Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2sqr3minply Structured version   Visualization version   GIF version

Theorem 2sqr3minply 33793
Description: The polynomial ((𝑋↑3) − 2) is the minimal polynomial for (2↑𝑐(1 / 3)) over , and its degree is 3. (Contributed by Thierry Arnoux, 14-Jun-2025.)
Hypotheses
Ref Expression
2sqr3minply.q 𝑄 = (ℂflds ℚ)
2sqr3minply.1 = (-g𝑃)
2sqr3minply.2 = (.g‘(mulGrp‘𝑃))
2sqr3minply.p 𝑃 = (Poly1𝑄)
2sqr3minply.k 𝐾 = (algSc‘𝑃)
2sqr3minply.x 𝑋 = (var1𝑄)
2sqr3minply.d 𝐷 = (deg1𝑄)
2sqr3minply.f 𝐹 = ((3 𝑋) (𝐾‘2))
2sqr3minply.a 𝐴 = (2↑𝑐(1 / 3))
2sqr3minply.m 𝑀 = (ℂfld minPoly ℚ)
Assertion
Ref Expression
2sqr3minply (𝐹 = (𝑀𝐴) ∧ (𝐷𝐹) = 3)

Proof of Theorem 2sqr3minply
Dummy variables 𝑖 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2731 . . . 4 (ℂfld evalSub1 ℚ) = (ℂfld evalSub1 ℚ)
2 2sqr3minply.p . . . . 5 𝑃 = (Poly1𝑄)
3 2sqr3minply.q . . . . . 6 𝑄 = (ℂflds ℚ)
43fveq2i 6825 . . . . 5 (Poly1𝑄) = (Poly1‘(ℂflds ℚ))
52, 4eqtri 2754 . . . 4 𝑃 = (Poly1‘(ℂflds ℚ))
6 cnfldbas 21295 . . . 4 ℂ = (Base‘ℂfld)
7 cndrng 21335 . . . . . 6 fld ∈ DivRing
8 cncrng 21325 . . . . . 6 fld ∈ CRing
9 isfld 20655 . . . . . 6 (ℂfld ∈ Field ↔ (ℂfld ∈ DivRing ∧ ℂfld ∈ CRing))
107, 8, 9mpbir2an 711 . . . . 5 fld ∈ Field
1110a1i 11 . . . 4 (⊤ → ℂfld ∈ Field)
12 qsubdrg 21356 . . . . . . 7 (ℚ ∈ (SubRing‘ℂfld) ∧ (ℂflds ℚ) ∈ DivRing)
1312simpli 483 . . . . . 6 ℚ ∈ (SubRing‘ℂfld)
1412simpri 485 . . . . . 6 (ℂflds ℚ) ∈ DivRing
15 issdrg 20703 . . . . . 6 (ℚ ∈ (SubDRing‘ℂfld) ↔ (ℂfld ∈ DivRing ∧ ℚ ∈ (SubRing‘ℂfld) ∧ (ℂflds ℚ) ∈ DivRing))
167, 13, 14, 15mpbir3an 1342 . . . . 5 ℚ ∈ (SubDRing‘ℂfld)
1716a1i 11 . . . 4 (⊤ → ℚ ∈ (SubDRing‘ℂfld))
18 2sqr3minply.a . . . . . 6 𝐴 = (2↑𝑐(1 / 3))
19 2cn 12200 . . . . . . 7 2 ∈ ℂ
20 3cn 12206 . . . . . . . 8 3 ∈ ℂ
21 3ne0 12231 . . . . . . . 8 3 ≠ 0
2220, 21reccli 11851 . . . . . . 7 (1 / 3) ∈ ℂ
23 cxpcl 26610 . . . . . . 7 ((2 ∈ ℂ ∧ (1 / 3) ∈ ℂ) → (2↑𝑐(1 / 3)) ∈ ℂ)
2419, 22, 23mp2an 692 . . . . . 6 (2↑𝑐(1 / 3)) ∈ ℂ
2518, 24eqeltri 2827 . . . . 5 𝐴 ∈ ℂ
2625a1i 11 . . . 4 (⊤ → 𝐴 ∈ ℂ)
27 cnfld0 21329 . . . 4 0 = (0g‘ℂfld)
28 2sqr3minply.m . . . 4 𝑀 = (ℂfld minPoly ℚ)
29 eqid 2731 . . . 4 (0g𝑃) = (0g𝑃)
30 2sqr3minply.f . . . . . . . 8 𝐹 = ((3 𝑋) (𝐾‘2))
3130fveq2i 6825 . . . . . . 7 ((ℂfld evalSub1 ℚ)‘𝐹) = ((ℂfld evalSub1 ℚ)‘((3 𝑋) (𝐾‘2)))
3231fveq1i 6823 . . . . . 6 (((ℂfld evalSub1 ℚ)‘𝐹)‘𝐴) = (((ℂfld evalSub1 ℚ)‘((3 𝑋) (𝐾‘2)))‘𝐴)
3332a1i 11 . . . . 5 (⊤ → (((ℂfld evalSub1 ℚ)‘𝐹)‘𝐴) = (((ℂfld evalSub1 ℚ)‘((3 𝑋) (𝐾‘2)))‘𝐴))
34 eqid 2731 . . . . . 6 (Base‘𝑃) = (Base‘𝑃)
35 2sqr3minply.1 . . . . . 6 = (-g𝑃)
36 cnfldsub 21334 . . . . . 6 − = (-g‘ℂfld)
378a1i 11 . . . . . 6 (⊤ → ℂfld ∈ CRing)
3813a1i 11 . . . . . 6 (⊤ → ℚ ∈ (SubRing‘ℂfld))
39 eqid 2731 . . . . . . . 8 (mulGrp‘𝑃) = (mulGrp‘𝑃)
4039, 34mgpbas 20063 . . . . . . 7 (Base‘𝑃) = (Base‘(mulGrp‘𝑃))
41 2sqr3minply.2 . . . . . . 7 = (.g‘(mulGrp‘𝑃))
423qdrng 27558 . . . . . . . . . . 11 𝑄 ∈ DivRing
4342a1i 11 . . . . . . . . . 10 (⊤ → 𝑄 ∈ DivRing)
4443drngringd 20652 . . . . . . . . 9 (⊤ → 𝑄 ∈ Ring)
452ply1ring 22160 . . . . . . . . 9 (𝑄 ∈ Ring → 𝑃 ∈ Ring)
4644, 45syl 17 . . . . . . . 8 (⊤ → 𝑃 ∈ Ring)
4739ringmgp 20157 . . . . . . . 8 (𝑃 ∈ Ring → (mulGrp‘𝑃) ∈ Mnd)
4846, 47syl 17 . . . . . . 7 (⊤ → (mulGrp‘𝑃) ∈ Mnd)
49 3nn0 12399 . . . . . . . 8 3 ∈ ℕ0
5049a1i 11 . . . . . . 7 (⊤ → 3 ∈ ℕ0)
51 2sqr3minply.x . . . . . . . . 9 𝑋 = (var1𝑄)
5251, 2, 34vr1cl 22130 . . . . . . . 8 (𝑄 ∈ Ring → 𝑋 ∈ (Base‘𝑃))
5344, 52syl 17 . . . . . . 7 (⊤ → 𝑋 ∈ (Base‘𝑃))
5440, 41, 48, 50, 53mulgnn0cld 19008 . . . . . 6 (⊤ → (3 𝑋) ∈ (Base‘𝑃))
55 2sqr3minply.k . . . . . . . 8 𝐾 = (algSc‘𝑃)
5644mptru 1548 . . . . . . . . 9 𝑄 ∈ Ring
572ply1sca 22165 . . . . . . . . 9 (𝑄 ∈ Ring → 𝑄 = (Scalar‘𝑃))
5856, 57ax-mp 5 . . . . . . . 8 𝑄 = (Scalar‘𝑃)
592ply1lmod 22164 . . . . . . . . 9 (𝑄 ∈ Ring → 𝑃 ∈ LMod)
6044, 59syl 17 . . . . . . . 8 (⊤ → 𝑃 ∈ LMod)
613qrngbas 27557 . . . . . . . 8 ℚ = (Base‘𝑄)
6255, 58, 46, 60, 61, 34asclf 21819 . . . . . . 7 (⊤ → 𝐾:ℚ⟶(Base‘𝑃))
63 2z 12504 . . . . . . . 8 2 ∈ ℤ
64 zq 12852 . . . . . . . 8 (2 ∈ ℤ → 2 ∈ ℚ)
6563, 64mp1i 13 . . . . . . 7 (⊤ → 2 ∈ ℚ)
6662, 65ffvelcdmd 7018 . . . . . 6 (⊤ → (𝐾‘2) ∈ (Base‘𝑃))
