Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2sqr3minply Structured version   Visualization version   GIF version

Theorem 2sqr3minply 33763
Description: The polynomial ((𝑋↑3) − 2) is the minimal polynomial for (2↑𝑐(1 / 3)) over , and its degree is 3. (Contributed by Thierry Arnoux, 14-Jun-2025.)
Hypotheses
Ref Expression
2sqr3minply.q 𝑄 = (ℂflds ℚ)
2sqr3minply.1 = (-g𝑃)
2sqr3minply.2 = (.g‘(mulGrp‘𝑃))
2sqr3minply.p 𝑃 = (Poly1𝑄)
2sqr3minply.k 𝐾 = (algSc‘𝑃)
2sqr3minply.x 𝑋 = (var1𝑄)
2sqr3minply.d 𝐷 = (deg1𝑄)
2sqr3minply.f 𝐹 = ((3 𝑋) (𝐾‘2))
2sqr3minply.a 𝐴 = (2↑𝑐(1 / 3))
2sqr3minply.m 𝑀 = (ℂfld minPoly ℚ)
Assertion
Ref Expression
2sqr3minply (𝐹 = (𝑀𝐴) ∧ (𝐷𝐹) = 3)

Proof of Theorem 2sqr3minply
Dummy variables 𝑖 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . . 4 (ℂfld evalSub1 ℚ) = (ℂfld evalSub1 ℚ)
2 2sqr3minply.p . . . . 5 𝑃 = (Poly1𝑄)
3 2sqr3minply.q . . . . . 6 𝑄 = (ℂflds ℚ)
43fveq2i 6843 . . . . 5 (Poly1𝑄) = (Poly1‘(ℂflds ℚ))
52, 4eqtri 2752 . . . 4 𝑃 = (Poly1‘(ℂflds ℚ))
6 cnfldbas 21300 . . . 4 ℂ = (Base‘ℂfld)
7 cndrng 21340 . . . . . 6 fld ∈ DivRing
8 cncrng 21330 . . . . . 6 fld ∈ CRing
9 isfld 20660 . . . . . 6 (ℂfld ∈ Field ↔ (ℂfld ∈ DivRing ∧ ℂfld ∈ CRing))
107, 8, 9mpbir2an 711 . . . . 5 fld ∈ Field
1110a1i 11 . . . 4 (⊤ → ℂfld ∈ Field)
12 qsubdrg 21361 . . . . . . 7 (ℚ ∈ (SubRing‘ℂfld) ∧ (ℂflds ℚ) ∈ DivRing)
1312simpli 483 . . . . . 6 ℚ ∈ (SubRing‘ℂfld)
1412simpri 485 . . . . . 6 (ℂflds ℚ) ∈ DivRing
15 issdrg 20708 . . . . . 6 (ℚ ∈ (SubDRing‘ℂfld) ↔ (ℂfld ∈ DivRing ∧ ℚ ∈ (SubRing‘ℂfld) ∧ (ℂflds ℚ) ∈ DivRing))
167, 13, 14, 15mpbir3an 1342 . . . . 5 ℚ ∈ (SubDRing‘ℂfld)
1716a1i 11 . . . 4 (⊤ → ℚ ∈ (SubDRing‘ℂfld))
18 2sqr3minply.a . . . . . 6 𝐴 = (2↑𝑐(1 / 3))
19 2cn 12237 . . . . . . 7 2 ∈ ℂ
20 3cn 12243 . . . . . . . 8 3 ∈ ℂ
21 3ne0 12268 . . . . . . . 8 3 ≠ 0
2220, 21reccli 11888 . . . . . . 7 (1 / 3) ∈ ℂ
23 cxpcl 26616 . . . . . . 7 ((2 ∈ ℂ ∧ (1 / 3) ∈ ℂ) → (2↑𝑐(1 / 3)) ∈ ℂ)
2419, 22, 23mp2an 692 . . . . . 6 (2↑𝑐(1 / 3)) ∈ ℂ
2518, 24eqeltri 2824 . . . . 5 𝐴 ∈ ℂ
2625a1i 11 . . . 4 (⊤ → 𝐴 ∈ ℂ)
27 cnfld0 21334 . . . 4 0 = (0g‘ℂfld)
28 2sqr3minply.m . . . 4 𝑀 = (ℂfld minPoly ℚ)
29 eqid 2729 . . . 4 (0g𝑃) = (0g𝑃)
30 2sqr3minply.f . . . . . . . 8 𝐹 = ((3 𝑋) (𝐾‘2))
3130fveq2i 6843 . . . . . . 7 ((ℂfld evalSub1 ℚ)‘𝐹) = ((ℂfld evalSub1 ℚ)‘((3 𝑋) (𝐾‘2)))
3231fveq1i 6841 . . . . . 6 (((ℂfld evalSub1 ℚ)‘𝐹)‘𝐴) = (((ℂfld evalSub1 ℚ)‘((3 𝑋) (𝐾‘2)))‘𝐴)
3332a1i 11 . . . . 5 (⊤ → (((ℂfld evalSub1 ℚ)‘𝐹)‘𝐴) = (((ℂfld evalSub1 ℚ)‘((3 𝑋) (𝐾‘2)))‘𝐴))
34 eqid 2729 . . . . . 6 (Base‘𝑃) = (Base‘𝑃)
35 2sqr3minply.1 . . . . . 6 = (-g𝑃)
36 cnfldsub 21339 . . . . . 6 − = (-g‘ℂfld)
378a1i 11 . . . . . 6 (⊤ → ℂfld ∈ CRing)
3813a1i 11 . . . . . 6 (⊤ → ℚ ∈ (SubRing‘ℂfld))
39 eqid 2729 . . . . . . . 8 (mulGrp‘𝑃) = (mulGrp‘𝑃)
4039, 34mgpbas 20065 . . . . . . 7 (Base‘𝑃) = (Base‘(mulGrp‘𝑃))
41 2sqr3minply.2 . . . . . . 7 = (.g‘(mulGrp‘𝑃))
423qdrng 27564 . . . . . . . . . . 11 𝑄 ∈ DivRing
4342a1i 11 . . . . . . . . . 10 (⊤ → 𝑄 ∈ DivRing)
4443drngringd 20657 . . . . . . . . 9 (⊤ → 𝑄 ∈ Ring)
452ply1ring 22165 . . . . . . . . 9 (𝑄 ∈ Ring → 𝑃 ∈ Ring)
4644, 45syl 17 . . . . . . . 8 (⊤ → 𝑃 ∈ Ring)
4739ringmgp 20159 . . . . . . . 8 (𝑃 ∈ Ring → (mulGrp‘𝑃) ∈ Mnd)
4846, 47syl 17 . . . . . . 7 (⊤ → (mulGrp‘𝑃) ∈ Mnd)
49 3nn0 12436 . . . . . . . 8 3 ∈ ℕ0
5049a1i 11 . . . . . . 7 (⊤ → 3 ∈ ℕ0)
51 2sqr3minply.x . . . . . . . . 9 𝑋 = (var1𝑄)
5251, 2, 34vr1cl 22135 . . . . . . . 8 (𝑄 ∈ Ring → 𝑋 ∈ (Base‘𝑃))
5344, 52syl 17 . . . . . . 7 (⊤ → 𝑋 ∈ (Base‘𝑃))
5440, 41, 48, 50, 53mulgnn0cld 19009 . . . . . 6 (⊤ → (3 𝑋) ∈ (Base‘𝑃))
55 2sqr3minply.k . . . . . . . 8 𝐾 = (algSc‘𝑃)
5644mptru 1547 . . . . . . . . 9 𝑄 ∈ Ring
572ply1sca 22170 . . . . . . . . 9 (𝑄 ∈ Ring → 𝑄 = (Scalar‘𝑃))
5856, 57ax-mp 5 . . . . . . . 8 𝑄 = (Scalar‘𝑃)
592ply1lmod 22169 . . . . . . . . 9 (𝑄 ∈ Ring → 𝑃 ∈ LMod)
6044, 59syl 17 . . . . . . . 8 (⊤ → 𝑃 ∈ LMod)
613qrngbas 27563 . . . . . . . 8 ℚ = (Base‘𝑄)
6255, 58, 46, 60, 61, 34asclf 21824 . . . . . . 7 (⊤ → 𝐾:ℚ⟶(Base‘𝑃))
63 2z 12541 . . . . . . . 8 2 ∈ ℤ
64 zq 12889 . . . . . . . 8 (2 ∈ ℤ → 2 ∈ ℚ)
6563, 64mp1i 13 . . . . . . 7 (⊤ → 2 ∈ ℚ)
6662, 65ffvelcdmd 7039 . . . . . 6 (⊤ → (𝐾‘2) ∈ (Base‘𝑃))
