Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2sqr3minply Structured version   Visualization version   GIF version

Theorem 2sqr3minply 33777
Description: The polynomial ((𝑋↑3) − 2) is the minimal polynomial for (2↑𝑐(1 / 3)) over , and its degree is 3. (Contributed by Thierry Arnoux, 14-Jun-2025.)
Hypotheses
Ref Expression
2sqr3minply.q 𝑄 = (ℂflds ℚ)
2sqr3minply.1 = (-g𝑃)
2sqr3minply.2 = (.g‘(mulGrp‘𝑃))
2sqr3minply.p 𝑃 = (Poly1𝑄)
2sqr3minply.k 𝐾 = (algSc‘𝑃)
2sqr3minply.x 𝑋 = (var1𝑄)
2sqr3minply.d 𝐷 = (deg1𝑄)
2sqr3minply.f 𝐹 = ((3 𝑋) (𝐾‘2))
2sqr3minply.a 𝐴 = (2↑𝑐(1 / 3))
2sqr3minply.m 𝑀 = (ℂfld minPoly ℚ)
Assertion
Ref Expression
2sqr3minply (𝐹 = (𝑀𝐴) ∧ (𝐷𝐹) = 3)

Proof of Theorem 2sqr3minply
Dummy variables 𝑖 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2730 . . . 4 (ℂfld evalSub1 ℚ) = (ℂfld evalSub1 ℚ)
2 2sqr3minply.p . . . . 5 𝑃 = (Poly1𝑄)
3 2sqr3minply.q . . . . . 6 𝑄 = (ℂflds ℚ)
43fveq2i 6864 . . . . 5 (Poly1𝑄) = (Poly1‘(ℂflds ℚ))
52, 4eqtri 2753 . . . 4 𝑃 = (Poly1‘(ℂflds ℚ))
6 cnfldbas 21275 . . . 4 ℂ = (Base‘ℂfld)
7 cndrng 21317 . . . . . 6 fld ∈ DivRing
8 cncrng 21307 . . . . . 6 fld ∈ CRing
9 isfld 20656 . . . . . 6 (ℂfld ∈ Field ↔ (ℂfld ∈ DivRing ∧ ℂfld ∈ CRing))
107, 8, 9mpbir2an 711 . . . . 5 fld ∈ Field
1110a1i 11 . . . 4 (⊤ → ℂfld ∈ Field)
12 qsubdrg 21343 . . . . . . 7 (ℚ ∈ (SubRing‘ℂfld) ∧ (ℂflds ℚ) ∈ DivRing)
1312simpli 483 . . . . . 6 ℚ ∈ (SubRing‘ℂfld)
1412simpri 485 . . . . . 6 (ℂflds ℚ) ∈ DivRing
15 issdrg 20704 . . . . . 6 (ℚ ∈ (SubDRing‘ℂfld) ↔ (ℂfld ∈ DivRing ∧ ℚ ∈ (SubRing‘ℂfld) ∧ (ℂflds ℚ) ∈ DivRing))
167, 13, 14, 15mpbir3an 1342 . . . . 5 ℚ ∈ (SubDRing‘ℂfld)
1716a1i 11 . . . 4 (⊤ → ℚ ∈ (SubDRing‘ℂfld))
18 2sqr3minply.a . . . . . 6 𝐴 = (2↑𝑐(1 / 3))
19 2cn 12268 . . . . . . 7 2 ∈ ℂ
20 3cn 12274 . . . . . . . 8 3 ∈ ℂ
21 3ne0 12299 . . . . . . . 8 3 ≠ 0
2220, 21reccli 11919 . . . . . . 7 (1 / 3) ∈ ℂ
23 cxpcl 26590 . . . . . . 7 ((2 ∈ ℂ ∧ (1 / 3) ∈ ℂ) → (2↑𝑐(1 / 3)) ∈ ℂ)
2419, 22, 23mp2an 692 . . . . . 6 (2↑𝑐(1 / 3)) ∈ ℂ
2518, 24eqeltri 2825 . . . . 5 𝐴 ∈ ℂ