671, 6, 2, 3, 34, 35, 36, 37, 38, 54, 66, 26evls1subd 33535 . . . . 5 (⊤ → (((ℂfld evalSub1 ℚ)‘((3 𝑋) (𝐾‘2)))‘𝐴) = ((((ℂfld evalSub1 ℚ)‘(3 𝑋))‘𝐴) − (((ℂfld evalSub1 ℚ)‘(𝐾‘2))‘𝐴)))
68 eqid 2731 . . . . . . . . . 10 (.g‘(mulGrp‘ℂfld)) = (.g‘(mulGrp‘ℂfld))
691, 6, 2, 3, 34, 37, 38, 41, 68, 50, 53, 26evls1expd 22282 . . . . . . . . 9 (⊤ → (((ℂfld evalSub1 ℚ)‘(3 𝑋))‘𝐴) = (3(.g‘(mulGrp‘ℂfld))(((ℂfld evalSub1 ℚ)‘𝑋)‘𝐴)))
701, 51, 3, 6, 37, 38evls1var 22253 . . . . . . . . . . . 12 (⊤ → ((ℂfld evalSub1 ℚ)‘𝑋) = ( I ↾ ℂ))
7170fveq1d 6824 . . . . . . . . . . 11 (⊤ → (((ℂfld evalSub1 ℚ)‘𝑋)‘𝐴) = (( I ↾ ℂ)‘𝐴))
72 fvresi 7107 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → (( I ↾ ℂ)‘𝐴) = 𝐴)
7325, 72mp1i 13 . . . . . . . . . . 11 (⊤ → (( I ↾ ℂ)‘𝐴) = 𝐴)
7471, 73eqtrd 2766 . . . . . . . . . 10 (⊤ → (((ℂfld evalSub1 ℚ)‘𝑋)‘𝐴) = 𝐴)
7574oveq2d 7362 . . . . . . . . 9 (⊤ → (3(.g‘(mulGrp‘ℂfld))(((ℂfld evalSub1 ℚ)‘𝑋)‘𝐴)) = (3(.g‘(mulGrp‘ℂfld))𝐴))
76 cnfldexp 21341 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 3 ∈ ℕ0) → (3(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴↑3))
7726, 50, 76syl2anc 584 . . . . . . . . 9 (⊤ → (3(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴↑3))
7869, 75, 773eqtrd 2770 . . . . . . . 8 (⊤ → (((ℂfld evalSub1 ℚ)‘(3 𝑋))‘𝐴) = (𝐴↑3))
7918oveq1i 7356 . . . . . . . . 9 (𝐴↑3) = ((2↑𝑐(1 / 3))↑3)
80 3nn 12204 . . . . . . . . . 10 3 ∈ ℕ
81 cxproot 26626 . . . . . . . . . 10 ((2 ∈ ℂ ∧ 3 ∈ ℕ) → ((2↑𝑐(1 / 3))↑3) = 2)
8219, 80, 81mp2an 692 . . . . . . . . 9 ((2↑𝑐(1 / 3))↑3) = 2
8379, 82eqtri 2754 . . . . . . . 8 (𝐴↑3) = 2
8478, 83eqtrdi 2782 . . . . . . 7 (⊤ → (((ℂfld evalSub1 ℚ)‘(3 𝑋))‘𝐴) = 2)
851, 2, 3, 6, 55, 37, 38, 65, 26evls1scafv 22281 . . . . . . 7 (⊤ → (((ℂfld evalSub1 ℚ)‘(𝐾‘2))‘𝐴) = 2)
8684, 85oveq12d 7364 . . . . . 6 (⊤ → ((((ℂfld evalSub1 ℚ)‘(3 𝑋))‘𝐴) − (((ℂfld evalSub1 ℚ)‘(𝐾‘2))‘𝐴)) = (2 − 2))
8719subidi 11432 . . . . . 6 (2 − 2) = 0
8886, 87eqtrdi 2782 . . . . 5 (⊤ → ((((ℂfld evalSub1 ℚ)‘(3 𝑋))‘𝐴) − (((ℂfld evalSub1 ℚ)‘(𝐾‘2))‘𝐴)) = 0)
8933, 67, 883eqtrd 2770 . . . 4 (⊤ → (((ℂfld evalSub1 ℚ)‘𝐹)‘𝐴) = 0)
903qrng0 27559 . . . . 5 0 = (0g𝑄)
91 eqid 2731 . . . . 5 (eval1𝑄) = (eval1𝑄)
92 2sqr3minply.d . . . . 5 𝐷 = (deg1𝑄)
93 fldsdrgfld 20713 . . . . . . . 8 ((ℂfld ∈ Field ∧ ℚ ∈ (SubDRing‘ℂfld)) → (ℂflds ℚ) ∈ Field)
9410, 16, 93mp2an 692 . . . . . . 7 (ℂflds ℚ) ∈ Field
953, 94eqeltri 2827 . . . . . 6 𝑄 ∈ Field
9695a1i 11 . . . . 5 (⊤ → 𝑄 ∈ Field)
9746ringgrpd 20160 . . . . . . 7 (⊤ → 𝑃 ∈ Grp)
9834, 35grpsubcl 18933 . . . . . . 7 ((𝑃 ∈ Grp ∧ (3 𝑋) ∈ (Base‘𝑃) ∧ (𝐾‘2) ∈ (Base‘𝑃)) → ((3 𝑋) (𝐾‘2)) ∈ (Base‘𝑃))
9997, 54, 66, 98syl3anc 1373 . . . . . 6 (⊤ → ((3 𝑋) (𝐾‘2)) ∈ (Base‘𝑃))
10030, 99eqeltrid 2835 . . . . 5 (⊤ → 𝐹 ∈ (Base‘𝑃))
10196fldcrngd 20657 . . . . . . . . 9 (⊤ → 𝑄 ∈ CRing)
10291, 2, 34, 101, 61, 100evl1fvf 33526 . . . . . . . 8 (⊤ → ((eval1𝑄)‘𝐹):ℚ⟶ℚ)
103102ffnd 6652 . . . . . . 7 (⊤ → ((eval1𝑄)‘𝐹) Fn ℚ)
104 fniniseg2 6995 . . . . . . 7 (((eval1𝑄)‘𝐹) Fn ℚ → (((eval1𝑄)‘𝐹) “ {0}) = {𝑥 ∈ ℚ ∣ (((eval1𝑄)‘𝐹)‘𝑥) = 0})
105103, 104syl 17 . . . . . 6 (⊤ → (((eval1𝑄)‘𝐹) “ {0}) = {𝑥 ∈ ℚ ∣ (((eval1𝑄)‘𝐹)‘𝑥) = 0})
106 cnfldmul 21299 . . . . . . . . . . . . . . 15 · = (.r‘ℂfld)
1073, 106ressmulr 17211 . . . . . . . . . . . . . 14 (ℚ ∈ (SubRing‘ℂfld) → · = (.r𝑄))
10813, 107ax-mp 5 . . . . . . . . . . . . 13 · = (.r𝑄)
109 cnfldadd 21297 . . . . . . . . . . . . . . 15 + = (+g‘ℂfld)
1103, 109ressplusg 17195 . . . . . . . . . . . . . 14 (ℚ ∈ (SubRing‘ℂfld) → + = (+g𝑄))
11113, 110ax-mp 5 . . . . . . . . . . . . 13 + = (+g𝑄)
112 eqid 2731 . . . . . . . . . . . . 13 (.g‘(mulGrp‘𝑄)) = (.g‘(mulGrp‘𝑄))
113 eqid 2731 . . . . . . . . . . . . 13 (coe1𝐹) = (coe1𝐹)
11430fveq2i 6825 . . . . . . . . . . . . . . . . . 18 (coe1𝐹) = (coe1‘((3 𝑋) (𝐾‘2)))
115114a1i 11 . . . . . . . . . . . . . . . . 17 (⊤ → (coe1𝐹) = (coe1‘((3 𝑋) (𝐾‘2))))
11630fveq2i 6825 . . . . . . . . . . . . . . . . . . 19 (𝐷𝐹) = (𝐷‘((3 𝑋) (𝐾‘2)))
117116a1i 11 . . . . . . . . . . . . . . . . . 18 (⊤ → (𝐷𝐹) = (𝐷‘((3 𝑋) (𝐾‘2))))
118 3pos 12230 . . . . . . . . . . . . . . . . . . . . 21 0 < 3
119118a1i 11 . . . . . . . . . . . . . . . . . . . 20 (⊤ → 0 < 3)
120 2ne0 12229 . . . . . . . . . . . . . . . . . . . . . 22 2 ≠ 0
121120a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (⊤ → 2 ≠ 0)
12292, 2, 61, 55, 90deg1scl 26045 . . . . . . . . . . . . . . . . . . . . 21 ((𝑄 ∈ Ring ∧ 2 ∈ ℚ ∧ 2 ≠ 0) → (𝐷‘(𝐾‘2)) = 0)