671, 6, 2, 3, 34, 35, 36, 37, 38, 54, 66, 26evls1subd 33534 . . . . 5 (⊤ → (((ℂfld evalSub1 ℚ)‘((3 𝑋) (𝐾‘2)))‘𝐴) = ((((ℂfld evalSub1 ℚ)‘(3 𝑋))‘𝐴) − (((ℂfld evalSub1 ℚ)‘(𝐾‘2))‘𝐴)))
68 eqid 2729 . . . . . . . . . 10 (.g‘(mulGrp‘ℂfld)) = (.g‘(mulGrp‘ℂfld))
691, 6, 2, 3, 34, 37, 38, 41, 68, 50, 53, 26evls1expd 22287 . . . . . . . . 9 (⊤ → (((ℂfld evalSub1 ℚ)‘(3 𝑋))‘𝐴) = (3(.g‘(mulGrp‘ℂfld))(((ℂfld evalSub1 ℚ)‘𝑋)‘𝐴)))
701, 51, 3, 6, 37, 38evls1var 22258 . . . . . . . . . . . 12 (⊤ → ((ℂfld evalSub1 ℚ)‘𝑋) = ( I ↾ ℂ))
7170fveq1d 6842 . . . . . . . . . . 11 (⊤ → (((ℂfld evalSub1 ℚ)‘𝑋)‘𝐴) = (( I ↾ ℂ)‘𝐴))
72 fvresi 7129 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → (( I ↾ ℂ)‘𝐴) = 𝐴)
7325, 72mp1i 13 . . . . . . . . . . 11 (⊤ → (( I ↾ ℂ)‘𝐴) = 𝐴)
7471, 73eqtrd 2764 . . . . . . . . . 10 (⊤ → (((ℂfld evalSub1 ℚ)‘𝑋)‘𝐴) = 𝐴)
7574oveq2d 7385 . . . . . . . . 9 (⊤ → (3(.g‘(mulGrp‘ℂfld))(((ℂfld evalSub1 ℚ)‘𝑋)‘𝐴)) = (3(.g‘(mulGrp‘ℂfld))𝐴))
76 cnfldexp 21346 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 3 ∈ ℕ0) → (3(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴↑3))
7726, 50, 76syl2anc 584 . . . . . . . . 9 (⊤ → (3(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴↑3))
7869, 75, 773eqtrd 2768 . . . . . . . 8 (⊤ → (((ℂfld evalSub1 ℚ)‘(3 𝑋))‘𝐴) = (𝐴↑3))
7918oveq1i 7379 . . . . . . . . 9 (𝐴↑3) = ((2↑𝑐(1 / 3))↑3)
80 3nn 12241 . . . . . . . . . 10 3 ∈ ℕ
81 cxproot 26632 . . . . . . . . . 10 ((2 ∈ ℂ ∧ 3 ∈ ℕ) → ((2↑𝑐(1 / 3))↑3) = 2)
8219, 80, 81mp2an 692 . . . . . . . . 9 ((2↑𝑐(1 / 3))↑3) = 2
8379, 82eqtri 2752 . . . . . . . 8 (𝐴↑3) = 2
8478, 83eqtrdi 2780 . . . . . . 7 (⊤ → (((ℂfld evalSub1 ℚ)‘(3 𝑋))‘𝐴) = 2)
851, 2, 3, 6, 55, 37, 38, 65, 26evls1scafv 22286 . . . . . . 7 (⊤ → (((ℂfld evalSub1 ℚ)‘(𝐾‘2))‘𝐴) = 2)
8684, 85oveq12d 7387 . . . . . 6 (⊤ → ((((ℂfld evalSub1 ℚ)‘(3 𝑋))‘𝐴) − (((ℂfld evalSub1 ℚ)‘(𝐾‘2))‘𝐴)) = (2 − 2))
8719subidi 11469 . . . . . 6 (2 − 2) = 0
8886, 87eqtrdi 2780 . . . . 5 (⊤ → ((((ℂfld evalSub1 ℚ)‘(3 𝑋))‘𝐴) − (((ℂfld evalSub1 ℚ)‘(𝐾‘2))‘𝐴)) = 0)
8933, 67, 883eqtrd 2768 . . . 4 (⊤ → (((ℂfld evalSub1 ℚ)‘𝐹)‘𝐴) = 0)
903qrng0 27565 . . . . 5 0 = (0g𝑄)
91 eqid 2729 . . . . 5 (eval1𝑄) = (eval1𝑄)
92 2sqr3minply.d . . . . 5 𝐷 = (deg1𝑄)
93 fldsdrgfld 20718 . . . . . . . 8 ((ℂfld ∈ Field ∧ ℚ ∈ (SubDRing‘ℂfld)) → (ℂflds ℚ) ∈ Field)
9410, 16, 93mp2an 692 . . . . . . 7 (ℂflds ℚ) ∈ Field
953, 94eqeltri 2824 . . . . . 6 𝑄 ∈ Field
9695a1i 11 . . . . 5 (⊤ → 𝑄 ∈ Field)
9746ringgrpd 20162 . . . . . . 7 (⊤ → 𝑃 ∈ Grp)
9834, 35grpsubcl 18934 . . . . . . 7 ((𝑃 ∈ Grp ∧ (3 𝑋) ∈ (Base‘𝑃) ∧ (𝐾‘2) ∈ (Base‘𝑃)) → ((3 𝑋) (𝐾‘2)) ∈ (Base‘𝑃))
9997, 54, 66, 98syl3anc 1373 . . . . . 6 (⊤ → ((3 𝑋) (𝐾‘2)) ∈ (Base‘𝑃))
10030, 99eqeltrid 2832 . . . . 5 (⊤ → 𝐹 ∈ (Base‘𝑃))
10196fldcrngd 20662 . . . . . . . . 9 (⊤ → 𝑄 ∈ CRing)
10291, 2, 34, 101, 61, 100evl1fvf 33525 . . . . . . . 8 (⊤ → ((eval1𝑄)‘𝐹):ℚ⟶ℚ)
103102ffnd 6671 . . . . . . 7 (⊤ → ((eval1𝑄)‘𝐹) Fn ℚ)
104 fniniseg2 7016 . . . . . . 7 (((eval1𝑄)‘𝐹) Fn ℚ → (((eval1𝑄)‘𝐹) “ {0}) = {𝑥 ∈ ℚ ∣ (((eval1𝑄)‘𝐹)‘𝑥) = 0})
105103, 104syl 17 . . . . . 6 (⊤ → (((eval1𝑄)‘𝐹) “ {0}) = {𝑥 ∈ ℚ ∣ (((eval1𝑄)‘𝐹)‘𝑥) = 0})
106 cnfldmul 21304 . . . . . . . . . . . . . . 15 · = (.r‘ℂfld)
1073, 106ressmulr 17246 . . . . . . . . . . . . . 14 (ℚ ∈ (SubRing‘ℂfld) → · = (.r𝑄))
10813, 107ax-mp 5 . . . . . . . . . . . . 13 · = (.r𝑄)
109 cnfldadd 21302 . . . . . . . . . . . . . . 15 + = (+g‘ℂfld)
1103, 109ressplusg 17230 . . . . . . . . . . . . . 14 (ℚ ∈ (SubRing‘ℂfld) → + = (+g𝑄))
11113, 110ax-mp 5 . . . . . . . . . . . . 13 + = (+g𝑄)
112 eqid 2729 . . . . . . . . . . . . 13 (.g‘(mulGrp‘𝑄)) = (.g‘(mulGrp‘𝑄))
113 eqid 2729 . . . . . . . . . . . . 13 (coe1𝐹) = (coe1𝐹)
11430fveq2i 6843 . . . . . . . . . . . . . . . . . 18 (coe1𝐹) = (coe1‘((3 𝑋) (𝐾‘2)))
115114a1i 11 . . . . . . . . . . . . . . . . 17 (⊤ → (coe1𝐹) = (coe1‘((3 𝑋) (𝐾‘2))))
11630fveq2i 6843 . . . . . . . . . . . . . . . . . . 19 (𝐷𝐹) = (𝐷‘((3 𝑋) (𝐾‘2)))
117116a1i 11 . . . . . . . . . . . . . . . . . 18 (⊤ → (𝐷𝐹) = (𝐷‘((3 𝑋) (𝐾‘2))))
118 3pos 12267 . . . . . . . . . . . . . . . . . . . . 21 0 < 3
119118a1i 11 . . . . . . . . . . . . . . . . . . . 20 (⊤ → 0 < 3)
120 2ne0 12266 . . . . . . . . . . . . . . . . . . . . . 22 2 ≠ 0
121120a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (⊤ → 2 ≠ 0)
12292, 2, 61, 55, 90deg1scl 26051 . . . . . . . . . . . . . . . . . . . . 21 ((𝑄 ∈ Ring ∧ 2 ∈ ℚ ∧ 2 ≠ 0) → (𝐷‘(𝐾‘2)) = 0)
