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑄 ∈ Ring ∧ 2 ∈
ℚ ∧ 2 ≠ 0) → (𝐷‘(𝐾‘2)) = 0) |
123 | 44, 65, 121, 122 | syl3anc 1368 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (⊤
→ (𝐷‘(𝐾‘2)) = 0) |
124 | | drngnzr 20722 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑄 ∈ DivRing → 𝑄 ∈ NzRing) |
125 | 42, 124 | mp1i 13 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (⊤
→ 𝑄 ∈
NzRing) |
126 | 92, 2, 51, 39, 41 | deg1pw 26145 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑄 ∈ NzRing ∧ 3 ∈
ℕ0) → (𝐷‘(3 ↑ 𝑋)) = 3) |
127 | 125, 50, 126 | syl2anc 582 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (⊤
→ (𝐷‘(3 ↑ 𝑋)) = 3) |
128 | 119, 123,
127 | 3brtr4d 5177 |
. . . . . . . . . . . . . . . . . . 19
⊢ (⊤
→ (𝐷‘(𝐾‘2)) < (𝐷‘(3 ↑ 𝑋))) |
129 | 2, 92, 44, 34, 35, 54, 66, 128 | deg1sub 26132 |
. . . . . . . . . . . . . . . . . 18
⊢ (⊤
→ (𝐷‘((3 ↑ 𝑋) − (𝐾‘2))) = (𝐷‘(3 ↑ 𝑋))) |
130 | 117, 129,
127 | 3eqtrd 2770 |
. . . . . . . . . . . . . . . . 17
⊢ (⊤
→ (𝐷‘𝐹) = 3) |
131 | 115, 130 | fveq12d 6900 |
. . . . . . . . . . . . . . . 16
⊢ (⊤
→ ((coe1‘𝐹)‘(𝐷‘𝐹)) = ((coe1‘((3 ↑ 𝑋) − (𝐾‘2)))‘3)) |
132 | | eqid 2726 |
. . . . . . . . . . . . . . . . . 18
⊢
(-g‘𝑄) = (-g‘𝑄) |
133 | 2, 34, 35, 132 | coe1subfv 22253 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑄 ∈ Ring ∧ (3 ↑ 𝑋) ∈ (Base‘𝑃) ∧ (𝐾‘2) ∈ (Base‘𝑃)) ∧ 3 ∈
ℕ0) → ((coe1‘((3 ↑ 𝑋) − (𝐾‘2)))‘3) =
(((coe1‘(3 ↑ 𝑋))‘3)(-g‘𝑄)((coe1‘(𝐾‘2))‘3))) |
134 | 44, 54, 66, 50, 133 | syl31anc 1370 |
. . . . . . . . . . . . . . . 16
⊢ (⊤
→ ((coe1‘((3 ↑ 𝑋) − (𝐾‘2)))‘3) =
(((coe1‘(3 ↑ 𝑋))‘3)(-g‘𝑄)((coe1‘(𝐾‘2))‘3))) |
135 | | subrgsubg 20557 |
. . . . . . . . . . . . . . . . . . 19
⊢ (ℚ
∈ (SubRing‘ℂfld) → ℚ ∈
(SubGrp‘ℂfld)) |
136 | 13, 135 | mp1i 13 |
. . . . . . . . . . . . . . . . . 18
⊢ (⊤
→ ℚ ∈ (SubGrp‘ℂfld)) |
137 | | eqid 2726 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(coe1‘(3 ↑ 𝑋)) = (coe1‘(3 ↑ 𝑋)) |
138 | 137, 34, 2, 61 | coe1fvalcl 22198 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((3
↑
𝑋) ∈ (Base‘𝑃) ∧ 3 ∈
ℕ0) → ((coe1‘(3 ↑ 𝑋))‘3) ∈ ℚ) |
139 | 54, 50, 138 | syl2anc 582 |
. . . . . . . . . . . . . . . . . 18
⊢ (⊤
→ ((coe1‘(3 ↑ 𝑋))‘3) ∈ ℚ) |
140 | | eqid 2726 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(coe1‘(𝐾‘2)) = (coe1‘(𝐾‘2)) |
141 | 140, 34, 2, 61 | coe1fvalcl 22198 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐾‘2) ∈
(Base‘𝑃) ∧ 3
∈ ℕ0) → ((coe1‘(𝐾‘2))‘3) ∈
ℚ) |
142 | 66, 50, 141 | syl2anc 582 |
. . . . . . . . . . . . . . . . . 18
⊢ (⊤
→ ((coe1‘(𝐾‘2))‘3) ∈
ℚ) |
143 | 36, 3, 132 | subgsub 19128 |
. . . . . . . . . . . . . . . . . 18
⊢ ((ℚ
∈ (SubGrp‘ℂfld) ∧ ((coe1‘(3
↑
𝑋))‘3) ∈ ℚ
∧ ((coe1‘(𝐾‘2))‘3) ∈ ℚ) →
(((coe1‘(3 ↑ 𝑋))‘3) −
((coe1‘(𝐾‘2))‘3)) =
(((coe1‘(3 ↑ 𝑋))‘3)(-g‘𝑄)((coe1‘(𝐾‘2))‘3))) |
144 | 136, 139,
142, 143 | syl3anc 1368 |
. . . . . . . . . . . . . . . . 17
⊢ (⊤
→ (((coe1‘(3 ↑ 𝑋))‘3) −
((coe1‘(𝐾‘2))‘3)) =
(((coe1‘(3 ↑ 𝑋))‘3)(-g‘𝑄)((coe1‘(𝐾‘2))‘3))) |
145 | | iftrue 4529 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑖 = 3 → if(𝑖 = 3, 1, 0) =
1) |
146 | 3 | qrng1 27648 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 1 =
(1r‘𝑄) |