12344, 65, 121, 122syl3anc 1373 . . . . . . . . . . . . . . . . . . . 20 (⊤ → (𝐷‘(𝐾‘2)) = 0)
124 drngnzr 20663 . . . . . . . . . . . . . . . . . . . . . 22 (𝑄 ∈ DivRing → 𝑄 ∈ NzRing)
12542, 124mp1i 13 . . . . . . . . . . . . . . . . . . . . 21 (⊤ → 𝑄 ∈ NzRing)
12692, 2, 51, 39, 41deg1pw 26053 . . . . . . . . . . . . . . . . . . . . 21 ((𝑄 ∈ NzRing ∧ 3 ∈ ℕ0) → (𝐷‘(3 𝑋)) = 3)
127125, 50, 126syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 (⊤ → (𝐷‘(3 𝑋)) = 3)
128119, 123, 1273brtr4d 5121 . . . . . . . . . . . . . . . . . . 19 (⊤ → (𝐷‘(𝐾‘2)) < (𝐷‘(3 𝑋)))
1292, 92, 44, 34, 35, 54, 66, 128deg1sub 26040 . . . . . . . . . . . . . . . . . 18 (⊤ → (𝐷‘((3 𝑋) (𝐾‘2))) = (𝐷‘(3 𝑋)))
130117, 129, 1273eqtrd 2770 . . . . . . . . . . . . . . . . 17 (⊤ → (𝐷𝐹) = 3)
131115, 130fveq12d 6829 . . . . . . . . . . . . . . . 16 (⊤ → ((coe1𝐹)‘(𝐷𝐹)) = ((coe1‘((3 𝑋) (𝐾‘2)))‘3))
132 eqid 2731 . . . . . . . . . . . . . . . . . 18 (-g𝑄) = (-g𝑄)
1332, 34, 35, 132coe1subfv 22180 . . . . . . . . . . . . . . . . 17 (((𝑄 ∈ Ring ∧ (3 𝑋) ∈ (Base‘𝑃) ∧ (𝐾‘2) ∈ (Base‘𝑃)) ∧ 3 ∈ ℕ0) → ((coe1‘((3 𝑋) (𝐾‘2)))‘3) = (((coe1‘(3 𝑋))‘3)(-g𝑄)((coe1‘(𝐾‘2))‘3)))
13444, 54, 66, 50, 133syl31anc 1375 . . . . . . . . . . . . . . . 16 (⊤ → ((coe1‘((3 𝑋) (𝐾‘2)))‘3) = (((coe1‘(3 𝑋))‘3)(-g𝑄)((coe1‘(𝐾‘2))‘3)))
135 subrgsubg 20492 . . . . . . . . . . . . . . . . . . 19 (ℚ ∈ (SubRing‘ℂfld) → ℚ ∈ (SubGrp‘ℂfld))
13613, 135mp1i 13 . . . . . . . . . . . . . . . . . 18 (⊤ → ℚ ∈ (SubGrp‘ℂfld))
137 eqid 2731 . . . . . . . . . . . . . . . . . . . 20 (coe1‘(3 𝑋)) = (coe1‘(3 𝑋))
138137, 34, 2, 61coe1fvalcl 22125 . . . . . . . . . . . . . . . . . . 19 (((3 𝑋) ∈ (Base‘𝑃) ∧ 3 ∈ ℕ0) → ((coe1‘(3 𝑋))‘3) ∈ ℚ)
13954, 50, 138syl2anc 584 . . . . . . . . . . . . . . . . . 18 (⊤ → ((coe1‘(3 𝑋))‘3) ∈ ℚ)
140 eqid 2731 . . . . . . . . . . . . . . . . . . . 20 (coe1‘(𝐾‘2)) = (coe1‘(𝐾‘2))
141140, 34, 2, 61coe1fvalcl 22125 . . . . . . . . . . . . . . . . . . 19 (((𝐾‘2) ∈ (Base‘𝑃) ∧ 3 ∈ ℕ0) → ((coe1‘(𝐾‘2))‘3) ∈ ℚ)
14266, 50, 141syl2anc 584 . . . . . . . . . . . . . . . . . 18 (⊤ → ((coe1‘(𝐾‘2))‘3) ∈ ℚ)
14336, 3, 132subgsub 19051 . . . . . . . . . . . . . . . . . 18 ((ℚ ∈ (SubGrp‘ℂfld) ∧ ((coe1‘(3 𝑋))‘3) ∈ ℚ ∧ ((coe1‘(𝐾‘2))‘3) ∈ ℚ) → (((coe1‘(3 𝑋))‘3) − ((coe1‘(𝐾‘2))‘3)) = (((coe1‘(3 𝑋))‘3)(-g𝑄)((coe1‘(𝐾‘2))‘3)))
144136, 139, 142, 143syl3anc 1373 . . . . . . . . . . . . . . . . 17 (⊤ → (((coe1‘(3 𝑋))‘3) − ((coe1‘(𝐾‘2))‘3)) = (((coe1‘(3 𝑋))‘3)(-g𝑄)((coe1‘(𝐾‘2))‘3)))
145 iftrue 4478 . . . . . . . . . . . . . . . . . . . 20 (𝑖 = 3 → if(𝑖 = 3, 1, 0) = 1)
1463qrng1 27560 . . . . . . . . . . . . . . . . . . . . 21 1 = (1r𝑄)
1472, 51, 41, 44, 50, 90, 146coe1mon 33549 . . . . . . . . . . . . . . . . . . . 20 (⊤ → (coe1‘(3 𝑋)) = (𝑖 ∈ ℕ0 ↦ if(𝑖 = 3, 1, 0)))
148 1cnd 11107 . . . . . . . . . . . . . . . . . . . 20 (⊤ → 1 ∈ ℂ)
149145, 147, 50, 148fvmptd4 6953 . . . . . . . . . . . . . . . . . . 19 (⊤ → ((coe1‘(3 𝑋))‘3) = 1)
15021neii 2930 . . . . . . . . . . . . . . . . . . . . . 22 ¬ 3 = 0
151 eqeq1 2735 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 = 3 → (𝑖 = 0 ↔ 3 = 0))
152150, 151mtbiri 327 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 = 3 → ¬ 𝑖 = 0)
153152iffalsed 4483 . . . . . . . . . . . . . . . . . . . 20 (𝑖 = 3 → if(𝑖 = 0, 2, 0) = 0)
1542, 55, 61, 90coe1scl 22201 . . . . . . . . . . . . . . . . . . . . 21 ((𝑄 ∈ Ring ∧ 2 ∈ ℚ) → (coe1‘(𝐾‘2)) = (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, 2, 0)))
15544, 65, 154syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 (⊤ → (coe1‘(𝐾‘2)) = (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, 2, 0)))
156 0nn0 12396 . . . . . . . . . . . . . . . . . . . . 21 0 ∈ ℕ0
157156a1i 11 . . . . . . . . . . . . . . . . . . . 20 (⊤ → 0 ∈ ℕ0)
158153, 155, 50, 157fvmptd4 6953 . . . . . . . . . . . . . . . . . . 19 (⊤ → ((coe1‘(𝐾‘2))‘3) = 0)
159149, 158oveq12d 7364 . . . . . . . . . . . . . . . . . 18 (⊤ → (((coe1‘(3 𝑋))‘3) − ((coe1‘(𝐾‘2))‘3)) = (1 − 0))
160 1m0e1 12241 . . . . . . . . . . . . . . . . . 18 (1 − 0) = 1
161159, 160eqtrdi 2782 . . . . . . . . . . . . . . . . 17 (⊤ → (((coe1‘(3 𝑋))‘3) − ((coe1‘(𝐾‘2))‘3)) = 1)
162144, 161eqtr3d 2768 . . . . . . . . . . . . . . . 16 (⊤ → (((coe1‘(3 𝑋))‘3)(-g𝑄)((coe1‘(𝐾‘2))‘3)) = 1)