12344, 65, 121, 122syl3anc 1373 . . . . . . . . . . . . . . . . . . . 20 (⊤ → (𝐷‘(𝐾‘2)) = 0)
124 drngnzr 20668 . . . . . . . . . . . . . . . . . . . . . 22 (𝑄 ∈ DivRing → 𝑄 ∈ NzRing)
12542, 124mp1i 13 . . . . . . . . . . . . . . . . . . . . 21 (⊤ → 𝑄 ∈ NzRing)
12692, 2, 51, 39, 41deg1pw 26059 . . . . . . . . . . . . . . . . . . . . 21 ((𝑄 ∈ NzRing ∧ 3 ∈ ℕ0) → (𝐷‘(3 𝑋)) = 3)
127125, 50, 126syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 (⊤ → (𝐷‘(3 𝑋)) = 3)
128119, 123, 1273brtr4d 5134 . . . . . . . . . . . . . . . . . . 19 (⊤ → (𝐷‘(𝐾‘2)) < (𝐷‘(3 𝑋)))
1292, 92, 44, 34, 35, 54, 66, 128deg1sub 26046 . . . . . . . . . . . . . . . . . 18 (⊤ → (𝐷‘((3 𝑋) (𝐾‘2))) = (𝐷‘(3 𝑋)))
130117, 129, 1273eqtrd 2768 . . . . . . . . . . . . . . . . 17 (⊤ → (𝐷𝐹) = 3)
131115, 130fveq12d 6847 . . . . . . . . . . . . . . . 16 (⊤ → ((coe1𝐹)‘(𝐷𝐹)) = ((coe1‘((3 𝑋) (𝐾‘2)))‘3))
132 eqid 2729 . . . . . . . . . . . . . . . . . 18 (-g𝑄) = (-g𝑄)
1332, 34, 35, 132coe1subfv 22185 . . . . . . . . . . . . . . . . 17 (((𝑄 ∈ Ring ∧ (3 𝑋) ∈ (Base‘𝑃) ∧ (𝐾‘2) ∈ (Base‘𝑃)) ∧ 3 ∈ ℕ0) → ((coe1‘((3 𝑋) (𝐾‘2)))‘3) = (((coe1‘(3 𝑋))‘3)(-g𝑄)((coe1‘(𝐾‘2))‘3)))
13444, 54, 66, 50, 133syl31anc 1375 . . . . . . . . . . . . . . . 16 (⊤ → ((coe1‘((3 𝑋) (𝐾‘2)))‘3) = (((coe1‘(3 𝑋))‘3)(-g𝑄)((coe1‘(𝐾‘2))‘3)))
135 subrgsubg 20497 . . . . . . . . . . . . . . . . . . 19 (ℚ ∈ (SubRing‘ℂfld) → ℚ ∈ (SubGrp‘ℂfld))
13613, 135mp1i 13 . . . . . . . . . . . . . . . . . 18 (⊤ → ℚ ∈ (SubGrp‘ℂfld))
137 eqid 2729 . . . . . . . . . . . . . . . . . . . 20 (coe1‘(3 𝑋)) = (coe1‘(3 𝑋))
138137, 34, 2, 61coe1fvalcl 22130 . . . . . . . . . . . . . . . . . . 19 (((3 𝑋) ∈ (Base‘𝑃) ∧ 3 ∈ ℕ0) → ((coe1‘(3 𝑋))‘3) ∈ ℚ)
13954, 50, 138syl2anc 584 . . . . . . . . . . . . . . . . . 18 (⊤ → ((coe1‘(3 𝑋))‘3) ∈ ℚ)
140 eqid 2729 . . . . . . . . . . . . . . . . . . . 20 (coe1‘(𝐾‘2)) = (coe1‘(𝐾‘2))
141140, 34, 2, 61coe1fvalcl 22130 . . . . . . . . . . . . . . . . . . 19 (((𝐾‘2) ∈ (Base‘𝑃) ∧ 3 ∈ ℕ0) → ((coe1‘(𝐾‘2))‘3) ∈ ℚ)
14266, 50, 141syl2anc 584 . . . . . . . . . . . . . . . . . 18 (⊤ → ((coe1‘(𝐾‘2))‘3) ∈ ℚ)
14336, 3, 132subgsub 19052 . . . . . . . . . . . . . . . . . 18 ((ℚ ∈ (SubGrp‘ℂfld) ∧ ((coe1‘(3 𝑋))‘3) ∈ ℚ ∧ ((coe1‘(𝐾‘2))‘3) ∈ ℚ) → (((coe1‘(3 𝑋))‘3) − ((coe1‘(𝐾‘2))‘3)) = (((coe1‘(3 𝑋))‘3)(-g𝑄)((coe1‘(𝐾‘2))‘3)))
144136, 139, 142, 143syl3anc 1373 . . . . . . . . . . . . . . . . 17 (⊤ → (((coe1‘(3 𝑋))‘3) − ((coe1‘(𝐾‘2))‘3)) = (((coe1‘(3 𝑋))‘3)(-g𝑄)((coe1‘(𝐾‘2))‘3)))
145 iftrue 4490 . . . . . . . . . . . . . . . . . . . 20 (𝑖 = 3 → if(𝑖 = 3, 1, 0) = 1)
1463qrng1 27566 . . . . . . . . . . . . . . . . . . . . 21 1 = (1r𝑄)
1472, 51, 41, 44, 50, 90, 146coe1mon 33547 . . . . . . . . . . . . . . . . . . . 20 (⊤ → (coe1‘(3 𝑋)) = (𝑖 ∈ ℕ0 ↦ if(𝑖 = 3, 1, 0)))
148 1cnd 11145 . . . . . . . . . . . . . . . . . . . 20 (⊤ → 1 ∈ ℂ)
149145, 147, 50, 148fvmptd4 6974 . . . . . . . . . . . . . . . . . . 19 (⊤ → ((coe1‘(3 𝑋))‘3) = 1)
15021neii 2927 . . . . . . . . . . . . . . . . . . . . . 22 ¬ 3 = 0
151 eqeq1 2733 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 = 3 → (𝑖 = 0 ↔ 3 = 0))
152150, 151mtbiri 327 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 = 3 → ¬ 𝑖 = 0)
153152iffalsed 4495 . . . . . . . . . . . . . . . . . . . 20 (𝑖 = 3 → if(𝑖 = 0, 2, 0) = 0)
1542, 55, 61, 90coe1scl 22206 . . . . . . . . . . . . . . . . . . . . 21 ((𝑄 ∈ Ring ∧ 2 ∈ ℚ) → (coe1‘(𝐾‘2)) = (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, 2, 0)))
15544, 65, 154syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 (⊤ → (coe1‘(𝐾‘2)) = (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, 2, 0)))
156 0nn0 12433 . . . . . . . . . . . . . . . . . . . . 21 0 ∈ ℕ0
157156a1i 11 . . . . . . . . . . . . . . . . . . . 20 (⊤ → 0 ∈ ℕ0)
158153, 155, 50, 157fvmptd4 6974 . . . . . . . . . . . . . . . . . . 19 (⊤ → ((coe1‘(𝐾‘2))‘3) = 0)
159149, 158oveq12d 7387 . . . . . . . . . . . . . . . . . 18 (⊤ → (((coe1‘(3 𝑋))‘3) − ((coe1‘(𝐾‘2))‘3)) = (1 − 0))
160 1m0e1 12278 . . . . . . . . . . . . . . . . . 18 (1 − 0) = 1
161159, 160eqtrdi 2780 . . . . . . . . . . . . . . . . 17 (⊤ → (((coe1‘(3 𝑋))‘3) − ((coe1‘(𝐾‘2))‘3)) = 1)
162144, 161eqtr3d 2766 . . . . . . . . . . . . . . . 16 (⊤ → (((coe1‘(3 𝑋))‘3)(-g𝑄)((coe1‘(𝐾‘2))‘3)) = 1)
163131, 134, 1623eqtrd 2768 . . . . . . . . . . . . . . 15 (⊤ → ((coe1𝐹)‘(𝐷𝐹)) = 1)