147 | 2, 51, 41, 44, 50, 90, 146 | coe1mon 33463 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (⊤
→ (coe1‘(3 ↑ 𝑋)) = (𝑖 ∈ ℕ0 ↦ if(𝑖 = 3, 1, 0))) |
148 | | 1cnd 11250 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (⊤
→ 1 ∈ ℂ) |
149 | 145, 147,
50, 148 | fvmptd4 7025 |
. . . . . . . . . . . . . . . . . . 19
⊢ (⊤
→ ((coe1‘(3 ↑ 𝑋))‘3) = 1) |
150 | 21 | neii 2932 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ¬ 3
= 0 |
151 | | eqeq1 2730 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑖 = 3 → (𝑖 = 0 ↔ 3 = 0)) |
152 | 150, 151 | mtbiri 326 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑖 = 3 → ¬ 𝑖 = 0) |
153 | 152 | iffalsed 4534 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑖 = 3 → if(𝑖 = 0, 2, 0) =
0) |
154 | 2, 55, 61, 90 | coe1scl 22274 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑄 ∈ Ring ∧ 2 ∈
ℚ) → (coe1‘(𝐾‘2)) = (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, 2, 0))) |
155 | 44, 65, 154 | syl2anc 582 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (⊤
→ (coe1‘(𝐾‘2)) = (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, 2, 0))) |
156 | | 0nn0 12533 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 0 ∈
ℕ0 |
157 | 156 | a1i 11 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (⊤
→ 0 ∈ ℕ0) |
158 | 153, 155,
50, 157 | fvmptd4 7025 |
. . . . . . . . . . . . . . . . . . 19
⊢ (⊤
→ ((coe1‘(𝐾‘2))‘3) = 0) |
159 | 149, 158 | oveq12d 7434 |
. . . . . . . . . . . . . . . . . 18
⊢ (⊤
→ (((coe1‘(3 ↑ 𝑋))‘3) −
((coe1‘(𝐾‘2))‘3)) = (1 −
0)) |
160 | | 1m0e1 12379 |
. . . . . . . . . . . . . . . . . 18
⊢ (1
− 0) = 1 |
161 | 159, 160 | eqtrdi 2782 |
. . . . . . . . . . . . . . . . 17
⊢ (⊤
→ (((coe1‘(3 ↑ 𝑋))‘3) −
((coe1‘(𝐾‘2))‘3)) = 1) |
162 | 144, 161 | eqtr3d 2768 |
. . . . . . . . . . . . . . . 16
⊢ (⊤
→ (((coe1‘(3 ↑ 𝑋))‘3)(-g‘𝑄)((coe1‘(𝐾‘2))‘3)) =
1) |
163 | 131, 134,
162 | 3eqtrd 2770 |
. . . . . . . . . . . . . . 15
⊢ (⊤
→ ((coe1‘𝐹)‘(𝐷‘𝐹)) = 1) |
164 | 130 | fveq2d 6897 |
. . . . . . . . . . . . . . 15
⊢ (⊤
→ ((coe1‘𝐹)‘(𝐷‘𝐹)) = ((coe1‘𝐹)‘3)) |
165 | 163, 164 | eqtr3d 2768 |
. . . . . . . . . . . . . 14
⊢ (⊤
→ 1 = ((coe1‘𝐹)‘3)) |
166 | 165 | mptru 1541 |
. . . . . . . . . . . . 13
⊢ 1 =
((coe1‘𝐹)‘3) |
167 | 115 | fveq1d 6895 |
. . . . . . . . . . . . . . 15
⊢ (⊤
→ ((coe1‘𝐹)‘2) = ((coe1‘((3
↑
𝑋) − (𝐾‘2)))‘2)) |
168 | | 2nn0 12535 |
. . . . . . . . . . . . . . . . . 18
⊢ 2 ∈
ℕ0 |
169 | 168 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ (⊤
→ 2 ∈ ℕ0) |
170 | 2, 34, 35, 132 | coe1subfv 22253 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑄 ∈ Ring ∧ (3 ↑ 𝑋) ∈ (Base‘𝑃) ∧ (𝐾‘2) ∈ (Base‘𝑃)) ∧ 2 ∈
ℕ0) → ((coe1‘((3 ↑ 𝑋) − (𝐾‘2)))‘2) =
(((coe1‘(3 ↑ 𝑋))‘2)(-g‘𝑄)((coe1‘(𝐾‘2))‘2))) |
171 | 44, 54, 66, 169, 170 | syl31anc 1370 |
. . . . . . . . . . . . . . . 16
⊢ (⊤
→ ((coe1‘((3 ↑ 𝑋) − (𝐾‘2)))‘2) =
(((coe1‘(3 ↑ 𝑋))‘2)(-g‘𝑄)((coe1‘(𝐾‘2))‘2))) |
172 | | 2re 12332 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ 2 ∈
ℝ |
173 | | 2lt3 12430 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ 2 <
3 |
174 | 172, 173 | ltneii 11368 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 2 ≠
3 |
175 | | neeq1 2993 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑖 = 2 → (𝑖 ≠ 3 ↔ 2 ≠ 3)) |