163131, 134, 1623eqtrd 2770 . . . . . . . . . . . . . . 15 (⊤ → ((coe1𝐹)‘(𝐷𝐹)) = 1)
164130fveq2d 6826 . . . . . . . . . . . . . . 15 (⊤ → ((coe1𝐹)‘(𝐷𝐹)) = ((coe1𝐹)‘3))
165163, 164eqtr3d 2768 . . . . . . . . . . . . . 14 (⊤ → 1 = ((coe1𝐹)‘3))
166165mptru 1548 . . . . . . . . . . . . 13 1 = ((coe1𝐹)‘3)
167115fveq1d 6824 . . . . . . . . . . . . . . 15 (⊤ → ((coe1𝐹)‘2) = ((coe1‘((3 𝑋) (𝐾‘2)))‘2))
168 2nn0 12398 . . . . . . . . . . . . . . . . . 18 2 ∈ ℕ0
169168a1i 11 . . . . . . . . . . . . . . . . 17 (⊤ → 2 ∈ ℕ0)
1702, 34, 35, 132coe1subfv 22180 . . . . . . . . . . . . . . . . 17 (((𝑄 ∈ Ring ∧ (3 𝑋) ∈ (Base‘𝑃) ∧ (𝐾‘2) ∈ (Base‘𝑃)) ∧ 2 ∈ ℕ0) → ((coe1‘((3 𝑋) (𝐾‘2)))‘2) = (((coe1‘(3 𝑋))‘2)(-g𝑄)((coe1‘(𝐾‘2))‘2)))
17144, 54, 66, 169, 170syl31anc 1375 . . . . . . . . . . . . . . . 16 (⊤ → ((coe1‘((3 𝑋) (𝐾‘2)))‘2) = (((coe1‘(3 𝑋))‘2)(-g𝑄)((coe1‘(𝐾‘2))‘2)))
172 2re 12199 . . . . . . . . . . . . . . . . . . . . . . 23 2 ∈ ℝ
173 2lt3 12292 . . . . . . . . . . . . . . . . . . . . . . 23 2 < 3
174172, 173ltneii 11226 . . . . . . . . . . . . . . . . . . . . . 22 2 ≠ 3
175 neeq1 2990 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 = 2 → (𝑖 ≠ 3 ↔ 2 ≠ 3))
176174, 175mpbiri 258 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 = 2 → 𝑖 ≠ 3)
177176adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((⊤ ∧ 𝑖 = 2) → 𝑖 ≠ 3)
178177neneqd 2933 . . . . . . . . . . . . . . . . . . 19 ((⊤ ∧ 𝑖 = 2) → ¬ 𝑖 = 3)
179178iffalsed 4483 . . . . . . . . . . . . . . . . . 18 ((⊤ ∧ 𝑖 = 2) → if(𝑖 = 3, 1, 0) = 0)
180147, 179, 169, 157fvmptd 6936 . . . . . . . . . . . . . . . . 17 (⊤ → ((coe1‘(3 𝑋))‘2) = 0)
181 neeq1 2990 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 = 2 → (𝑖 ≠ 0 ↔ 2 ≠ 0))
182120, 181mpbiri 258 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 = 2 → 𝑖 ≠ 0)
183182neneqd 2933 . . . . . . . . . . . . . . . . . . . 20 (𝑖 = 2 → ¬ 𝑖 = 0)
184183adantl 481 . . . . . . . . . . . . . . . . . . 19 ((⊤ ∧ 𝑖 = 2) → ¬ 𝑖 = 0)
185184iffalsed 4483 . . . . . . . . . . . . . . . . . 18 ((⊤ ∧ 𝑖 = 2) → if(𝑖 = 0, 2, 0) = 0)
186155, 185, 169, 157fvmptd 6936 . . . . . . . . . . . . . . . . 17 (⊤ → ((coe1‘(𝐾‘2))‘2) = 0)
187180, 186oveq12d 7364 . . . . . . . . . . . . . . . 16 (⊤ → (((coe1‘(3 𝑋))‘2)(-g𝑄)((coe1‘(𝐾‘2))‘2)) = (0(-g𝑄)0))
188171, 187eqtrd 2766 . . . . . . . . . . . . . . 15 (⊤ → ((coe1‘((3 𝑋) (𝐾‘2)))‘2) = (0(-g𝑄)0))
189158, 142eqeltrrd 2832 . . . . . . . . . . . . . . . . 17 (⊤ → 0 ∈ ℚ)
19036, 3, 132subgsub 19051 . . . . . . . . . . . . . . . . 17 ((ℚ ∈ (SubGrp‘ℂfld) ∧ 0 ∈ ℚ ∧ 0 ∈ ℚ) → (0 − 0) = (0(-g𝑄)0))
191136, 189, 189, 190syl3anc 1373 . . . . . . . . . . . . . . . 16 (⊤ → (0 − 0) = (0(-g𝑄)0))
192 0m0e0 12240 . . . . . . . . . . . . . . . 16 (0 − 0) = 0
193191, 192eqtr3di 2781 . . . . . . . . . . . . . . 15 (⊤ → (0(-g𝑄)0) = 0)
194167, 188, 1933eqtrrd 2771 . . . . . . . . . . . . . 14 (⊤ → 0 = ((coe1𝐹)‘2))
195194mptru 1548 . . . . . . . . . . . . 13 0 = ((coe1𝐹)‘2)
196115fveq1d 6824 . . . . . . . . . . . . . . 15 (⊤ → ((coe1𝐹)‘1) = ((coe1‘((3 𝑋) (𝐾‘2)))‘1))
197 1nn0 12397 . . . . . . . . . . . . . . . . . 18 1 ∈ ℕ0
198197a1i 11 . . . . . . . . . . . . . . . . 17 (⊤ → 1 ∈ ℕ0)
1992, 34, 35, 132coe1subfv 22180 . . . . . . . . . . . . . . . . 17 (((𝑄 ∈ Ring ∧ (3 𝑋) ∈ (Base‘𝑃) ∧ (𝐾‘2) ∈ (Base‘𝑃)) ∧ 1 ∈ ℕ0) → ((coe1‘((3 𝑋) (𝐾‘2)))‘1) = (((coe1‘(3 𝑋))‘1)(-g𝑄)((coe1‘(𝐾‘2))‘1)))
20044, 54, 66, 198, 199syl31anc 1375 . . . . . . . . . . . . . . . 16 (⊤ → ((coe1‘((3 𝑋) (𝐾‘2)))‘1) = (((coe1‘(3 𝑋))‘1)(-g𝑄)((coe1‘(𝐾‘2))‘1)))
201 1re 11112 . . . . . . . . . . . . . . . . . . . . . . 23 1 ∈ ℝ
202 1lt3 12293 . . . . . . . . . . . . . . . . . . . . . . 23 1 < 3
203201, 202ltneii 11226 . . . . . . . . . . . . . . . . . . . . . 22 1 ≠ 3
204 neeq1 2990 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 = 1 → (𝑖 ≠ 3 ↔ 1 ≠ 3))
205203, 204mpbiri 258 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 = 1 → 𝑖 ≠ 3)
206205neneqd 2933 . . . . . . . . . . . . . . . . . . . 20 (𝑖 = 1 → ¬ 𝑖 = 3)
207206adantl 481 . . . . . . . . . . . . . . . . . . 19 ((⊤ ∧ 𝑖 = 1) → ¬ 𝑖 = 3)
208207iffalsed 4483 . . . . . . . . . . . . . . . . . 18 ((⊤ ∧ 𝑖 = 1) → if(𝑖 = 3, 1, 0) = 0)
209147, 208, 198, 157fvmptd 6936 . . . . . . . . . . . . . . . . 17 (⊤ → ((coe1‘(3 𝑋))‘1) = 0)
210 ax-1ne0 11075 . . . . . . . . . . . . . . . . . . . . . 22 1 ≠ 0