2625a1i 11 . . . 4 (⊤ → 𝐴 ∈ ℂ)
27 cnfld0 21311 . . . 4 0 = (0g‘ℂfld)
28 2sqr3minply.m . . . 4 𝑀 = (ℂfld minPoly ℚ)
29 eqid 2730 . . . 4 (0g𝑃) = (0g𝑃)
30 2sqr3minply.f . . . . . . . 8 𝐹 = ((3 𝑋) (𝐾‘2))
3130fveq2i 6864 . . . . . . 7 ((ℂfld evalSub1 ℚ)‘𝐹) = ((ℂfld evalSub1 ℚ)‘((3 𝑋) (𝐾‘2)))
3231fveq1i 6862 . . . . . 6 (((ℂfld evalSub1 ℚ)‘𝐹)‘𝐴) = (((ℂfld evalSub1 ℚ)‘((3 𝑋) (𝐾‘2)))‘𝐴)
3332a1i 11 . . . . 5 (⊤ → (((ℂfld evalSub1 ℚ)‘𝐹)‘𝐴) = (((ℂfld evalSub1 ℚ)‘((3 𝑋) (𝐾‘2)))‘𝐴))
34 eqid 2730 . . . . . 6 (Base‘𝑃) = (Base‘𝑃)
35 2sqr3minply.1 . . . . . 6 = (-g𝑃)
36 cnfldsub 21316 . . . . . 6 − = (-g‘ℂfld)
378a1i 11 . . . . . 6 (⊤ → ℂfld ∈ CRing)
3813a1i 11 . . . . . 6 (⊤ → ℚ ∈ (SubRing‘ℂfld))
39 eqid 2730 . . . . . . . 8 (mulGrp‘𝑃) = (mulGrp‘𝑃)
4039, 34mgpbas 20061 . . . . . . 7 (Base‘𝑃) = (Base‘(mulGrp‘𝑃))
41 2sqr3minply.2 . . . . . . 7 = (.g‘(mulGrp‘𝑃))
423qdrng 27538 . . . . . . . . . . 11 𝑄 ∈ DivRing
4342a1i 11 . . . . . . . . . 10 (⊤ → 𝑄 ∈ DivRing)
4443drngringd 20653 . . . . . . . . 9 (⊤ → 𝑄 ∈ Ring)
452ply1ring 22139 . . . . . . . . 9 (𝑄 ∈ Ring → 𝑃 ∈ Ring)
4644, 45syl 17 . . . . . . . 8 (⊤ → 𝑃 ∈ Ring)
4739ringmgp 20155 . . . . . . . 8 (𝑃 ∈ Ring → (mulGrp‘𝑃) ∈ Mnd)
4846, 47syl 17 . . . . . . 7 (⊤ → (mulGrp‘𝑃) ∈ Mnd)
49 3nn0 12467 . . . . . . . 8 3 ∈ ℕ0
5049a1i 11 . . . . . . 7 (⊤ → 3 ∈ ℕ0)
51 2sqr3minply.x . . . . . . . . 9 𝑋 = (var1𝑄)
5251, 2, 34vr1cl 22109 . . . . . . . 8 (𝑄 ∈ Ring → 𝑋 ∈ (Base‘𝑃))
5344, 52syl 17 . . . . . . 7 (⊤ → 𝑋 ∈ (Base‘𝑃))
5440, 41, 48, 50, 53mulgnn0cld 19034 . . . . . 6 (⊤ → (3 𝑋) ∈ (Base‘𝑃))
55 2sqr3minply.k . . . . . . . 8 𝐾 = (algSc‘𝑃)
5644mptru 1547 . . . . . . . . 9 𝑄 ∈ Ring
572ply1sca 22144 . . . . . . . . 9 (𝑄 ∈ Ring → 𝑄 = (Scalar‘𝑃))
5856, 57ax-mp 5 . . . . . . . 8 𝑄 = (Scalar‘𝑃)
592ply1lmod 22143 . . . . . . . . 9 (𝑄 ∈ Ring → 𝑃 ∈ LMod)
6044, 59syl 17 . . . . . . . 8 (⊤ → 𝑃 ∈ LMod)
613qrngbas 27537 . . . . . . . 8 ℚ = (Base‘𝑄)
6255, 58, 46, 60, 61, 34asclf 21798 . . . . . . 7 (⊤ → 𝐾:ℚ⟶(Base‘𝑃))
63 2z 12572 . . . . . . . 8 2 ∈ ℤ