176 | 174, 175 | mpbiri 257 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑖 = 2 → 𝑖 ≠ 3) |
177 | 176 | adantl 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((⊤ ∧ 𝑖 =
2) → 𝑖 ≠
3) |
178 | 177 | neneqd 2935 |
. . . . . . . . . . . . . . . . . . 19
⊢
((⊤ ∧ 𝑖 =
2) → ¬ 𝑖 =
3) |
179 | 178 | iffalsed 4534 |
. . . . . . . . . . . . . . . . . 18
⊢
((⊤ ∧ 𝑖 =
2) → if(𝑖 = 3, 1, 0) =
0) |
180 | 147, 179,
169, 157 | fvmptd 7008 |
. . . . . . . . . . . . . . . . 17
⊢ (⊤
→ ((coe1‘(3 ↑ 𝑋))‘2) = 0) |
181 | | neeq1 2993 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑖 = 2 → (𝑖 ≠ 0 ↔ 2 ≠ 0)) |
182 | 120, 181 | mpbiri 257 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑖 = 2 → 𝑖 ≠ 0) |
183 | 182 | neneqd 2935 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑖 = 2 → ¬ 𝑖 = 0) |
184 | 183 | adantl 480 |
. . . . . . . . . . . . . . . . . . 19
⊢
((⊤ ∧ 𝑖 =
2) → ¬ 𝑖 =
0) |
185 | 184 | iffalsed 4534 |
. . . . . . . . . . . . . . . . . 18
⊢
((⊤ ∧ 𝑖 =
2) → if(𝑖 = 0, 2, 0) =
0) |
186 | 155, 185,
169, 157 | fvmptd 7008 |
. . . . . . . . . . . . . . . . 17
⊢ (⊤
→ ((coe1‘(𝐾‘2))‘2) = 0) |
187 | 180, 186 | oveq12d 7434 |
. . . . . . . . . . . . . . . 16
⊢ (⊤
→ (((coe1‘(3 ↑ 𝑋))‘2)(-g‘𝑄)((coe1‘(𝐾‘2))‘2)) =
(0(-g‘𝑄)0)) |
188 | 171, 187 | eqtrd 2766 |
. . . . . . . . . . . . . . 15
⊢ (⊤
→ ((coe1‘((3 ↑ 𝑋) − (𝐾‘2)))‘2) =
(0(-g‘𝑄)0)) |
189 | 158, 142 | eqeltrrd 2827 |
. . . . . . . . . . . . . . . . 17
⊢ (⊤
→ 0 ∈ ℚ) |
190 | 36, 3, 132 | subgsub 19128 |
. . . . . . . . . . . . . . . . 17
⊢ ((ℚ
∈ (SubGrp‘ℂfld) ∧ 0 ∈ ℚ ∧ 0
∈ ℚ) → (0 − 0) = (0(-g‘𝑄)0)) |
191 | 136, 189,
189, 190 | syl3anc 1368 |
. . . . . . . . . . . . . . . 16
⊢ (⊤
→ (0 − 0) = (0(-g‘𝑄)0)) |
192 | | 0m0e0 12378 |
. . . . . . . . . . . . . . . 16
⊢ (0
− 0) = 0 |
193 | 191, 192 | eqtr3di 2781 |
. . . . . . . . . . . . . . 15
⊢ (⊤
→ (0(-g‘𝑄)0) = 0) |
194 | 167, 188,
193 | 3eqtrrd 2771 |
. . . . . . . . . . . . . 14
⊢ (⊤
→ 0 = ((coe1‘𝐹)‘2)) |
195 | 194 | mptru 1541 |
. . . . . . . . . . . . 13
⊢ 0 =
((coe1‘𝐹)‘2) |
196 | 115 | fveq1d 6895 |
. . . . . . . . . . . . . . 15
⊢ (⊤
→ ((coe1‘𝐹)‘1) = ((coe1‘((3
↑
𝑋) − (𝐾‘2)))‘1)) |
197 | | 1nn0 12534 |
. . . . . . . . . . . . . . . . . 18
⊢ 1 ∈
ℕ0 |
198 | 197 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ (⊤
→ 1 ∈ ℕ0) |
199 | 2, 34, 35, 132 | coe1subfv 22253 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑄 ∈ Ring ∧ (3 ↑ 𝑋) ∈ (Base‘𝑃) ∧ (𝐾‘2) ∈ (Base‘𝑃)) ∧ 1 ∈
ℕ0) → ((coe1‘((3 ↑ 𝑋) − (𝐾‘2)))‘1) =
(((coe1‘(3 ↑ 𝑋))‘1)(-g‘𝑄)((coe1‘(𝐾‘2))‘1))) |
200 | 44, 54, 66, 198, 199 | syl31anc 1370 |
. . . . . . . . . . . . . . . 16
⊢ (⊤
→ ((coe1‘((3 ↑ 𝑋) − (𝐾‘2)))‘1) =
(((coe1‘(3 ↑ 𝑋))‘1)(-g‘𝑄)((coe1‘(𝐾‘2))‘1))) |
201 | | 1re 11255 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ 1 ∈
ℝ |
202 | | 1lt3 12431 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ 1 <
3 |
203 | 201, 202 | ltneii 11368 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 1 ≠
3 |
204 | | neeq1 2993 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑖 = 1 → (𝑖 ≠ 3 ↔ 1 ≠ 3)) |
205 | 203, 204 | mpbiri 257 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑖 = 1 → 𝑖 ≠ 3) |