211 neeq1 2990 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 = 1 → (𝑖 ≠ 0 ↔ 1 ≠ 0))
212210, 211mpbiri 258 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 = 1 → 𝑖 ≠ 0)
213212neneqd 2933 . . . . . . . . . . . . . . . . . . . 20 (𝑖 = 1 → ¬ 𝑖 = 0)
214213adantl 481 . . . . . . . . . . . . . . . . . . 19 ((⊤ ∧ 𝑖 = 1) → ¬ 𝑖 = 0)
215214iffalsed 4483 . . . . . . . . . . . . . . . . . 18 ((⊤ ∧ 𝑖 = 1) → if(𝑖 = 0, 2, 0) = 0)
216155, 215, 198, 157fvmptd 6936 . . . . . . . . . . . . . . . . 17 (⊤ → ((coe1‘(𝐾‘2))‘1) = 0)
217209, 216oveq12d 7364 . . . . . . . . . . . . . . . 16 (⊤ → (((coe1‘(3 𝑋))‘1)(-g𝑄)((coe1‘(𝐾‘2))‘1)) = (0(-g𝑄)0))
218200, 217eqtrd 2766 . . . . . . . . . . . . . . 15 (⊤ → ((coe1‘((3 𝑋) (𝐾‘2)))‘1) = (0(-g𝑄)0))
219196, 218, 1933eqtrrd 2771 . . . . . . . . . . . . . 14 (⊤ → 0 = ((coe1𝐹)‘1))
220219mptru 1548 . . . . . . . . . . . . 13 0 = ((coe1𝐹)‘1)
221115fveq1d 6824 . . . . . . . . . . . . . . 15 (⊤ → ((coe1𝐹)‘0) = ((coe1‘((3 𝑋) (𝐾‘2)))‘0))
2222, 34, 35, 132coe1subfv 22180 . . . . . . . . . . . . . . . . 17 (((𝑄 ∈ Ring ∧ (3 𝑋) ∈ (Base‘𝑃) ∧ (𝐾‘2) ∈ (Base‘𝑃)) ∧ 0 ∈ ℕ0) → ((coe1‘((3 𝑋) (𝐾‘2)))‘0) = (((coe1‘(3 𝑋))‘0)(-g𝑄)((coe1‘(𝐾‘2))‘0)))
22344, 54, 66, 157, 222syl31anc 1375 . . . . . . . . . . . . . . . 16 (⊤ → ((coe1‘((3 𝑋) (𝐾‘2)))‘0) = (((coe1‘(3 𝑋))‘0)(-g𝑄)((coe1‘(𝐾‘2))‘0)))
22421necomi 2982 . . . . . . . . . . . . . . . . . . . . . 22 0 ≠ 3
225 neeq1 2990 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 = 0 → (𝑖 ≠ 3 ↔ 0 ≠ 3))
226224, 225mpbiri 258 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 = 0 → 𝑖 ≠ 3)
227226neneqd 2933 . . . . . . . . . . . . . . . . . . . 20 (𝑖 = 0 → ¬ 𝑖 = 3)
228227adantl 481 . . . . . . . . . . . . . . . . . . 19 ((⊤ ∧ 𝑖 = 0) → ¬ 𝑖 = 3)
229228iffalsed 4483 . . . . . . . . . . . . . . . . . 18 ((⊤ ∧ 𝑖 = 0) → if(𝑖 = 3, 1, 0) = 0)
230147, 229, 157, 157fvmptd 6936 . . . . . . . . . . . . . . . . 17 (⊤ → ((coe1‘(3 𝑋))‘0) = 0)
231 simpr 484 . . . . . . . . . . . . . . . . . . 19 ((⊤ ∧ 𝑖 = 0) → 𝑖 = 0)
232231iftrued 4480 . . . . . . . . . . . . . . . . . 18 ((⊤ ∧ 𝑖 = 0) → if(𝑖 = 0, 2, 0) = 2)
233155, 232, 157, 169fvmptd 6936 . . . . . . . . . . . . . . . . 17 (⊤ → ((coe1‘(𝐾‘2))‘0) = 2)
234230, 233oveq12d 7364 . . . . . . . . . . . . . . . 16 (⊤ → (((coe1‘(3 𝑋))‘0)(-g𝑄)((coe1‘(𝐾‘2))‘0)) = (0(-g𝑄)2))
235223, 234eqtrd 2766 . . . . . . . . . . . . . . 15 (⊤ → ((coe1‘((3 𝑋) (𝐾‘2)))‘0) = (0(-g𝑄)2))
236 df-neg 11347 . . . . . . . . . . . . . . . 16 -2 = (0 − 2)
23736, 3, 132subgsub 19051 . . . . . . . . . . . . . . . . 17 ((ℚ ∈ (SubGrp‘ℂfld) ∧ 0 ∈ ℚ ∧ 2 ∈ ℚ) → (0 − 2) = (0(-g𝑄)2))
238136, 189, 65, 237syl3anc 1373 . . . . . . . . . . . . . . . 16 (⊤ → (0 − 2) = (0(-g𝑄)2))
239236, 238eqtr2id 2779 . . . . . . . . . . . . . . 15 (⊤ → (0(-g𝑄)2) = -2)
240221, 235, 2393eqtrrd 2771 . . . . . . . . . . . . . 14 (⊤ → -2 = ((coe1𝐹)‘0))
241240mptru 1548 . . . . . . . . . . . . 13 -2 = ((coe1𝐹)‘0)
24295a1i 11 . . . . . . . . . . . . . 14 (𝑥 ∈ ℚ → 𝑄 ∈ Field)
243242fldcrngd 20657 . . . . . . . . . . . . 13 (𝑥 ∈ ℚ → 𝑄 ∈ CRing)
244100mptru 1548 . . . . . . . . . . . . . 14 𝐹 ∈ (Base‘𝑃)
245244a1i 11 . . . . . . . . . . . . 13 (𝑥 ∈ ℚ → 𝐹 ∈ (Base‘𝑃))
246130mptru 1548 . . . . . . . . . . . . . 14 (𝐷𝐹) = 3
247246a1i 11 . . . . . . . . . . . . 13 (𝑥 ∈ ℚ → (𝐷𝐹) = 3)
248 id 22 . . . . . . . . . . . . 13 (𝑥 ∈ ℚ → 𝑥 ∈ ℚ)
2492, 91, 61, 34, 108, 111, 112, 113, 92, 166, 195, 220, 241, 243, 245, 247, 248evl1deg3 33541 . . . . . . . . . . . 12 (𝑥 ∈ ℚ → (((eval1𝑄)‘𝐹)‘𝑥) = (((1 · (3(.g‘(mulGrp‘𝑄))𝑥)) + (0 · (2(.g‘(mulGrp‘𝑄))𝑥))) + ((0 · 𝑥) + -2)))
250 qsscn 12858 . . . . . . . . . . . . . . . . . 18 ℚ ⊆ ℂ
251 eqid 2731 . . . . . . . . . . . . . . . . . . . . . 22 ((mulGrp‘ℂfld) ↾s ℚ) = ((mulGrp‘ℂfld) ↾s ℚ)
252 eqid 2731 . . . . . . . . . . . . . . . . . . . . . . 23 (mulGrp‘ℂfld) = (mulGrp‘ℂfld)
253252, 6mgpbas 20063 . . . . . . . . . . . . . . . . . . . . . 22 ℂ = (Base‘(mulGrp‘ℂfld))
254251, 253ressbas2 17149 . . . . . . . . . . . . . . . . . . . . 21 (ℚ ⊆ ℂ → ℚ = (Base‘((mulGrp‘ℂfld) ↾s ℚ)))
255250, 254ax-mp 5 . . . . . . . . . . . . . . . . . . . 20 ℚ = (Base‘((mulGrp‘ℂfld) ↾s ℚ))
2563, 252mgpress 20068 . . . . . . . . . . . . . . . . . . . . . 22 ((ℂfld ∈ DivRing ∧ ℚ ∈ (SubRing‘ℂfld)) → ((mulGrp‘ℂfld) ↾s ℚ) = (mulGrp‘𝑄))