64 zq 12920 . . . . . . . 8 (2 ∈ ℤ → 2 ∈ ℚ)
6563, 64mp1i 13 . . . . . . 7 (⊤ → 2 ∈ ℚ)
6662, 65ffvelcdmd 7060 . . . . . 6 (⊤ → (𝐾‘2) ∈ (Base‘𝑃))
671, 6, 2, 3, 34, 35, 36, 37, 38, 54, 66, 26evls1subd 33548 . . . . 5 (⊤ → (((ℂfld evalSub1 ℚ)‘((3 𝑋) (𝐾‘2)))‘𝐴) = ((((ℂfld evalSub1 ℚ)‘(3 𝑋))‘𝐴) − (((ℂfld evalSub1 ℚ)‘(𝐾‘2))‘𝐴)))
68 eqid 2730 . . . . . . . . . 10 (.g‘(mulGrp‘ℂfld)) = (.g‘(mulGrp‘ℂfld))
691, 6, 2, 3, 34, 37, 38, 41, 68, 50, 53, 26evls1expd 22261 . . . . . . . . 9 (⊤ → (((ℂfld evalSub1 ℚ)‘(3 𝑋))‘𝐴) = (3(.g‘(mulGrp‘ℂfld))(((ℂfld evalSub1 ℚ)‘𝑋)‘𝐴)))
701, 51, 3, 6, 37, 38evls1var 22232 . . . . . . . . . . . 12 (⊤ → ((ℂfld evalSub1 ℚ)‘𝑋) = ( I ↾ ℂ))
7170fveq1d 6863 . . . . . . . . . . 11 (⊤ → (((ℂfld evalSub1 ℚ)‘𝑋)‘𝐴) = (( I ↾ ℂ)‘𝐴))
72 fvresi 7150 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → (( I ↾ ℂ)‘𝐴) = 𝐴)
7325, 72mp1i 13 . . . . . . . . . . 11 (⊤ → (( I ↾ ℂ)‘𝐴) = 𝐴)
7471, 73eqtrd 2765 . . . . . . . . . 10 (⊤ → (((ℂfld evalSub1 ℚ)‘𝑋)‘𝐴) = 𝐴)
7574oveq2d 7406 . . . . . . . . 9 (⊤ → (3(.g‘(mulGrp‘ℂfld))(((ℂfld evalSub1 ℚ)‘𝑋)‘𝐴)) = (3(.g‘(mulGrp‘ℂfld))𝐴))
76 cnfldexp 21323 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 3 ∈ ℕ0) → (3(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴↑3))
7726, 50, 76syl2anc 584 . . . . . . . . 9 (⊤ → (3(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴↑3))
7869, 75, 773eqtrd 2769 . . . . . . . 8 (⊤ → (((ℂfld evalSub1 ℚ)‘(3 𝑋))‘𝐴) = (𝐴↑3))
7918oveq1i 7400 . . . . . . . . 9 (𝐴↑3) = ((2↑𝑐(1 / 3))↑3)
80 3nn 12272 . . . . . . . . . 10 3 ∈ ℕ
81 cxproot 26606 . . . . . . . . . 10 ((2 ∈ ℂ ∧ 3 ∈ ℕ) → ((2↑𝑐(1 / 3))↑3) = 2)
8219, 80, 81mp2an 692 . . . . . . . . 9 ((2↑𝑐(1 / 3))↑3) = 2
8379, 82eqtri 2753 . . . . . . . 8 (𝐴↑3) = 2
8478, 83eqtrdi 2781 . . . . . . 7 (⊤ → (((ℂfld evalSub1 ℚ)‘(3 𝑋))‘𝐴) = 2)
851, 2, 3, 6, 55, 37, 38, 65, 26evls1scafv 22260 . . . . . . 7 (⊤ → (((ℂfld evalSub1 ℚ)‘(𝐾‘2))‘𝐴) = 2)
8684, 85oveq12d 7408 . . . . . 6 (⊤ → ((((ℂfld evalSub1 ℚ)‘(3 𝑋))‘𝐴) − (((ℂfld evalSub1 ℚ)‘(𝐾‘2))‘𝐴)) = (2 − 2))
8719subidi 11500 . . . . . 6 (2 − 2) = 0