164130fveq2d 6844 . . . . . . . . . . . . . . 15 (⊤ → ((coe1𝐹)‘(𝐷𝐹)) = ((coe1𝐹)‘3))
165163, 164eqtr3d 2766 . . . . . . . . . . . . . 14 (⊤ → 1 = ((coe1𝐹)‘3))
166165mptru 1547 . . . . . . . . . . . . 13 1 = ((coe1𝐹)‘3)
167115fveq1d 6842 . . . . . . . . . . . . . . 15 (⊤ → ((coe1𝐹)‘2) = ((coe1‘((3 𝑋) (𝐾‘2)))‘2))
168 2nn0 12435 . . . . . . . . . . . . . . . . . 18 2 ∈ ℕ0
169168a1i 11 . . . . . . . . . . . . . . . . 17 (⊤ → 2 ∈ ℕ0)
1702, 34, 35, 132coe1subfv 22185 . . . . . . . . . . . . . . . . 17 (((𝑄 ∈ Ring ∧ (3 𝑋) ∈ (Base‘𝑃) ∧ (𝐾‘2) ∈ (Base‘𝑃)) ∧ 2 ∈ ℕ0) → ((coe1‘((3 𝑋) (𝐾‘2)))‘2) = (((coe1‘(3 𝑋))‘2)(-g𝑄)((coe1‘(𝐾‘2))‘2)))
17144, 54, 66, 169, 170syl31anc 1375 . . . . . . . . . . . . . . . 16 (⊤ → ((coe1‘((3 𝑋) (𝐾‘2)))‘2) = (((coe1‘(3 𝑋))‘2)(-g𝑄)((coe1‘(𝐾‘2))‘2)))
172 2re 12236 . . . . . . . . . . . . . . . . . . . . . . 23 2 ∈ ℝ
173 2lt3 12329 . . . . . . . . . . . . . . . . . . . . . . 23 2 < 3
174172, 173ltneii 11263 . . . . . . . . . . . . . . . . . . . . . 22 2 ≠ 3
175 neeq1 2987 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 = 2 → (𝑖 ≠ 3 ↔ 2 ≠ 3))
176174, 175mpbiri 258 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 = 2 → 𝑖 ≠ 3)
177176adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((⊤ ∧ 𝑖 = 2) → 𝑖 ≠ 3)
178177neneqd 2930 . . . . . . . . . . . . . . . . . . 19 ((⊤ ∧ 𝑖 = 2) → ¬ 𝑖 = 3)
179178iffalsed 4495 . . . . . . . . . . . . . . . . . 18 ((⊤ ∧ 𝑖 = 2) → if(𝑖 = 3, 1, 0) = 0)
180147, 179, 169, 157fvmptd 6957 . . . . . . . . . . . . . . . . 17 (⊤ → ((coe1‘(3 𝑋))‘2) = 0)
181 neeq1 2987 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 = 2 → (𝑖 ≠ 0 ↔ 2 ≠ 0))
182120, 181mpbiri 258 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 = 2 → 𝑖 ≠ 0)
183182neneqd 2930 . . . . . . . . . . . . . . . . . . . 20 (𝑖 = 2 → ¬ 𝑖 = 0)
184183adantl 481 . . . . . . . . . . . . . . . . . . 19 ((⊤ ∧ 𝑖 = 2) → ¬ 𝑖 = 0)
185184iffalsed 4495 . . . . . . . . . . . . . . . . . 18 ((⊤ ∧ 𝑖 = 2) → if(𝑖 = 0, 2, 0) = 0)
186155, 185, 169, 157fvmptd 6957 . . . . . . . . . . . . . . . . 17 (⊤ → ((coe1‘(𝐾‘2))‘2) = 0)
187180, 186oveq12d 7387 . . . . . . . . . . . . . . . 16 (⊤ → (((coe1‘(3 𝑋))‘2)(-g𝑄)((coe1‘(𝐾‘2))‘2)) = (0(-g𝑄)0))
188171, 187eqtrd 2764 . . . . . . . . . . . . . . 15 (⊤ → ((coe1‘((3 𝑋) (𝐾‘2)))‘2) = (0(-g𝑄)0))
189158, 142eqeltrrd 2829 . . . . . . . . . . . . . . . . 17 (⊤ → 0 ∈ ℚ)
19036, 3, 132subgsub 19052 . . . . . . . . . . . . . . . . 17 ((ℚ ∈ (SubGrp‘ℂfld) ∧ 0 ∈ ℚ ∧ 0 ∈ ℚ) → (0 − 0) = (0(-g𝑄)0))
191136, 189, 189, 190syl3anc 1373 . . . . . . . . . . . . . . . 16 (⊤ → (0 − 0) = (0(-g𝑄)0))
192 0m0e0 12277 . . . . . . . . . . . . . . . 16 (0 − 0) = 0
193191, 192eqtr3di 2779 . . . . . . . . . . . . . . 15 (⊤ → (0(-g𝑄)0) = 0)
194167, 188, 1933eqtrrd 2769 . . . . . . . . . . . . . 14 (⊤ → 0 = ((coe1𝐹)‘2))
195194mptru 1547 . . . . . . . . . . . . 13 0 = ((coe1𝐹)‘2)
196115fveq1d 6842 . . . . . . . . . . . . . . 15 (⊤ → ((coe1𝐹)‘1) = ((coe1‘((3 𝑋) (𝐾‘2)))‘1))
197 1nn0 12434 . . . . . . . . . . . . . . . . . 18 1 ∈ ℕ0
198197a1i 11 . . . . . . . . . . . . . . . . 17 (⊤ → 1 ∈ ℕ0)
1992, 34, 35, 132coe1subfv 22185 . . . . . . . . . . . . . . . . 17 (((𝑄 ∈ Ring ∧ (3 𝑋) ∈ (Base‘𝑃) ∧ (𝐾‘2) ∈ (Base‘𝑃)) ∧ 1 ∈ ℕ0) → ((coe1‘((3 𝑋) (𝐾‘2)))‘1) = (((coe1‘(3 𝑋))‘1)(-g𝑄)((coe1‘(𝐾‘2))‘1)))
20044, 54, 66, 198, 199syl31anc 1375 . . . . . . . . . . . . . . . 16 (⊤ → ((coe1‘((3 𝑋) (𝐾‘2)))‘1) = (((coe1‘(3 𝑋))‘1)(-g𝑄)((coe1‘(𝐾‘2))‘1)))
201 1re 11150 . . . . . . . . . . . . . . . . . . . . . . 23 1 ∈ ℝ
202 1lt3 12330 . . . . . . . . . . . . . . . . . . . . . . 23 1 < 3
203201, 202ltneii 11263 . . . . . . . . . . . . . . . . . . . . . 22 1 ≠ 3
204 neeq1 2987 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 = 1 → (𝑖 ≠ 3 ↔ 1 ≠ 3))
205203, 204mpbiri 258 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 = 1 → 𝑖 ≠ 3)
206205neneqd 2930 . . . . . . . . . . . . . . . . . . . 20 (𝑖 = 1 → ¬ 𝑖 = 3)
207206adantl 481 . . . . . . . . . . . . . . . . . . 19 ((⊤ ∧ 𝑖 = 1) → ¬ 𝑖 = 3)
208207iffalsed 4495 . . . . . . . . . . . . . . . . . 18 ((⊤ ∧ 𝑖 = 1) → if(𝑖 = 3, 1, 0) = 0)
209147, 208, 198, 157fvmptd 6957 . . . . . . . . . . . . . . . . 17 (⊤ → ((coe1‘(3 𝑋))‘1) = 0)
210 ax-1ne0 11113 . . . . . . . . . . . . . . . . . . . . . 22 1 ≠ 0