206 | 205 | neneqd 2935 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑖 = 1 → ¬ 𝑖 = 3) |
207 | 206 | adantl 480 |
. . . . . . . . . . . . . . . . . . 19
⊢
((⊤ ∧ 𝑖 =
1) → ¬ 𝑖 =
3) |
208 | 207 | iffalsed 4534 |
. . . . . . . . . . . . . . . . . 18
⊢
((⊤ ∧ 𝑖 =
1) → if(𝑖 = 3, 1, 0) =
0) |
209 | 147, 208,
198, 157 | fvmptd 7008 |
. . . . . . . . . . . . . . . . 17
⊢ (⊤
→ ((coe1‘(3 ↑ 𝑋))‘1) = 0) |
210 | | ax-1ne0 11218 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 1 ≠
0 |
211 | | neeq1 2993 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑖 = 1 → (𝑖 ≠ 0 ↔ 1 ≠ 0)) |
212 | 210, 211 | mpbiri 257 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑖 = 1 → 𝑖 ≠ 0) |
213 | 212 | neneqd 2935 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑖 = 1 → ¬ 𝑖 = 0) |
214 | 213 | adantl 480 |
. . . . . . . . . . . . . . . . . . 19
⊢
((⊤ ∧ 𝑖 =
1) → ¬ 𝑖 =
0) |
215 | 214 | iffalsed 4534 |
. . . . . . . . . . . . . . . . . 18
⊢
((⊤ ∧ 𝑖 =
1) → if(𝑖 = 0, 2, 0) =
0) |
216 | 155, 215,
198, 157 | fvmptd 7008 |
. . . . . . . . . . . . . . . . 17
⊢ (⊤
→ ((coe1‘(𝐾‘2))‘1) = 0) |
217 | 209, 216 | oveq12d 7434 |
. . . . . . . . . . . . . . . 16
⊢ (⊤
→ (((coe1‘(3 ↑ 𝑋))‘1)(-g‘𝑄)((coe1‘(𝐾‘2))‘1)) =
(0(-g‘𝑄)0)) |
218 | 200, 217 | eqtrd 2766 |
. . . . . . . . . . . . . . 15
⊢ (⊤
→ ((coe1‘((3 ↑ 𝑋) − (𝐾‘2)))‘1) =
(0(-g‘𝑄)0)) |
219 | 196, 218,
193 | 3eqtrrd 2771 |
. . . . . . . . . . . . . 14
⊢ (⊤
→ 0 = ((coe1‘𝐹)‘1)) |
220 | 219 | mptru 1541 |
. . . . . . . . . . . . 13
⊢ 0 =
((coe1‘𝐹)‘1) |
221 | 115 | fveq1d 6895 |
. . . . . . . . . . . . . . 15
⊢ (⊤
→ ((coe1‘𝐹)‘0) = ((coe1‘((3
↑
𝑋) − (𝐾‘2)))‘0)) |
222 | 2, 34, 35, 132 | coe1subfv 22253 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑄 ∈ Ring ∧ (3 ↑ 𝑋) ∈ (Base‘𝑃) ∧ (𝐾‘2) ∈ (Base‘𝑃)) ∧ 0 ∈
ℕ0) → ((coe1‘((3 ↑ 𝑋) − (𝐾‘2)))‘0) =
(((coe1‘(3 ↑ 𝑋))‘0)(-g‘𝑄)((coe1‘(𝐾‘2))‘0))) |
223 | 44, 54, 66, 157, 222 | syl31anc 1370 |
. . . . . . . . . . . . . . . 16
⊢ (⊤
→ ((coe1‘((3 ↑ 𝑋) − (𝐾‘2)))‘0) =
(((coe1‘(3 ↑ 𝑋))‘0)(-g‘𝑄)((coe1‘(𝐾‘2))‘0))) |
224 | 21 | necomi 2985 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 0 ≠
3 |
225 | | neeq1 2993 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑖 = 0 → (𝑖 ≠ 3 ↔ 0 ≠ 3)) |
226 | 224, 225 | mpbiri 257 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑖 = 0 → 𝑖 ≠ 3) |
227 | 226 | neneqd 2935 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑖 = 0 → ¬ 𝑖 = 3) |
228 | 227 | adantl 480 |
. . . . . . . . . . . . . . . . . . 19
⊢
((⊤ ∧ 𝑖 =
0) → ¬ 𝑖 =
3) |
229 | 228 | iffalsed 4534 |
. . . . . . . . . . . . . . . . . 18
⊢
((⊤ ∧ 𝑖 =
0) → if(𝑖 = 3, 1, 0) =
0) |
230 | 147, 229,
157, 157 | fvmptd 7008 |
. . . . . . . . . . . . . . . . 17
⊢ (⊤
→ ((coe1‘(3 ↑ 𝑋))‘0) = 0) |
231 | | simpr 483 |
. . . . . . . . . . . . . . . . . . 19
⊢
((⊤ ∧ 𝑖 =
0) → 𝑖 =
0) |
232 | 231 | iftrued 4531 |
. . . . . . . . . . . . . . . . . 18
⊢
((⊤ ∧ 𝑖 =
0) → if(𝑖 = 0, 2, 0) =
2) |
233 | 155, 232,
157, 169 | fvmptd 7008 |
. . . . . . . . . . . . . . . . 17
⊢ (⊤
→ ((coe1‘(𝐾‘2))‘0) = 2) |
234 | 230, 233 | oveq12d 7434 |
. . . . . . . . . . . . . . . 16
⊢ (⊤
→ (((coe1‘(3 ↑ 𝑋))‘0)(-g‘𝑄)((coe1‘(𝐾‘2))‘0)) =
(0(-g‘𝑄)2)) |