8886, 87eqtrdi 2781 . . . . 5 (⊤ → ((((ℂfld evalSub1 ℚ)‘(3 𝑋))‘𝐴) − (((ℂfld evalSub1 ℚ)‘(𝐾‘2))‘𝐴)) = 0)
8933, 67, 883eqtrd 2769 . . . 4 (⊤ → (((ℂfld evalSub1 ℚ)‘𝐹)‘𝐴) = 0)
903qrng0 27539 . . . . 5 0 = (0g𝑄)
91 eqid 2730 . . . . 5 (eval1𝑄) = (eval1𝑄)
92 2sqr3minply.d . . . . 5 𝐷 = (deg1𝑄)
93 fldsdrgfld 20714 . . . . . . . 8 ((ℂfld ∈ Field ∧ ℚ ∈ (SubDRing‘ℂfld)) → (ℂflds ℚ) ∈ Field)
9410, 16, 93mp2an 692 . . . . . . 7 (ℂflds ℚ) ∈ Field
953, 94eqeltri 2825 . . . . . 6 𝑄 ∈ Field
9695a1i 11 . . . . 5 (⊤ → 𝑄 ∈ Field)
9746ringgrpd 20158 . . . . . . 7 (⊤ → 𝑃 ∈ Grp)
9834, 35grpsubcl 18959 . . . . . . 7 ((𝑃 ∈ Grp ∧ (3 𝑋) ∈ (Base‘𝑃) ∧ (𝐾‘2) ∈ (Base‘𝑃)) → ((3 𝑋) (𝐾‘2)) ∈ (Base‘𝑃))
9997, 54, 66, 98syl3anc 1373 . . . . . 6 (⊤ → ((3 𝑋) (𝐾‘2)) ∈ (Base‘𝑃))
10030, 99eqeltrid 2833 . . . . 5 (⊤ → 𝐹 ∈ (Base‘𝑃))
10196fldcrngd 20658 . . . . . . . . 9 (⊤ → 𝑄 ∈ CRing)
10291, 2, 34, 101, 61, 100evl1fvf 33539 . . . . . . . 8 (⊤ → ((eval1𝑄)‘𝐹):ℚ⟶ℚ)
103102ffnd 6692 . . . . . . 7 (⊤ → ((eval1𝑄)‘𝐹) Fn ℚ)
104 fniniseg2 7037 . . . . . . 7 (((eval1𝑄)‘𝐹) Fn ℚ → (((eval1𝑄)‘𝐹) “ {0}) = {𝑥 ∈ ℚ ∣ (((eval1𝑄)‘𝐹)‘𝑥) = 0})
105103, 104syl 17 . . . . . 6 (⊤ → (((eval1𝑄)‘𝐹) “ {0}) = {𝑥 ∈ ℚ ∣ (((eval1𝑄)‘𝐹)‘𝑥) = 0})
106 cnfldmul 21279 . . . . . . . . . . . . . . 15 · = (.r‘ℂfld)
1073, 106ressmulr 17277 . . . . . . . . . . . . . 14 (ℚ ∈ (SubRing‘ℂfld) → · = (.r𝑄))
10813, 107ax-mp 5 . . . . . . . . . . . . 13 · = (.r𝑄)
109 cnfldadd 21277 . . . . . . . . . . . . . . 15 + = (+g‘ℂfld)
1103, 109ressplusg 17261 . . . . . . . . . . . . . 14 (ℚ ∈ (SubRing‘ℂfld) → + = (+g𝑄))
11113, 110ax-mp 5 . . . . . . . . . . . . 13 + = (+g𝑄)
112 eqid 2730 . . . . . . . . . . . . 13 (.g‘(mulGrp‘𝑄)) = (.g‘(mulGrp‘𝑄))
113 eqid 2730 . . . . . . . . . . . . 13 (coe1𝐹) = (coe1𝐹)
11430fveq2i 6864 . . . . . . . . . . . . . . . . . 18 (coe1𝐹) = (coe1‘((3 𝑋) (𝐾‘2)))
115114a1i 11 . . . . . . . . . . . . . . . . 17 (⊤ → (coe1𝐹) = (coe1‘((3 𝑋) (𝐾‘2))))
11630fveq2i 6864 . . . . . . . . . . . . . . . . . . 19 (𝐷𝐹) = (𝐷‘((3 𝑋) (𝐾‘2)))