211 neeq1 2987 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 = 1 → (𝑖 ≠ 0 ↔ 1 ≠ 0))
212210, 211mpbiri 258 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 = 1 → 𝑖 ≠ 0)
213212neneqd 2930 . . . . . . . . . . . . . . . . . . . 20 (𝑖 = 1 → ¬ 𝑖 = 0)
214213adantl 481 . . . . . . . . . . . . . . . . . . 19 ((⊤ ∧ 𝑖 = 1) → ¬ 𝑖 = 0)
215214iffalsed 4495 . . . . . . . . . . . . . . . . . 18 ((⊤ ∧ 𝑖 = 1) → if(𝑖 = 0, 2, 0) = 0)
216155, 215, 198, 157fvmptd 6957 . . . . . . . . . . . . . . . . 17 (⊤ → ((coe1‘(𝐾‘2))‘1) = 0)
217209, 216oveq12d 7387 . . . . . . . . . . . . . . . 16 (⊤ → (((coe1‘(3 𝑋))‘1)(-g𝑄)((coe1‘(𝐾‘2))‘1)) = (0(-g𝑄)0))
218200, 217eqtrd 2764 . . . . . . . . . . . . . . 15 (⊤ → ((coe1‘((3 𝑋) (𝐾‘2)))‘1) = (0(-g𝑄)0))
219196, 218, 1933eqtrrd 2769 . . . . . . . . . . . . . 14 (⊤ → 0 = ((coe1𝐹)‘1))
220219mptru 1547 . . . . . . . . . . . . 13 0 = ((coe1𝐹)‘1)
221115fveq1d 6842 . . . . . . . . . . . . . . 15 (⊤ → ((coe1𝐹)‘0) = ((coe1‘((3 𝑋) (𝐾‘2)))‘0))
2222, 34, 35, 132coe1subfv 22185 . . . . . . . . . . . . . . . . 17 (((𝑄 ∈ Ring ∧ (3 𝑋) ∈ (Base‘𝑃) ∧ (𝐾‘2) ∈ (Base‘𝑃)) ∧ 0 ∈ ℕ0) → ((coe1‘((3 𝑋) (𝐾‘2)))‘0) = (((coe1‘(3 𝑋))‘0)(-g𝑄)((coe1‘(𝐾‘2))‘0)))
22344, 54, 66, 157, 222syl31anc 1375 . . . . . . . . . . . . . . . 16 (⊤ → ((coe1‘((3 𝑋) (𝐾‘2)))‘0) = (((coe1‘(3 𝑋))‘0)(-g𝑄)((coe1‘(𝐾‘2))‘0)))
22421necomi 2979 . . . . . . . . . . . . . . . . . . . . . 22 0 ≠ 3
225 neeq1 2987 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 = 0 → (𝑖 ≠ 3 ↔ 0 ≠ 3))
226224, 225mpbiri 258 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 = 0 → 𝑖 ≠ 3)
227226neneqd 2930 . . . . . . . . . . . . . . . . . . . 20 (𝑖 = 0 → ¬ 𝑖 = 3)
228227adantl 481 . . . . . . . . . . . . . . . . . . 19 ((⊤ ∧ 𝑖 = 0) → ¬ 𝑖 = 3)
229228iffalsed 4495 . . . . . . . . . . . . . . . . . 18 ((⊤ ∧ 𝑖 = 0) → if(𝑖 = 3, 1, 0) = 0)
230147, 229, 157, 157fvmptd 6957 . . . . . . . . . . . . . . . . 17 (⊤ → ((coe1‘(3 𝑋))‘0) = 0)
231 simpr 484 . . . . . . . . . . . . . . . . . . 19 ((⊤ ∧ 𝑖 = 0) → 𝑖 = 0)
232231iftrued 4492 . . . . . . . . . . . . . . . . . 18 ((⊤ ∧ 𝑖 = 0) → if(𝑖 = 0, 2, 0) = 2)
233155, 232, 157, 169fvmptd 6957 . . . . . . . . . . . . . . . . 17 (⊤ → ((coe1‘(𝐾‘2))‘0) = 2)
234230, 233oveq12d 7387 . . . . . . . . . . . . . . . 16 (⊤ → (((coe1‘(3 𝑋))‘0)(-g𝑄)((coe1‘(𝐾‘2))‘0)) = (0(-g𝑄)2))
235223, 234eqtrd 2764 . . . . . . . . . . . . . . 15 (⊤ → ((coe1‘((3 𝑋) (𝐾‘2)))‘0) = (0(-g𝑄)2))
236 df-neg 11384 . . . . . . . . . . . . . . . 16 -2 = (0 − 2)
23736, 3, 132subgsub 19052 . . . . . . . . . . . . . . . . 17 ((ℚ ∈ (SubGrp‘ℂfld) ∧ 0 ∈ ℚ ∧ 2 ∈ ℚ) → (0 − 2) = (0(-g𝑄)2))
238136, 189, 65, 237syl3anc 1373 . . . . . . . . . . . . . . . 16 (⊤ → (0 − 2) = (0(-g𝑄)2))
239236, 238eqtr2id 2777 . . . . . . . . . . . . . . 15 (⊤ → (0(-g𝑄)2) = -2)
240221, 235, 2393eqtrrd 2769 . . . . . . . . . . . . . 14 (⊤ → -2 = ((coe1𝐹)‘0))
241240mptru 1547 . . . . . . . . . . . . 13 -2 = ((coe1𝐹)‘0)
24295a1i 11 . . . . . . . . . . . . . 14 (𝑥 ∈ ℚ → 𝑄 ∈ Field)
243242fldcrngd 20662 . . . . . . . . . . . . 13 (𝑥 ∈ ℚ → 𝑄 ∈ CRing)
244100mptru 1547 . . . . . . . . . . . . . 14 𝐹 ∈ (Base‘𝑃)
245244a1i 11 . . . . . . . . . . . . 13 (𝑥 ∈ ℚ → 𝐹 ∈ (Base‘𝑃))
246130mptru 1547 . . . . . . . . . . . . . 14 (𝐷𝐹) = 3
247246a1i 11 . . . . . . . . . . . . 13 (𝑥 ∈ ℚ → (𝐷𝐹) = 3)
248 id 22 . . . . . . . . . . . . 13 (𝑥 ∈ ℚ → 𝑥 ∈ ℚ)
2492, 91, 61, 34, 108, 111, 112, 113, 92, 166, 195, 220, 241, 243, 245, 247, 248evl1deg3 33540 . . . . . . . . . . . 12 (𝑥 ∈ ℚ → (((eval1𝑄)‘𝐹)‘𝑥) = (((1 · (3(.g‘(mulGrp‘𝑄))𝑥)) + (0 · (2(.g‘(mulGrp‘𝑄))𝑥))) + ((0 · 𝑥) + -2)))
250 qsscn 12895 . . . . . . . . . . . . . . . . . 18 ℚ ⊆ ℂ
251 eqid 2729 . . . . . . . . . . . . . . . . . . . . . 22 ((mulGrp‘ℂfld) ↾s ℚ) = ((mulGrp‘ℂfld) ↾s ℚ)
252 eqid 2729 . . . . . . . . . . . . . . . . . . . . . . 23 (mulGrp‘ℂfld) = (mulGrp‘ℂfld)
253252, 6mgpbas 20065 . . . . . . . . . . . . . . . . . . . . . 22 ℂ = (Base‘(mulGrp‘ℂfld))
254251, 253ressbas2 17184 . . . . . . . . . . . . . . . . . . . . 21 (ℚ ⊆ ℂ → ℚ = (Base‘((mulGrp‘ℂfld) ↾s ℚ)))
255250, 254ax-mp 5 . . . . . . . . . . . . . . . . . . . 20 ℚ = (Base‘((mulGrp‘ℂfld) ↾s ℚ))
2563, 252mgpress 20070 . . . . . . . . . . . . . . . . . . . . . 22 ((ℂfld ∈ DivRing ∧ ℚ ∈ (SubRing‘ℂfld)) → ((mulGrp‘ℂfld) ↾s ℚ) = (mulGrp‘𝑄))
2577, 13, 256mp2an 692 . . . . . . . . . . . . . . . . . . . . 21 ((mulGrp‘ℂfld) ↾s ℚ) = (mulGrp‘𝑄)