235 | 223, 234 | eqtrd 2766 |
. . . . . . . . . . . . . . 15
⊢ (⊤
→ ((coe1‘((3 ↑ 𝑋) − (𝐾‘2)))‘0) =
(0(-g‘𝑄)2)) |
236 | | df-neg 11488 |
. . . . . . . . . . . . . . . 16
⊢ -2 = (0
− 2) |
237 | 36, 3, 132 | subgsub 19128 |
. . . . . . . . . . . . . . . . 17
⊢ ((ℚ
∈ (SubGrp‘ℂfld) ∧ 0 ∈ ℚ ∧ 2
∈ ℚ) → (0 − 2) = (0(-g‘𝑄)2)) |
238 | 136, 189,
65, 237 | syl3anc 1368 |
. . . . . . . . . . . . . . . 16
⊢ (⊤
→ (0 − 2) = (0(-g‘𝑄)2)) |
239 | 236, 238 | eqtr2id 2779 |
. . . . . . . . . . . . . . 15
⊢ (⊤
→ (0(-g‘𝑄)2) = -2) |
240 | 221, 235,
239 | 3eqtrrd 2771 |
. . . . . . . . . . . . . 14
⊢ (⊤
→ -2 = ((coe1‘𝐹)‘0)) |
241 | 240 | mptru 1541 |
. . . . . . . . . . . . 13
⊢ -2 =
((coe1‘𝐹)‘0) |
242 | 95 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ ℚ → 𝑄 ∈ Field) |
243 | 242 | fldcrngd 20716 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ ℚ → 𝑄 ∈ CRing) |
244 | 100 | mptru 1541 |
. . . . . . . . . . . . . 14
⊢ 𝐹 ∈ (Base‘𝑃) |
245 | 244 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ ℚ → 𝐹 ∈ (Base‘𝑃)) |
246 | 130 | mptru 1541 |
. . . . . . . . . . . . . 14
⊢ (𝐷‘𝐹) = 3 |
247 | 246 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ ℚ → (𝐷‘𝐹) = 3) |
248 | | id 22 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ ℚ → 𝑥 ∈
ℚ) |
249 | 2, 91, 61, 34, 108, 111, 112, 113, 92, 166, 195, 220, 241, 243, 245, 247, 248 | evl1deg3 33456 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ℚ →
(((eval1‘𝑄)‘𝐹)‘𝑥) = (((1 ·
(3(.g‘(mulGrp‘𝑄))𝑥)) + (0 ·
(2(.g‘(mulGrp‘𝑄))𝑥))) + ((0 · 𝑥) + -2))) |
250 | | qsscn 12990 |
. . . . . . . . . . . . . . . . . 18
⊢ ℚ
⊆ ℂ |
251 | | eqid 2726 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((mulGrp‘ℂfld) ↾s ℚ) =
((mulGrp‘ℂfld) ↾s
ℚ) |
252 | | eqid 2726 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(mulGrp‘ℂfld) =
(mulGrp‘ℂfld) |
253 | 252, 6 | mgpbas 20119 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ℂ =
(Base‘(mulGrp‘ℂfld)) |
254 | 251, 253 | ressbas2 17246 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (ℚ
⊆ ℂ → ℚ =
(Base‘((mulGrp‘ℂfld) ↾s
ℚ))) |
255 | 250, 254 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ℚ =
(Base‘((mulGrp‘ℂfld) ↾s
ℚ)) |
256 | 3, 252 | mgpress 20128 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((ℂfld ∈ DivRing ∧ ℚ ∈
(SubRing‘ℂfld)) →
((mulGrp‘ℂfld) ↾s ℚ) =
(mulGrp‘𝑄)) |
257 | 7, 13, 256 | mp2an 690 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((mulGrp‘ℂfld) ↾s ℚ) =
(mulGrp‘𝑄) |
258 | 257 | fveq2i 6896 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(Base‘((mulGrp‘ℂfld) ↾s
ℚ)) = (Base‘(mulGrp‘𝑄)) |
259 | 255, 258 | eqtri 2754 |
. . . . . . . . . . . . . . . . . . 19
⊢ ℚ =
(Base‘(mulGrp‘𝑄)) |
260 | | eqid 2726 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(mulGrp‘𝑄) =
(mulGrp‘𝑄) |
261 | 260 | ringmgp 20218 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑄 ∈ Ring →
(mulGrp‘𝑄) ∈
Mnd) |
262 | 56, 261 | mp1i 13 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 ∈ ℚ →
(mulGrp‘𝑄) ∈
Mnd) |
263 | 49 | a1i 11 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 ∈ ℚ → 3 ∈
ℕ0) |
264 | 259, 112,
262, 263, 248 | mulgnn0cld 19085 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 ∈ ℚ →