117116a1i 11 . . . . . . . . . . . . . . . . . 18 (⊤ → (𝐷𝐹) = (𝐷‘((3 𝑋) (𝐾‘2))))
118 3pos 12298 . . . . . . . . . . . . . . . . . . . . 21 0 < 3
119118a1i 11 . . . . . . . . . . . . . . . . . . . 20 (⊤ → 0 < 3)
120 2ne0 12297 . . . . . . . . . . . . . . . . . . . . . 22 2 ≠ 0
121120a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (⊤ → 2 ≠ 0)
12292, 2, 61, 55, 90deg1scl 26025 . . . . . . . . . . . . . . . . . . . . 21 ((𝑄 ∈ Ring ∧ 2 ∈ ℚ ∧ 2 ≠ 0) → (𝐷‘(𝐾‘2)) = 0)
12344, 65, 121, 122syl3anc 1373 . . . . . . . . . . . . . . . . . . . 20 (⊤ → (𝐷‘(𝐾‘2)) = 0)
124 drngnzr 20664 . . . . . . . . . . . . . . . . . . . . . 22 (𝑄 ∈ DivRing → 𝑄 ∈ NzRing)
12542, 124mp1i 13 . . . . . . . . . . . . . . . . . . . . 21 (⊤ → 𝑄 ∈ NzRing)
12692, 2, 51, 39, 41deg1pw 26033 . . . . . . . . . . . . . . . . . . . . 21 ((𝑄 ∈ NzRing ∧ 3 ∈ ℕ0) → (𝐷‘(3 𝑋)) = 3)
127125, 50, 126syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 (⊤ → (𝐷‘(3 𝑋)) = 3)
128119, 123, 1273brtr4d 5142 . . . . . . . . . . . . . . . . . . 19 (⊤ → (𝐷‘(𝐾‘2)) < (𝐷‘(3 𝑋)))
1292, 92, 44, 34, 35, 54, 66, 128deg1sub 26020 . . . . . . . . . . . . . . . . . 18 (⊤ → (𝐷‘((3 𝑋) (𝐾‘2))) = (𝐷‘(3 𝑋)))
130117, 129, 1273eqtrd 2769 . . . . . . . . . . . . . . . . 17 (⊤ → (𝐷𝐹) = 3)
131115, 130fveq12d 6868 . . . . . . . . . . . . . . . 16 (⊤ → ((coe1𝐹)‘(𝐷𝐹)) = ((coe1‘((3 𝑋) (𝐾‘2)))‘3))
132 eqid 2730 . . . . . . . . . . . . . . . . . 18 (-g𝑄) = (-g𝑄)
1332, 34, 35, 132coe1subfv 22159 . . . . . . . . . . . . . . . . 17 (((𝑄 ∈ Ring ∧ (3 𝑋) ∈ (Base‘𝑃) ∧ (𝐾‘2) ∈ (Base‘𝑃)) ∧ 3 ∈ ℕ0) → ((coe1‘((3 𝑋) (𝐾‘2)))‘3) = (((coe1‘(3 𝑋))‘3)(-g𝑄)((coe1‘(𝐾‘2))‘3)))
13444, 54, 66, 50, 133syl31anc 1375 . . . . . . . . . . . . . . . 16 (⊤ → ((coe1‘((3 𝑋) (𝐾‘2)))‘3) = (((coe1‘(3 𝑋))‘3)(-g𝑄)((coe1‘(𝐾‘2))‘3)))
135 subrgsubg 20493 . . . . . . . . . . . . . . . . . . 19 (ℚ ∈ (SubRing‘ℂfld) → ℚ ∈ (SubGrp‘ℂfld))
13613, 135mp1i 13 . . . . . . . . . . . . . . . . . 18 (⊤ → ℚ ∈ (SubGrp‘ℂfld))
137 eqid 2730 . . . . . . . . . . . . . . . . . . . 20 (coe1‘(3 𝑋)) = (coe1‘(3 𝑋))