258257fveq2i 6843 . . . . . . . . . . . . . . . . . . . 20 (Base‘((mulGrp‘ℂfld) ↾s ℚ)) = (Base‘(mulGrp‘𝑄))
259255, 258eqtri 2752 . . . . . . . . . . . . . . . . . . 19 ℚ = (Base‘(mulGrp‘𝑄))
260 eqid 2729 . . . . . . . . . . . . . . . . . . . . 21 (mulGrp‘𝑄) = (mulGrp‘𝑄)
261260ringmgp 20159 . . . . . . . . . . . . . . . . . . . 20 (𝑄 ∈ Ring → (mulGrp‘𝑄) ∈ Mnd)
26256, 261mp1i 13 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ℚ → (mulGrp‘𝑄) ∈ Mnd)
26349a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ℚ → 3 ∈ ℕ0)
264259, 112, 262, 263, 248mulgnn0cld 19009 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℚ → (3(.g‘(mulGrp‘𝑄))𝑥) ∈ ℚ)
265250, 264sselid 3941 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℚ → (3(.g‘(mulGrp‘𝑄))𝑥) ∈ ℂ)
266265mullidd 11168 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℚ → (1 · (3(.g‘(mulGrp‘𝑄))𝑥)) = (3(.g‘(mulGrp‘𝑄))𝑥))
267257eqcomi 2738 . . . . . . . . . . . . . . . . 17 (mulGrp‘𝑄) = ((mulGrp‘ℂfld) ↾s ℚ)
268250, 253sseqtri 3992 . . . . . . . . . . . . . . . . . 18 ℚ ⊆ (Base‘(mulGrp‘ℂfld))
269268a1i 11 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℚ → ℚ ⊆ (Base‘(mulGrp‘ℂfld)))
27080a1i 11 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℚ → 3 ∈ ℕ)
271267, 269, 248, 270ressmulgnnd 18992 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℚ → (3(.g‘(mulGrp‘𝑄))𝑥) = (3(.g‘(mulGrp‘ℂfld))𝑥))
272 qcn 12898 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℚ → 𝑥 ∈ ℂ)
273 cnfldexp 21346 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℂ ∧ 3 ∈ ℕ0) → (3(.g‘(mulGrp‘ℂfld))𝑥) = (𝑥↑3))
274272, 263, 273syl2anc 584 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℚ → (3(.g‘(mulGrp‘ℂfld))𝑥) = (𝑥↑3))
275266, 271, 2743eqtrd 2768 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℚ → (1 · (3(.g‘(mulGrp‘𝑄))𝑥)) = (𝑥↑3))
276168a1i 11 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℚ → 2 ∈ ℕ0)
277259, 112, 262, 276, 248mulgnn0cld 19009 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℚ → (2(.g‘(mulGrp‘𝑄))𝑥) ∈ ℚ)
278250, 277sselid 3941 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℚ → (2(.g‘(mulGrp‘𝑄))𝑥) ∈ ℂ)
279278mul02d 11348 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℚ → (0 · (2(.g‘(mulGrp‘𝑄))𝑥)) = 0)
280275, 279oveq12d 7387 . . . . . . . . . . . . . 14 (𝑥 ∈ ℚ → ((1 · (3(.g‘(mulGrp‘𝑄))𝑥)) + (0 · (2(.g‘(mulGrp‘𝑄))𝑥))) = ((𝑥↑3) + 0))
281272, 263expcld 14087 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℚ → (𝑥↑3) ∈ ℂ)
282281addridd 11350 . . . . . . . . . . . . . 14 (𝑥 ∈ ℚ → ((𝑥↑3) + 0) = (𝑥↑3))
283280, 282eqtrd 2764 . . . . . . . . . . . . 13 (𝑥 ∈ ℚ → ((1 · (3(.g‘(mulGrp‘𝑄))𝑥)) + (0 · (2(.g‘(mulGrp‘𝑄))𝑥))) = (𝑥↑3))
284272mul02d 11348 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℚ → (0 · 𝑥) = 0)
285284oveq1d 7384 . . . . . . . . . . . . . 14 (𝑥 ∈ ℚ → ((0 · 𝑥) + -2) = (0 + -2))
28619a1i 11 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℚ → 2 ∈ ℂ)
287286negcld 11496 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℚ → -2 ∈ ℂ)
288287addlidd 11351 . . . . . . . . . . . . . 14 (𝑥 ∈ ℚ → (0 + -2) = -2)
289285, 288eqtrd 2764 . . . . . . . . . . . . 13 (𝑥 ∈ ℚ → ((0 · 𝑥) + -2) = -2)
290283, 289oveq12d 7387 . . . . . . . . . . . 12 (𝑥 ∈ ℚ → (((1 · (3(.g‘(mulGrp‘𝑄))𝑥)) + (0 · (2(.g‘(mulGrp‘𝑄))𝑥))) + ((0 · 𝑥) + -2)) = ((𝑥↑3) + -2))
291281, 286negsubd 11515 . . . . . . . . . . . 12 (𝑥 ∈ ℚ → ((𝑥↑3) + -2) = ((𝑥↑3) − 2))
292249, 290, 2913eqtrd 2768 . . . . . . . . . . 11 (𝑥 ∈ ℚ → (((eval1𝑄)‘𝐹)‘𝑥) = ((𝑥↑3) − 2))
293 2prm 16638 . . . . . . . . . . . . . . 15 2 ∈ ℙ
294 3z 12542 . . . . . . . . . . . . . . . 16 3 ∈ ℤ
295 3re 12242 . . . . . . . . . . . . . . . . 17 3 ∈ ℝ
296172, 295, 173ltleii 11273 . . . . . . . . . . . . . . . 16 2 ≤ 3
29763eluz1i 12777 . . . . . . . . . . . . . . . 16 (3 ∈ (ℤ‘2) ↔ (3 ∈ ℤ ∧ 2 ≤ 3))
298294, 296, 297mpbir2an 711 . . . . . . . . . . . . . . 15 3 ∈ (ℤ‘2)
299 rtprmirr 26703 . . . . . . . . . . . . . . 15 ((2 ∈ ℙ ∧ 3 ∈ (ℤ‘2)) → (2↑𝑐(1 / 3)) ∈ (ℝ ∖ ℚ))
300293, 298, 299mp2an 692 . . . . . . . . . . . . . 14 (2↑𝑐(1 / 3)) ∈ (ℝ ∖ ℚ)
301 eldifn 4091 . . . . . . . . . . . . . 14 ((2↑𝑐(1 / 3)) ∈ (ℝ ∖ ℚ) → ¬ (2↑𝑐(1 / 3)) ∈ ℚ)
302300, 301ax-mp 5 . . . . . . . . . . . . 13 ¬ (2↑𝑐(1 / 3)) ∈ ℚ