2577, 13, 256mp2an 692 . . . . . . . . . . . . . . . . . . . . 21 ((mulGrp‘ℂfld) ↾s ℚ) = (mulGrp‘𝑄)
258257fveq2i 6825 . . . . . . . . . . . . . . . . . . . 20 (Base‘((mulGrp‘ℂfld) ↾s ℚ)) = (Base‘(mulGrp‘𝑄))
259255, 258eqtri 2754 . . . . . . . . . . . . . . . . . . 19 ℚ = (Base‘(mulGrp‘𝑄))
260 eqid 2731 . . . . . . . . . . . . . . . . . . . . 21 (mulGrp‘𝑄) = (mulGrp‘𝑄)
261260ringmgp 20157 . . . . . . . . . . . . . . . . . . . 20 (𝑄 ∈ Ring → (mulGrp‘𝑄) ∈ Mnd)
26256, 261mp1i 13 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ℚ → (mulGrp‘𝑄) ∈ Mnd)
26349a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ℚ → 3 ∈ ℕ0)
264259, 112, 262, 263, 248mulgnn0cld 19008 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℚ → (3(.g‘(mulGrp‘𝑄))𝑥) ∈ ℚ)
265250, 264sselid 3927 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℚ → (3(.g‘(mulGrp‘𝑄))𝑥) ∈ ℂ)
266265mullidd 11130 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℚ → (1 · (3(.g‘(mulGrp‘𝑄))𝑥)) = (3(.g‘(mulGrp‘𝑄))𝑥))
267257eqcomi 2740 . . . . . . . . . . . . . . . . 17 (mulGrp‘𝑄) = ((mulGrp‘ℂfld) ↾s ℚ)
268250, 253sseqtri 3978 . . . . . . . . . . . . . . . . . 18 ℚ ⊆ (Base‘(mulGrp‘ℂfld))
269268a1i 11 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℚ → ℚ ⊆ (Base‘(mulGrp‘ℂfld)))
27080a1i 11 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℚ → 3 ∈ ℕ)
271267, 269, 248, 270ressmulgnnd 18991 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℚ → (3(.g‘(mulGrp‘𝑄))𝑥) = (3(.g‘(mulGrp‘ℂfld))𝑥))
272 qcn 12861 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℚ → 𝑥 ∈ ℂ)
273 cnfldexp 21341 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℂ ∧ 3 ∈ ℕ0) → (3(.g‘(mulGrp‘ℂfld))𝑥) = (𝑥↑3))
274272, 263, 273syl2anc 584 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℚ → (3(.g‘(mulGrp‘ℂfld))𝑥) = (𝑥↑3))
275266, 271, 2743eqtrd 2770 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℚ → (1 · (3(.g‘(mulGrp‘𝑄))𝑥)) = (𝑥↑3))
276168a1i 11 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℚ → 2 ∈ ℕ0)
277259, 112, 262, 276, 248mulgnn0cld 19008 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℚ → (2(.g‘(mulGrp‘𝑄))𝑥) ∈ ℚ)
278250, 277sselid 3927 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℚ → (2(.g‘(mulGrp‘𝑄))𝑥) ∈ ℂ)
279278mul02d 11311 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℚ → (0 · (2(.g‘(mulGrp‘𝑄))𝑥)) = 0)
280275, 279oveq12d 7364 . . . . . . . . . . . . . 14 (𝑥 ∈ ℚ → ((1 · (3(.g‘(mulGrp‘𝑄))𝑥)) + (0 · (2(.g‘(mulGrp‘𝑄))𝑥))) = ((𝑥↑3) + 0))
281272, 263expcld 14053 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℚ → (𝑥↑3) ∈ ℂ)
282281addridd 11313 . . . . . . . . . . . . . 14 (𝑥 ∈ ℚ → ((𝑥↑3) + 0) = (𝑥↑3))
283280, 282eqtrd 2766 . . . . . . . . . . . . 13 (𝑥 ∈ ℚ → ((1 · (3(.g‘(mulGrp‘𝑄))𝑥)) + (0 · (2(.g‘(mulGrp‘𝑄))𝑥))) = (𝑥↑3))
284272mul02d 11311 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℚ → (0 · 𝑥) = 0)
285284oveq1d 7361 . . . . . . . . . . . . . 14 (𝑥 ∈ ℚ → ((0 · 𝑥) + -2) = (0 + -2))
28619a1i 11 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℚ → 2 ∈ ℂ)
287286negcld 11459 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℚ → -2 ∈ ℂ)
288287addlidd 11314 . . . . . . . . . . . . . 14 (𝑥 ∈ ℚ → (0 + -2) = -2)
289285, 288eqtrd 2766 . . . . . . . . . . . . 13 (𝑥 ∈ ℚ → ((0 · 𝑥) + -2) = -2)
290283, 289oveq12d 7364 . . . . . . . . . . . 12 (𝑥 ∈ ℚ → (((1 · (3(.g‘(mulGrp‘𝑄))𝑥)) + (0 · (2(.g‘(mulGrp‘𝑄))𝑥))) + ((0 · 𝑥) + -2)) = ((𝑥↑3) + -2))
291281, 286negsubd 11478 . . . . . . . . . . . 12 (𝑥 ∈ ℚ → ((𝑥↑3) + -2) = ((𝑥↑3) − 2))
292249, 290, 2913eqtrd 2770 . . . . . . . . . . 11 (𝑥 ∈ ℚ → (((eval1𝑄)‘𝐹)‘𝑥) = ((𝑥↑3) − 2))
293 2prm 16603 . . . . . . . . . . . . . . 15 2 ∈ ℙ
294 3z 12505 . . . . . . . . . . . . . . . 16 3 ∈ ℤ
295 3re 12205 . . . . . . . . . . . . . . . . 17 3 ∈ ℝ
296172, 295, 173ltleii 11236 . . . . . . . . . . . . . . . 16 2 ≤ 3
29763eluz1i 12740 . . . . . . . . . . . . . . . 16 (3 ∈ (ℤ‘2) ↔ (3 ∈ ℤ ∧ 2 ≤ 3))
298294, 296, 297mpbir2an 711 . . . . . . . . . . . . . . 15 3 ∈ (ℤ‘2)
299 rtprmirr 26697 . . . . . . . . . . . . . . 15 ((2 ∈ ℙ ∧ 3 ∈ (ℤ‘2)) → (2↑𝑐(1 / 3)) ∈ (ℝ ∖ ℚ))
300293, 298, 299mp2an 692 . . . . . . . . . . . . . 14 (2↑𝑐(1 / 3)) ∈ (ℝ ∖ ℚ)
301 eldifn 4079 . . . . . . . . . . . . . 14 ((2↑𝑐(1 / 3)) ∈ (ℝ ∖ ℚ) → ¬ (2↑𝑐(1 / 3)) ∈ ℚ)