138137, 34, 2, 61coe1fvalcl 22104 . . . . . . . . . . . . . . . . . . 19 (((3 𝑋) ∈ (Base‘𝑃) ∧ 3 ∈ ℕ0) → ((coe1‘(3 𝑋))‘3) ∈ ℚ)
13954, 50, 138syl2anc 584 . . . . . . . . . . . . . . . . . 18 (⊤ → ((coe1‘(3 𝑋))‘3) ∈ ℚ)
140 eqid 2730 . . . . . . . . . . . . . . . . . . . 20 (coe1‘(𝐾‘2)) = (coe1‘(𝐾‘2))
141140, 34, 2, 61coe1fvalcl 22104 . . . . . . . . . . . . . . . . . . 19 (((𝐾‘2) ∈ (Base‘𝑃) ∧ 3 ∈ ℕ0) → ((coe1‘(𝐾‘2))‘3) ∈ ℚ)
14266, 50, 141syl2anc 584 . . . . . . . . . . . . . . . . . 18 (⊤ → ((coe1‘(𝐾‘2))‘3) ∈ ℚ)
14336, 3, 132subgsub 19077 . . . . . . . . . . . . . . . . . 18 ((ℚ ∈ (SubGrp‘ℂfld) ∧ ((coe1‘(3 𝑋))‘3) ∈ ℚ ∧ ((coe1‘(𝐾‘2))‘3) ∈ ℚ) → (((coe1‘(3 𝑋))‘3) − ((coe1‘(𝐾‘2))‘3)) = (((coe1‘(3 𝑋))‘3)(-g𝑄)((coe1‘(𝐾‘2))‘3)))
144136, 139, 142, 143syl3anc 1373 . . . . . . . . . . . . . . . . 17 (⊤ → (((coe1‘(3 𝑋))‘3) − ((coe1‘(𝐾‘2))‘3)) = (((coe1‘(3 𝑋))‘3)(-g𝑄)((coe1‘(𝐾‘2))‘3)))
145 iftrue 4497 . . . . . . . . . . . . . . . . . . . 20 (𝑖 = 3 → if(𝑖 = 3, 1, 0) = 1)
1463qrng1 27540 . . . . . . . . . . . . . . . . . . . . 21 1 = (1r𝑄)
1472, 51, 41, 44, 50, 90, 146coe1mon 33561 . . . . . . . . . . . . . . . . . . . 20 (⊤ → (coe1‘(3 𝑋)) = (𝑖 ∈ ℕ0 ↦ if(𝑖 = 3, 1, 0)))
148 1cnd 11176 . . . . . . . . . . . . . . . . . . . 20 (⊤ → 1 ∈ ℂ)
149145, 147, 50, 148fvmptd4 6995 . . . . . . . . . . . . . . . . . . 19 (⊤ → ((coe1‘(3 𝑋))‘3) = 1)
15021neii 2928 . . . . . . . . . . . . . . . . . . . . . 22 ¬ 3 = 0
151 eqeq1 2734 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 = 3 → (𝑖 = 0 ↔ 3 = 0))
152150, 151mtbiri 327 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 = 3 → ¬ 𝑖 = 0)
153152iffalsed 4502 . . . . . . . . . . . . . . . . . . . 20 (𝑖 = 3 → if(𝑖 = 0, 2, 0) = 0)
1542, 55, 61, 90coe1scl 22180 . . . . . . . . . . . . . . . . . . . . 21 ((𝑄 ∈ Ring ∧ 2 ∈ ℚ) → (coe1‘(𝐾‘2)) = (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, 2, 0)))
15544, 65, 154syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 (⊤ → (coe1‘(𝐾‘2)) = (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, 2, 0)))
156 0nn0 12464 . . . . . . . . . . . . . . . . . . . . 21 0 ∈ ℕ0