(3(.g‘(mulGrp‘𝑄))𝑥) ∈ ℚ) |
265 | 250, 264 | sselid 3976 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 ∈ ℚ →
(3(.g‘(mulGrp‘𝑄))𝑥) ∈ ℂ) |
266 | 265 | mullidd 11273 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ ℚ → (1
· (3(.g‘(mulGrp‘𝑄))𝑥)) =
(3(.g‘(mulGrp‘𝑄))𝑥)) |
267 | 257 | eqcomi 2735 |
. . . . . . . . . . . . . . . . 17
⊢
(mulGrp‘𝑄) =
((mulGrp‘ℂfld) ↾s
ℚ) |
268 | 250, 253 | sseqtri 4015 |
. . . . . . . . . . . . . . . . . 18
⊢ ℚ
⊆ (Base‘(mulGrp‘ℂfld)) |
269 | 268 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 ∈ ℚ → ℚ
⊆ (Base‘(mulGrp‘ℂfld))) |
270 | 80 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 ∈ ℚ → 3 ∈
ℕ) |
271 | 267, 269,
248, 270 | ressmulgnnd 19068 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ ℚ →
(3(.g‘(mulGrp‘𝑄))𝑥) =
(3(.g‘(mulGrp‘ℂfld))𝑥)) |
272 | | qcn 12993 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 ∈ ℚ → 𝑥 ∈
ℂ) |
273 | | cnfldexp 21392 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑥 ∈ ℂ ∧ 3 ∈
ℕ0) →
(3(.g‘(mulGrp‘ℂfld))𝑥) = (𝑥↑3)) |
274 | 272, 263,
273 | syl2anc 582 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ ℚ →
(3(.g‘(mulGrp‘ℂfld))𝑥) = (𝑥↑3)) |
275 | 266, 271,
274 | 3eqtrd 2770 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ ℚ → (1
· (3(.g‘(mulGrp‘𝑄))𝑥)) = (𝑥↑3)) |
276 | 168 | a1i 11 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 ∈ ℚ → 2 ∈
ℕ0) |
277 | 259, 112,
262, 276, 248 | mulgnn0cld 19085 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 ∈ ℚ →
(2(.g‘(mulGrp‘𝑄))𝑥) ∈ ℚ) |
278 | 250, 277 | sselid 3976 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ ℚ →
(2(.g‘(mulGrp‘𝑄))𝑥) ∈ ℂ) |
279 | 278 | mul02d 11453 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ ℚ → (0
· (2(.g‘(mulGrp‘𝑄))𝑥)) = 0) |
280 | 275, 279 | oveq12d 7434 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ ℚ → ((1
· (3(.g‘(mulGrp‘𝑄))𝑥)) + (0 ·
(2(.g‘(mulGrp‘𝑄))𝑥))) = ((𝑥↑3) + 0)) |
281 | 272, 263 | expcld 14159 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ ℚ → (𝑥↑3) ∈
ℂ) |
282 | 281 | addridd 11455 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ ℚ → ((𝑥↑3) + 0) = (𝑥↑3)) |
283 | 280, 282 | eqtrd 2766 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ ℚ → ((1
· (3(.g‘(mulGrp‘𝑄))𝑥)) + (0 ·
(2(.g‘(mulGrp‘𝑄))𝑥))) = (𝑥↑3)) |
284 | 272 | mul02d 11453 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ ℚ → (0
· 𝑥) =
0) |
285 | 284 | oveq1d 7431 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ ℚ → ((0
· 𝑥) + -2) = (0 +
-2)) |
286 | 19 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ ℚ → 2 ∈
ℂ) |
287 | 286 | negcld 11599 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ ℚ → -2 ∈
ℂ) |
288 | 287 | addlidd 11456 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ ℚ → (0 + -2)
= -2) |
289 | 285, 288 | eqtrd 2766 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ ℚ → ((0
· 𝑥) + -2) =
-2) |
290 | 283, 289 | oveq12d 7434 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ℚ → (((1
· (3(.g‘(mulGrp‘𝑄))𝑥)) + (0 ·
(2(.g‘(mulGrp‘𝑄))𝑥))) + ((0 · 𝑥) + -2)) = ((𝑥↑3) + -2)) |
291 | 281, 286 | negsubd 11618 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ℚ → ((𝑥↑3) + -2) = ((𝑥↑3) −