303 nelne2 3023 . . . . . . . . . . . . 13 ((𝑥 ∈ ℚ ∧ ¬ (2↑𝑐(1 / 3)) ∈ ℚ) → 𝑥 ≠ (2↑𝑐(1 / 3)))
304302, 303mpan2 691 . . . . . . . . . . . 12 (𝑥 ∈ ℚ → 𝑥 ≠ (2↑𝑐(1 / 3)))
305 qre 12888 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℚ → 𝑥 ∈ ℝ)
306305adantr 480 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℚ ∧ ((𝑥↑3) − 2) = 0) → 𝑥 ∈ ℝ)
307 2pos 12265 . . . . . . . . . . . . . . . . . 18 0 < 2
308281, 286subeq0ad 11519 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ℚ → (((𝑥↑3) − 2) = 0 ↔ (𝑥↑3) = 2))
309308biimpa 476 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℚ ∧ ((𝑥↑3) − 2) = 0) → (𝑥↑3) = 2)
310307, 309breqtrrid 5140 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℚ ∧ ((𝑥↑3) − 2) = 0) → 0 < (𝑥↑3))
31180a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℚ ∧ ((𝑥↑3) − 2) = 0) → 3 ∈ ℕ)
312 n2dvds3 16317 . . . . . . . . . . . . . . . . . . 19 ¬ 2 ∥ 3
313312a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℚ ∧ ((𝑥↑3) − 2) = 0) → ¬ 2 ∥ 3)
314306, 311, 313expgt0b 32791 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℚ ∧ ((𝑥↑3) − 2) = 0) → (0 < 𝑥 ↔ 0 < (𝑥↑3)))
315310, 314mpbird 257 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℚ ∧ ((𝑥↑3) − 2) = 0) → 0 < 𝑥)
316306, 315elrpd 12968 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℚ ∧ ((𝑥↑3) − 2) = 0) → 𝑥 ∈ ℝ+)
317295a1i 11 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℚ ∧ ((𝑥↑3) − 2) = 0) → 3 ∈ ℝ)
31822a1i 11 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℚ ∧ ((𝑥↑3) − 2) = 0) → (1 / 3) ∈ ℂ)
319316, 317, 318cxpmuld 26679 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℚ ∧ ((𝑥↑3) − 2) = 0) → (𝑥𝑐(3 · (1 / 3))) = ((𝑥𝑐3)↑𝑐(1 / 3)))
32020a1i 11 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℚ → 3 ∈ ℂ)
32121a1i 11 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℚ → 3 ≠ 0)
322320, 321recidd 11929 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℚ → (3 · (1 / 3)) = 1)
323322oveq2d 7385 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℚ → (𝑥𝑐(3 · (1 / 3))) = (𝑥𝑐1))
324272cxp1d 26648 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℚ → (𝑥𝑐1) = 𝑥)
325323, 324eqtrd 2764 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℚ → (𝑥𝑐(3 · (1 / 3))) = 𝑥)
326325adantr 480 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℚ ∧ ((𝑥↑3) − 2) = 0) → (𝑥𝑐(3 · (1 / 3))) = 𝑥)
327 cxpexp 26610 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℂ ∧ 3 ∈ ℕ0) → (𝑥𝑐3) = (𝑥↑3))
328272, 263, 327syl2anc 584 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℚ → (𝑥𝑐3) = (𝑥↑3))
329328oveq1d 7384 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℚ → ((𝑥𝑐3)↑𝑐(1 / 3)) = ((𝑥↑3)↑𝑐(1 / 3)))
330329adantr 480 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℚ ∧ ((𝑥↑3) − 2) = 0) → ((𝑥𝑐3)↑𝑐(1 / 3)) = ((𝑥↑3)↑𝑐(1 / 3)))
331319, 326, 3303eqtr3rd 2773 . . . . . . . . . . . . 13 ((𝑥 ∈ ℚ ∧ ((𝑥↑3) − 2) = 0) → ((𝑥↑3)↑𝑐(1 / 3)) = 𝑥)
332309oveq1d 7384 . . . . . . . . . . . . 13 ((𝑥 ∈ ℚ ∧ ((𝑥↑3) − 2) = 0) → ((𝑥↑3)↑𝑐(1 / 3)) = (2↑𝑐(1 / 3)))
333331, 332eqtr3d 2766 . . . . . . . . . . . 12 ((𝑥 ∈ ℚ ∧ ((𝑥↑3) − 2) = 0) → 𝑥 = (2↑𝑐(1 / 3)))
334304, 333mteqand 3016 . . . . . . . . . . 11 (𝑥 ∈ ℚ → ((𝑥↑3) − 2) ≠ 0)
335292, 334eqnetrd 2992 . . . . . . . . . 10 (𝑥 ∈ ℚ → (((eval1𝑄)‘𝐹)‘𝑥) ≠ 0)
336335neneqd 2930 . . . . . . . . 9 (𝑥 ∈ ℚ → ¬ (((eval1𝑄)‘𝐹)‘𝑥) = 0)
337336rgen 3046 . . . . . . . 8 𝑥 ∈ ℚ ¬ (((eval1𝑄)‘𝐹)‘𝑥) = 0
338337a1i 11 . . . . . . 7 (⊤ → ∀𝑥 ∈ ℚ ¬ (((eval1𝑄)‘𝐹)‘𝑥) = 0)
339 rabeq0 4347 . . . . . . 7 ({𝑥 ∈ ℚ ∣ (((eval1𝑄)‘𝐹)‘𝑥) = 0} = ∅ ↔ ∀𝑥 ∈ ℚ ¬ (((eval1𝑄)‘𝐹)‘𝑥) = 0)
340338, 339sylibr 234 . . . . . 6 (⊤ → {𝑥 ∈ ℚ ∣ (((eval1𝑄)‘𝐹)‘𝑥) = 0} = ∅)
341105, 340eqtrd 2764 . . . . 5 (⊤ → (((eval1𝑄)‘𝐹) “ {0}) = ∅)
34290, 91, 92, 2, 34, 96, 100, 341, 130ply1dg3rt0irred 33544 . . . 4 (⊤ → 𝐹 ∈ (Irred‘𝑃))
343 eqid 2729 . . . . . . 7 (Irred‘𝑃) = (Irred‘𝑃)
344343, 29irredn0 20343 . . . . . 6 ((𝑃 ∈ Ring ∧ 𝐹 ∈ (Irred‘𝑃)) → 𝐹 ≠ (0g𝑃))
34546, 342, 344syl2anc 584 . . . . 5 (⊤ → 𝐹 ≠ (0g𝑃))
3463fveq2i 6843 . . . . . . 7 (deg1𝑄) = (deg1‘(ℂflds ℚ))
34792, 346eqtri 2752 . . . . . 6 𝐷 = (deg1‘(ℂflds ℚ))
348 eqid 2729 . . . . . 6 (Monic1p‘(ℂflds ℚ)) = (Monic1p‘(ℂflds ℚ))
349 eqid 2729 . . . . . . 7 (ℂflds ℚ) = (ℂflds ℚ)
350349qrng1 27566 . . . . . 6 1 = (1r‘(ℂflds ℚ))
3515, 34, 29, 347, 348, 350ismon1p 26081 . . . . 5 (𝐹 ∈ (Monic1p‘(ℂflds ℚ)) ↔ (𝐹 ∈ (Base‘𝑃) ∧ 𝐹 ≠ (0g𝑃) ∧ ((coe1𝐹)‘(𝐷𝐹)) = 1))