157156a1i 11 . . . . . . . . . . . . . . . . . . . 20 (⊤ → 0 ∈ ℕ0)
158153, 155, 50, 157fvmptd4 6995 . . . . . . . . . . . . . . . . . . 19 (⊤ → ((coe1‘(𝐾‘2))‘3) = 0)
159149, 158oveq12d 7408 . . . . . . . . . . . . . . . . . 18 (⊤ → (((coe1‘(3 𝑋))‘3) − ((coe1‘(𝐾‘2))‘3)) = (1 − 0))
160 1m0e1 12309 . . . . . . . . . . . . . . . . . 18 (1 − 0) = 1
161159, 160eqtrdi 2781 . . . . . . . . . . . . . . . . 17 (⊤ → (((coe1‘(3 𝑋))‘3) − ((coe1‘(𝐾‘2))‘3)) = 1)
162144, 161eqtr3d 2767 . . . . . . . . . . . . . . . 16 (⊤ → (((coe1‘(3 𝑋))‘3)(-g𝑄)((coe1‘(𝐾‘2))‘3)) = 1)
163131, 134, 1623eqtrd 2769 . . . . . . . . . . . . . . 15 (⊤ → ((coe1𝐹)‘(𝐷𝐹)) = 1)
164130fveq2d 6865 . . . . . . . . . . . . . . 15 (⊤ → ((coe1𝐹)‘(𝐷𝐹)) = ((coe1𝐹)‘3))
165163, 164eqtr3d 2767 . . . . . . . . . . . . . 14 (⊤ → 1 = ((coe1𝐹)‘3))
166165mptru 1547 . . . . . . . . . . . . 13 1 = ((coe1𝐹)‘3)
167115fveq1d 6863 . . . . . . . . . . . . . . 15 (⊤ → ((coe1𝐹)‘2) = ((coe1‘((3 𝑋) (𝐾‘2)))‘2))
168 2nn0 12466 . . . . . . . . . . . . . . . . . 18 2 ∈ ℕ0
169168a1i 11 . . . . . . . . . . . . . . . . 17 (⊤ → 2 ∈ ℕ0)
1702, 34, 35, 132coe1subfv 22159 . . . . . . . . . . . . . . . . 17 (((𝑄 ∈ Ring ∧ (3 𝑋) ∈ (Base‘𝑃) ∧ (𝐾‘2) ∈ (Base‘𝑃)) ∧ 2 ∈ ℕ0) → ((coe1‘((3 𝑋) (𝐾‘2)))‘2) = (((coe1‘(3 𝑋))‘2)(-g𝑄)((coe1‘(𝐾‘2))‘2)))
17144, 54, 66, 169, 170syl31anc 1375 . . . . . . . . . . . . . . . 16 (⊤ → ((coe1‘((3 𝑋) (𝐾‘2)))‘2) = (((coe1‘(3 𝑋))‘2)(-g𝑄)((coe1‘(𝐾‘2))‘2)))
172 2re 12267 . . . . . . . . . . . . . . . . . . . . . . 23 2 ∈ ℝ
173 2lt3 12360 . . . . . . . . . . . . . . . . . . . . . . 23 2 < 3
174172, 173ltneii 11294 . . . . . . . . . . . . . . . . . . . . . 22 2 ≠ 3
175 neeq1 2988 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 = 2 → (𝑖 ≠ 3 ↔ 2 ≠ 3))
176174, 175mpbiri 258 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 = 2 → 𝑖 ≠ 3)
177176adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((⊤ ∧ 𝑖 = 2) → 𝑖 ≠ 3)
178177neneqd 2931 . . . . . . . . . . . . . . . . . . 19 ((⊤ ∧ 𝑖 = 2) → ¬ 𝑖 = 3)