2)) |
292 | 249, 290,
291 | 3eqtrd 2770 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ ℚ →
(((eval1‘𝑄)‘𝐹)‘𝑥) = ((𝑥↑3) − 2)) |
293 | | 2prm 16688 |
. . . . . . . . . . . . . . 15
⊢ 2 ∈
ℙ |
294 | | 3z 12641 |
. . . . . . . . . . . . . . . 16
⊢ 3 ∈
ℤ |
295 | | 3re 12338 |
. . . . . . . . . . . . . . . . 17
⊢ 3 ∈
ℝ |
296 | 172, 295,
173 | ltleii 11378 |
. . . . . . . . . . . . . . . 16
⊢ 2 ≤
3 |
297 | 63 | eluz1i 12876 |
. . . . . . . . . . . . . . . 16
⊢ (3 ∈
(ℤ≥‘2) ↔ (3 ∈ ℤ ∧ 2 ≤
3)) |
298 | 294, 296,
297 | mpbir2an 709 |
. . . . . . . . . . . . . . 15
⊢ 3 ∈
(ℤ≥‘2) |
299 | | rtprmirr 26785 |
. . . . . . . . . . . . . . 15
⊢ ((2
∈ ℙ ∧ 3 ∈ (ℤ≥‘2)) →
(2↑𝑐(1 / 3)) ∈ (ℝ ∖
ℚ)) |
300 | 293, 298,
299 | mp2an 690 |
. . . . . . . . . . . . . 14
⊢
(2↑𝑐(1 / 3)) ∈ (ℝ ∖
ℚ) |
301 | | eldifn 4124 |
. . . . . . . . . . . . . 14
⊢
((2↑𝑐(1 / 3)) ∈ (ℝ ∖ ℚ)
→ ¬ (2↑𝑐(1 / 3)) ∈
ℚ) |
302 | 300, 301 | ax-mp 5 |
. . . . . . . . . . . . 13
⊢ ¬
(2↑𝑐(1 / 3)) ∈ ℚ |
303 | | nelne2 3030 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ ℚ ∧ ¬
(2↑𝑐(1 / 3)) ∈ ℚ) → 𝑥 ≠ (2↑𝑐(1 /
3))) |
304 | 302, 303 | mpan2 689 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ℚ → 𝑥 ≠
(2↑𝑐(1 / 3))) |
305 | | qre 12983 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 ∈ ℚ → 𝑥 ∈
ℝ) |
306 | 305 | adantr 479 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∈ ℚ ∧ ((𝑥↑3) − 2) = 0) →
𝑥 ∈
ℝ) |
307 | | 2pos 12361 |
. . . . . . . . . . . . . . . . . 18
⊢ 0 <
2 |
308 | 281, 286 | subeq0ad 11622 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 ∈ ℚ → (((𝑥↑3) − 2) = 0 ↔
(𝑥↑3) =
2)) |
309 | 308 | biimpa 475 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑥 ∈ ℚ ∧ ((𝑥↑3) − 2) = 0) →
(𝑥↑3) =
2) |
310 | 307, 309 | breqtrrid 5183 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑥 ∈ ℚ ∧ ((𝑥↑3) − 2) = 0) →
0 < (𝑥↑3)) |
311 | 80 | a1i 11 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑥 ∈ ℚ ∧ ((𝑥↑3) − 2) = 0) →
3 ∈ ℕ) |
312 | | n2dvds3 16368 |
. . . . . . . . . . . . . . . . . . 19
⊢ ¬ 2
∥ 3 |
313 | 312 | a1i 11 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑥 ∈ ℚ ∧ ((𝑥↑3) − 2) = 0) →
¬ 2 ∥ 3) |
314 | 306, 311,
313 | expgt0b 32720 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑥 ∈ ℚ ∧ ((𝑥↑3) − 2) = 0) →
(0 < 𝑥 ↔ 0 <
(𝑥↑3))) |
315 | 310, 314 | mpbird 256 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∈ ℚ ∧ ((𝑥↑3) − 2) = 0) →
0 < 𝑥) |
316 | 306, 315 | elrpd 13061 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ ℚ ∧ ((𝑥↑3) − 2) = 0) →
𝑥 ∈
ℝ+) |
317 | 295 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ ℚ ∧ ((𝑥↑3) − 2) = 0) →
3 ∈ ℝ) |
318 | 22 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ ℚ ∧ ((𝑥↑3) − 2) = 0) →
(1 / 3) ∈ ℂ) |
319 | 316, 317,
318 | cxpmuld 26761 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ ℚ ∧ ((𝑥↑3) − 2) = 0) →
(𝑥↑𝑐(3 · (1 /
3))) = ((𝑥↑𝑐3)↑𝑐(1
/ 3))) |
320 | 20 | a1i 11 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 ∈ ℚ → 3 ∈
ℂ) |
321 | 21 | a1i 11 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 ∈ ℚ → 3 ≠
0) |
322 | 320, 321 | recidd 12030 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 ∈ ℚ → (3
· (1 / 3)) = 1) |