302300, 301ax-mp 5 . . . . . . . . . . . . 13 ¬ (2↑𝑐(1 / 3)) ∈ ℚ
303 nelne2 3026 . . . . . . . . . . . . 13 ((𝑥 ∈ ℚ ∧ ¬ (2↑𝑐(1 / 3)) ∈ ℚ) → 𝑥 ≠ (2↑𝑐(1 / 3)))
304302, 303mpan2 691 . . . . . . . . . . . 12 (𝑥 ∈ ℚ → 𝑥 ≠ (2↑𝑐(1 / 3)))
305 qre 12851 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℚ → 𝑥 ∈ ℝ)
306305adantr 480 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℚ ∧ ((𝑥↑3) − 2) = 0) → 𝑥 ∈ ℝ)
307 2pos 12228 . . . . . . . . . . . . . . . . . 18 0 < 2
308281, 286subeq0ad 11482 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ℚ → (((𝑥↑3) − 2) = 0 ↔ (𝑥↑3) = 2))
309308biimpa 476 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℚ ∧ ((𝑥↑3) − 2) = 0) → (𝑥↑3) = 2)
310307, 309breqtrrid 5127 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℚ ∧ ((𝑥↑3) − 2) = 0) → 0 < (𝑥↑3))
31180a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℚ ∧ ((𝑥↑3) − 2) = 0) → 3 ∈ ℕ)
312 n2dvds3 16282 . . . . . . . . . . . . . . . . . . 19 ¬ 2 ∥ 3
313312a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℚ ∧ ((𝑥↑3) − 2) = 0) → ¬ 2 ∥ 3)
314306, 311, 313expgt0b 32799 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℚ ∧ ((𝑥↑3) − 2) = 0) → (0 < 𝑥 ↔ 0 < (𝑥↑3)))
315310, 314mpbird 257 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℚ ∧ ((𝑥↑3) − 2) = 0) → 0 < 𝑥)
316306, 315elrpd 12931 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℚ ∧ ((𝑥↑3) − 2) = 0) → 𝑥 ∈ ℝ+)
317295a1i 11 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℚ ∧ ((𝑥↑3) − 2) = 0) → 3 ∈ ℝ)
31822a1i 11 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℚ ∧ ((𝑥↑3) − 2) = 0) → (1 / 3) ∈ ℂ)
319316, 317, 318cxpmuld 26673 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℚ ∧ ((𝑥↑3) − 2) = 0) → (𝑥𝑐(3 · (1 / 3))) = ((𝑥𝑐3)↑𝑐(1 / 3)))
32020a1i 11 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℚ → 3 ∈ ℂ)
32121a1i 11 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℚ → 3 ≠ 0)
322320, 321recidd 11892 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℚ → (3 · (1 / 3)) = 1)
323322oveq2d 7362 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℚ → (𝑥𝑐(3 · (1 / 3))) = (𝑥𝑐1))
324272cxp1d 26642 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℚ → (𝑥𝑐1) = 𝑥)
325323, 324eqtrd 2766 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℚ → (𝑥𝑐(3 · (1 / 3))) = 𝑥)
326325adantr 480 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℚ ∧ ((𝑥↑3) − 2) = 0) → (𝑥𝑐(3 · (1 / 3))) = 𝑥)
327 cxpexp 26604 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℂ ∧ 3 ∈ ℕ0) → (𝑥𝑐3) = (𝑥↑3))
328272, 263, 327syl2anc 584 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℚ → (𝑥𝑐3) = (𝑥↑3))
329328oveq1d 7361 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℚ → ((𝑥𝑐3)↑𝑐(1 / 3)) = ((𝑥↑3)↑𝑐(1 / 3)))
330329adantr 480 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℚ ∧ ((𝑥↑3) − 2) = 0) → ((𝑥𝑐3)↑𝑐(1 / 3)) = ((𝑥↑3)↑𝑐(1 / 3)))
331319, 326, 3303eqtr3rd 2775 . . . . . . . . . . . . 13 ((𝑥 ∈ ℚ ∧ ((𝑥↑3) − 2) = 0) → ((𝑥↑3)↑𝑐(1 / 3)) = 𝑥)
332309oveq1d 7361 . . . . . . . . . . . . 13 ((𝑥 ∈ ℚ ∧ ((𝑥↑3) − 2) = 0) → ((𝑥↑3)↑𝑐(1 / 3)) = (2↑𝑐(1 / 3)))
333331, 332eqtr3d 2768 . . . . . . . . . . . 12 ((𝑥 ∈ ℚ ∧ ((𝑥↑3) − 2) = 0) → 𝑥 = (2↑𝑐(1 / 3)))
334304, 333mteqand 3019 . . . . . . . . . . 11 (𝑥 ∈ ℚ → ((𝑥↑3) − 2) ≠ 0)
335292, 334eqnetrd 2995 . . . . . . . . . 10 (𝑥 ∈ ℚ → (((eval1𝑄)‘𝐹)‘𝑥) ≠ 0)
336335neneqd 2933 . . . . . . . . 9 (𝑥 ∈ ℚ → ¬ (((eval1𝑄)‘𝐹)‘𝑥) = 0)
337336rgen 3049 . . . . . . . 8 𝑥 ∈ ℚ ¬ (((eval1𝑄)‘𝐹)‘𝑥) = 0
338337a1i 11 . . . . . . 7 (⊤ → ∀𝑥 ∈ ℚ ¬ (((eval1𝑄)‘𝐹)‘𝑥) = 0)
339 rabeq0 4335 . . . . . . 7 ({𝑥 ∈ ℚ ∣ (((eval1𝑄)‘𝐹)‘𝑥) = 0} = ∅ ↔ ∀𝑥 ∈ ℚ ¬ (((eval1𝑄)‘𝐹)‘𝑥) = 0)
340338, 339sylibr 234 . . . . . 6 (⊤ → {𝑥 ∈ ℚ ∣ (((eval1𝑄)‘𝐹)‘𝑥) = 0} = ∅)
341105, 340eqtrd 2766 . . . . 5 (⊤ → (((eval1𝑄)‘𝐹) “ {0}) = ∅)
34290, 91, 92, 2, 34, 96, 100, 341, 130ply1dg3rt0irred 33546 . . . 4 (⊤ → 𝐹 ∈ (Irred‘𝑃))
343 eqid 2731 . . . . . . 7 (Irred‘𝑃) = (Irred‘𝑃)
344343, 29irredn0 20341 . . . . . 6 ((𝑃 ∈ Ring ∧ 𝐹 ∈ (Irred‘𝑃)) → 𝐹 ≠ (0g𝑃))
34546, 342, 344syl2anc 584 . . . . 5 (⊤ → 𝐹 ≠ (0g𝑃))
3463fveq2i 6825 . . . . . . 7 (deg1𝑄) = (deg1‘(ℂflds ℚ))
34792, 346eqtri 2754 . . . . . 6 𝐷 = (deg1‘(ℂflds ℚ))
348 eqid 2731 . . . . . 6 (Monic1p‘(ℂflds ℚ)) = (Monic1p‘(ℂflds ℚ))
349 eqid 2731 . . . . . . 7 (ℂflds ℚ) = (ℂflds ℚ)
350349qrng1 27560 . . . . . 6 1 = (1r‘(ℂflds ℚ))