352100, 345, 163, 351syl3anbrc 1344 . . . 4 (⊤ → 𝐹 ∈ (Monic1p‘(ℂflds ℚ)))
3531, 5, 6, 11, 17, 26, 27, 28, 29, 89, 342, 352irredminply 33699 . . 3 (⊤ → 𝐹 = (𝑀𝐴))
354353, 130jca 511 . 2 (⊤ → (𝐹 = (𝑀𝐴) ∧ (𝐷𝐹) = 3))
355354mptru 1547 1 (𝐹 = (𝑀𝐴) ∧ (𝐷𝐹) = 3)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395   = wceq 1540  wtru 1541  wcel 2109  wne 2925  wral 3044  {crab 3402  cdif 3908  wss 3911  c0 4292  ifcif 4484  {csn 4585   class class class wbr 5102  cmpt 5183   I cid 5525  ccnv 5630  cres 5633  cima 5634   Fn wfn 6494  cfv 6499  (class class class)co 7369  cc 11042  cr 11043  0cc0 11044  1c1 11045   + caddc 11047   · cmul 11049   < clt 11184  cle 11185  cmin 11381  -cneg 11382   / cdiv 11811  cn 12162  2c2 12217  3c3 12218  0cn0 12418  cz 12505  cuz 12769  cq 12883  cexp 14002  cdvds 16198  cprime 16617  Basecbs 17155  s cress 17176  +gcplusg 17196  .rcmulr 17197  Scalarcsca 17199  0gc0g 17378  Mndcmnd 18643  Grpcgrp 18847  -gcsg 18849  .gcmg 18981  SubGrpcsubg 19034  mulGrpcmgp 20060  Ringcrg 20153  CRingccrg 20154  Irredcir 20276  NzRingcnzr 20432  SubRingcsubrg 20489  DivRingcdr 20649  Fieldcfield 20650  SubDRingcsdrg 20706  LModclmod 20798  fldccnfld 21296  algSccascl 21794  var1cv1 22093  Poly1cpl1 22094  coe1cco1 22095   evalSub1 ces1 22233  eval1ce1 22234  deg1cdg1 25992  Monic1pcmn1 26064  𝑐ccxp 26497   minPoly cminply 33682
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122  ax-addf 11123  ax-mulf 11124
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-ofr 7634  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-tpos 8182  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-map 8778  df-pm 8779  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-fi 9338  df-sup 9369  df-inf 9370  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-q 12884  df-rp 12928  df-xneg 13048  df-xadd 13049  df-xmul 13050  df-ioo 13286  df-ioc 13287  df-ico 13288  df-icc 13289  df-fz 13445  df-fzo 13592  df-fl 13730  df-mod 13808  df-seq 13943  df-exp 14003  df-fac 14215  df-bc 14244  df-hash 14272  df-shft 15009  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-limsup 15413  df-clim 15430  df-rlim 15431  df-sum 15629  df-ef 16009  df-sin 16011  df-cos 16012  df-pi 16014  df-dvds 16199  df-gcd 16441  df-prm 16618  df-numer 16681  df-denom 16682  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-hom 17220  df-cco 17221  df-rest 17361  df-topn 17362  df-0g 17380  df-gsum 17381  df-topgen 17382  df-pt 17383  df-prds 17386  df-pws 17388  df-xrs 17441  df-qtop 17446  df-imas 17447  df-xps 17449  df-mre 17523  df-mrc 17524  df-acs 17526  df-mgm 18549  df-sgrp 18628  df-mnd 18644  df-mhm 18692  df-submnd 18693  df-grp 18850  df-minusg 18851  df-sbg 18852  df-mulg 18982  df-subg 19037  df-ghm 19127  df-cntz 19231  df-cmn 19696  df-abl 19697  df-mgp 20061  df-rng 20073  df-ur 20102  df-srg 20107  df-ring 20155  df-cring 20156  df-oppr 20257  df-dvdsr 20277  df-unit 20278  df-irred 20279  df-invr 20308  df-dvr 20321  df-rhm 20392  df-nzr 20433  df-subrng 20466  df-subrg 20490  df-rlreg 20614  df-domn 20615  df-idom 20616  df-drng 20651  df-field 20652  df-sdrg 20707  df-lmod 20800  df-lss 20870  df-lsp 20910  df-sra 21112  df-rgmod 21113  df-lidl 21150  df-rsp 21151  df-psmet 21288  df-xmet 21289  df-met 21290  df-bl 21291  df-mopn 21292  df-fbas 21293  df-fg 21294  df-cnfld 21297  df-assa 21795  df-asp 21796  df-ascl 21797  df-psr 21851  df-mvr 21852  df-mpl 21853  df-opsr 21855  df-evls 22014  df-evl 22015  df-psr1 22097  df-vr1 22098  df-ply1 22099  df-coe1 22100  df-evls1 22235  df-evl1 22236  df-top 22814  df-topon 22831  df-topsp 22853  df-bases 22866  df-cld 22939  df-ntr 22940  df-cls 22941  df-nei 23018  df-lp 23056  df-perf 23057  df-cn 23147  df-cnp 23148  df-haus 23235  df-tx 23482  df-hmeo 23675  df-fil 23766  df-fm 23858  df-flim 23859  df-flf 23860  df-xms 24241  df-ms 24242  df-tms 24243  df-cncf 24804  df-limc 25800  df-dv 25801  df-mdeg 25993  df-deg1 25994  df-mon1 26069  df-uc1p 26070  df-q1p 26071  df-r1p 26072  df-ig1p 26073  df-log 26498  df-cxp 26499  df-irng 33672  df-minply 33683
This theorem is referenced by:  2sqr3nconstr  33764
  Copyright terms: Public domain W3C validator