323 | 322 | oveq2d 7432 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ ℚ → (𝑥↑𝑐(3
· (1 / 3))) = (𝑥↑𝑐1)) |
324 | 272 | cxp1d 26730 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ ℚ → (𝑥↑𝑐1) =
𝑥) |
325 | 323, 324 | eqtrd 2766 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ ℚ → (𝑥↑𝑐(3
· (1 / 3))) = 𝑥) |
326 | 325 | adantr 479 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ ℚ ∧ ((𝑥↑3) − 2) = 0) →
(𝑥↑𝑐(3 · (1 /
3))) = 𝑥) |
327 | | cxpexp 26692 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑥 ∈ ℂ ∧ 3 ∈
ℕ0) → (𝑥↑𝑐3) = (𝑥↑3)) |
328 | 272, 263,
327 | syl2anc 582 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ ℚ → (𝑥↑𝑐3) =
(𝑥↑3)) |
329 | 328 | oveq1d 7431 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ ℚ → ((𝑥↑𝑐3)↑𝑐(1
/ 3)) = ((𝑥↑3)↑𝑐(1 /
3))) |
330 | 329 | adantr 479 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ ℚ ∧ ((𝑥↑3) − 2) = 0) →
((𝑥↑𝑐3)↑𝑐(1
/ 3)) = ((𝑥↑3)↑𝑐(1 /
3))) |
331 | 319, 326,
330 | 3eqtr3rd 2775 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ ℚ ∧ ((𝑥↑3) − 2) = 0) →
((𝑥↑3)↑𝑐(1 / 3)) =
𝑥) |
332 | 309 | oveq1d 7431 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ ℚ ∧ ((𝑥↑3) − 2) = 0) →
((𝑥↑3)↑𝑐(1 / 3)) =
(2↑𝑐(1 / 3))) |
333 | 331, 332 | eqtr3d 2768 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ ℚ ∧ ((𝑥↑3) − 2) = 0) →
𝑥 =
(2↑𝑐(1 / 3))) |
334 | 304, 333 | mteqand 3023 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ ℚ → ((𝑥↑3) − 2) ≠
0) |
335 | 292, 334 | eqnetrd 2998 |
. . . . . . . . . 10
⊢ (𝑥 ∈ ℚ →
(((eval1‘𝑄)‘𝐹)‘𝑥) ≠ 0) |
336 | 335 | neneqd 2935 |
. . . . . . . . 9
⊢ (𝑥 ∈ ℚ → ¬
(((eval1‘𝑄)‘𝐹)‘𝑥) = 0) |
337 | 336 | rgen 3053 |
. . . . . . . 8
⊢
∀𝑥 ∈
ℚ ¬ (((eval1‘𝑄)‘𝐹)‘𝑥) = 0 |
338 | 337 | a1i 11 |
. . . . . . 7
⊢ (⊤
→ ∀𝑥 ∈
ℚ ¬ (((eval1‘𝑄)‘𝐹)‘𝑥) = 0) |
339 | | rabeq0 4382 |
. . . . . . 7
⊢ ({𝑥 ∈ ℚ ∣
(((eval1‘𝑄)‘𝐹)‘𝑥) = 0} = ∅ ↔ ∀𝑥 ∈ ℚ ¬
(((eval1‘𝑄)‘𝐹)‘𝑥) = 0) |
340 | 338, 339 | sylibr 233 |
. . . . . 6
⊢ (⊤
→ {𝑥 ∈ ℚ
∣ (((eval1‘𝑄)‘𝐹)‘𝑥) = 0} = ∅) |
341 | 105, 340 | eqtrd 2766 |
. . . . 5
⊢ (⊤
→ (◡((eval1‘𝑄)‘𝐹) “ {0}) = ∅) |
342 | 90, 91, 92, 2, 34, 96, 100, 341, 130 | ply1dg3rt0irred 33460 |
. . . 4
⊢ (⊤
→ 𝐹 ∈
(Irred‘𝑃)) |
343 | | eqid 2726 |
. . . . . . 7
⊢
(Irred‘𝑃) =
(Irred‘𝑃) |
344 | 343, 29 | irredn0 20401 |
. . . . . 6
⊢ ((𝑃 ∈ Ring ∧ 𝐹 ∈ (Irred‘𝑃)) → 𝐹 ≠ (0g‘𝑃)) |
345 | 46, 342, 344 | syl2anc 582 |
. . . . 5
⊢ (⊤
→ 𝐹 ≠
(0g‘𝑃)) |
346 | 3 | fveq2i 6896 |
. . . . . . 7
⊢
(deg1‘𝑄) =
(deg1‘(ℂfld ↾s
ℚ)) |
347 | 92, 346 | eqtri 2754 |
. . . . . 6
⊢ 𝐷 =
(deg1‘(ℂfld ↾s
ℚ)) |
348 | | eqid 2726 |
. . . . . 6
⊢
(Monic1p‘(ℂfld ↾s
ℚ)) = (Monic1p‘(ℂfld
↾s ℚ)) |
349 | | eqid 2726 |
. . . . . . 7
⊢
(ℂfld ↾s ℚ) =
(ℂfld ↾s ℚ) |
350 | 349 | qrng1 27648 |
. . . . . 6
⊢ 1 =
(1r‘(ℂfld ↾s
ℚ)) |
351 | 5, 34, 29, 347, 348, 350 | ismon1p 26167 |
. . . . 5
⊢ (𝐹 ∈
(Monic1p‘(ℂfld ↾s ℚ))
↔ (𝐹 ∈
(Base‘𝑃) ∧ 𝐹 ≠ (0g‘𝑃) ∧
((coe1‘𝐹)‘(𝐷‘𝐹)) = 1)) |
352 | 100, 345,
163, 351 | syl3anbrc 1340 |
. . . 4
⊢ (⊤
→ 𝐹 ∈
(Monic1p‘(ℂfld ↾s
ℚ))) |
353 | 1, 5, 6, 11, 17, 26, 27, 28, 29, 89, 342, 352 | irredminply 33589 |
. . 3
⊢ (⊤
→ 𝐹 = (𝑀‘𝐴)) |
354 | 353, 130 | jca 510 |
. 2
⊢ (⊤
→ (𝐹 = (𝑀‘𝐴) ∧ (𝐷‘𝐹) = 3)) |
355 | 354 | mptru 1541 |
1
⊢ (𝐹 = (𝑀‘𝐴) ∧ (𝐷‘𝐹) = 3) |