3515, 34, 29, 347, 348, 350ismon1p 26075 . . . . 5 (𝐹 ∈ (Monic1p‘(ℂflds ℚ)) ↔ (𝐹 ∈ (Base‘𝑃) ∧ 𝐹 ≠ (0g𝑃) ∧ ((coe1𝐹)‘(𝐷𝐹)) = 1))
352100, 345, 163, 351syl3anbrc 1344 . . . 4 (⊤ → 𝐹 ∈ (Monic1p‘(ℂflds ℚ)))
3531, 5, 6, 11, 17, 26, 27, 28, 29, 89, 342, 352irredminply 33729 . . 3 (⊤ → 𝐹 = (𝑀𝐴))
354353, 130jca 511 . 2 (⊤ → (𝐹 = (𝑀𝐴) ∧ (𝐷𝐹) = 3))
355354mptru 1548 1 (𝐹 = (𝑀𝐴) ∧ (𝐷𝐹) = 3)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395   = wceq 1541  wtru 1542  wcel 2111  wne 2928  wral 3047  {crab 3395  cdif 3894  wss 3897  c0 4280  ifcif 4472  {csn 4573   class class class wbr 5089  cmpt 5170   I cid 5508  ccnv 5613  cres 5616  cima 5617   Fn wfn 6476  cfv 6481  (class class class)co 7346  cc 11004  cr 11005  0cc0 11006  1c1 11007   + caddc 11009   · cmul 11011   < clt 11146  cle 11147  cmin 11344  -cneg 11345   / cdiv 11774  cn 12125  2c2 12180  3c3 12181  0cn0 12381  cz 12468  cuz 12732  cq 12846  cexp 13968  cdvds 16163  cprime 16582  Basecbs 17120  s cress 17141  +gcplusg 17161  .rcmulr 17162  Scalarcsca 17164  0gc0g 17343  Mndcmnd 18642  Grpcgrp 18846  -gcsg 18848  .gcmg 18980  SubGrpcsubg 19033  mulGrpcmgp 20058  Ringcrg 20151  CRingccrg 20152  Irredcir 20274  NzRingcnzr 20427  SubRingcsubrg 20484  DivRingcdr 20644  Fieldcfield 20645  SubDRingcsdrg 20701  LModclmod 20793  fldccnfld 21291  algSccascl 21789  var1cv1 22088  Poly1cpl1 22089  coe1cco1 22090   evalSub1 ces1 22228  eval1ce1 22229  deg1cdg1 25986  Monic1pcmn1 26058  𝑐ccxp 26491   minPoly cminply 33712
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-inf2 9531  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084  ax-addf 11085  ax-mulf 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-ofr 7611  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-tpos 8156  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-pm 8753  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-fi 9295  df-sup 9326  df-inf 9327  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-q 12847  df-rp 12891  df-xneg 13011  df-xadd 13012  df-xmul 13013  df-ioo 13249  df-ioc 13250  df-ico 13251  df-icc 13252  df-fz 13408  df-fzo 13555  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969  df-fac 14181  df-bc 14210  df-hash 14238  df-shft 14974  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-limsup 15378  df-clim 15395  df-rlim 15396  df-sum 15594  df-ef 15974  df-sin 15976  df-cos 15977  df-pi 15979  df-dvds 16164  df-gcd 16406  df-prm 16583  df-numer 16646  df-denom 16647  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-pt 17348  df-prds 17351  df-pws 17353  df-xrs 17406  df-qtop 17411  df-imas 17412  df-xps 17414  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-mhm 18691  df-submnd 18692  df-grp 18849  df-minusg 18850  df-sbg 18851  df-mulg 18981  df-subg 19036  df-ghm 19125  df-cntz 19229  df-cmn 19694  df-abl 19695  df-mgp 20059  df-rng 20071  df-ur 20100  df-srg 20105  df-ring 20153  df-cring 20154  df-oppr 20255  df-dvdsr 20275  df-unit 20276  df-irred 20277  df-invr 20306  df-dvr 20319  df-rhm 20390  df-nzr 20428  df-subrng 20461  df-subrg 20485  df-rlreg 20609  df-domn 20610  df-idom 20611  df-drng 20646  df-field 20647  df-sdrg 20702  df-lmod 20795  df-lss 20865  df-lsp 20905  df-sra 21107  df-rgmod 21108  df-lidl 21145  df-rsp 21146  df-psmet 21283  df-xmet 21284  df-met 21285  df-bl 21286  df-mopn 21287  df-fbas 21288  df-fg 21289  df-cnfld 21292  df-assa 21790  df-asp 21791  df-ascl 21792  df-psr 21846  df-mvr 21847  df-mpl 21848  df-opsr 21850  df-evls 22009  df-evl 22010  df-psr1 22092  df-vr1 22093  df-ply1 22094  df-coe1 22095  df-evls1 22230  df-evl1 22231  df-top 22809  df-topon 22826  df-topsp 22848  df-bases 22861  df-cld 22934  df-ntr 22935  df-cls 22936  df-nei 23013  df-lp 23051  df-perf 23052  df-cn 23142  df-cnp 23143  df-haus 23230  df-tx 23477  df-hmeo 23670  df-fil 23761  df-fm 23853  df-flim 23854  df-flf 23855  df-xms 24235  df-ms 24236  df-tms 24237  df-cncf 24798  df-limc 25794  df-dv 25795  df-mdeg 25987  df-deg1 25988  df-mon1 26063  df-uc1p 26064  df-q1p 26065  df-r1p 26066  df-ig1p 26067  df-log 26492  df-cxp 26493  df-irng 33697  df-minply 33713
This theorem is referenced by:  2sqr3nconstr  33794
  Copyright terms: Public domain W3C validator