179178iffalsed 4502 . . . . . . . . . . . . . . . . . 18 ((⊤ ∧ 𝑖 = 2) → if(𝑖 = 3, 1, 0) = 0)
180147, 179, 169, 157fvmptd 6978 . . . . . . . . . . . . . . . . 17 (⊤ → ((coe1‘(3 𝑋))‘2) = 0)
181 neeq1 2988 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 = 2 → (𝑖 ≠ 0 ↔ 2 ≠ 0))
182120, 181mpbiri 258 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 = 2 → 𝑖 ≠ 0)
183182neneqd 2931 . . . . . . . . . . . . . . . . . . . 20 (𝑖 = 2 → ¬ 𝑖 = 0)
184183adantl 481 . . . . . . . . . . . . . . . . . . 19 ((⊤ ∧ 𝑖 = 2) → ¬ 𝑖 = 0)
185184iffalsed 4502 . . . . . . . . . . . . . . . . . 18 ((⊤ ∧ 𝑖 = 2) → if(𝑖 = 0, 2, 0) = 0)
186155, 185, 169, 157fvmptd 6978 . . . . . . . . . . . . . . . . 17 (⊤ → ((coe1‘(𝐾‘2))‘2) = 0)
187180, 186oveq12d 7408 . . . . . . . . . . . . . . . 16 (⊤ → (((coe1‘(3 𝑋))‘2)(-g𝑄)((coe1‘(𝐾‘2))‘2)) = (0(-g𝑄)0))
188171, 187eqtrd 2765 . . . . . . . . . . . . . . 15 (⊤ → ((coe1‘((3 𝑋) (𝐾‘2)))‘2) = (0(-g𝑄)0))
189158, 142eqeltrrd 2830 . . . . . . . . . . . . . . . . 17 (⊤ → 0 ∈ ℚ)
19036, 3, 132subgsub 19077 . . . . . . . . . . . . . . . . 17 ((ℚ ∈ (SubGrp‘ℂfld) ∧ 0 ∈ ℚ ∧ 0 ∈ ℚ) → (0 − 0) = (0(-g𝑄)0))
191136, 189, 189, 190syl3anc 1373 . . . . . . . . . . . . . . . 16 (⊤ → (0 − 0) = (0(-g𝑄)0))
192 0m0e0 12308 . . . . . . . . . . . . . . . 16 (0 − 0) = 0
193191, 192eqtr3di 2780 . . . . . . . . . . . . . . 15 (⊤ → (0(-g𝑄)0) = 0)
194167, 188, 1933eqtrrd 2770 . . . . . . . . . . . . . 14 (⊤ → 0 = ((coe1𝐹)‘2))
195194mptru 1547 . . . . . . . . . . . . 13 0 = ((coe1𝐹)‘2)
196115fveq1d 6863 . . . . . . . . . . . . . . 15 (⊤ → ((coe1𝐹)‘1) = ((coe1‘((3 𝑋) (𝐾‘2)))‘1))
197 1nn0 12465 . . . . . . . . . . . . . . . . . 18 1 ∈ ℕ0
198197a1i 11 . . . . . . . . . . . . . . . . 17 (⊤ → 1 ∈ ℕ0)
1992, 34, 35, 132coe1subfv 22159 . . . . . . . . . . . . . . . . 17 (((𝑄 ∈ Ring ∧ (3 𝑋) ∈ (Base‘𝑃) ∧ (𝐾‘2) ∈ (Base‘𝑃)) ∧ 1 ∈ ℕ0) → ((coe1‘((3 𝑋) (𝐾‘2)))‘1) = (((coe1‘(3 𝑋))‘1)(-g𝑄)((coe1‘(𝐾‘2))‘1)))
20044, 54, 66, 198, 199syl31anc 1375 . . . . . . . . . . . . . . . 16 (⊤ → ((coe1‘((3 𝑋) (𝐾‘2)))‘1) = (((coe1‘(3 𝑋))‘1)(-g𝑄)((coe1‘(𝐾‘2))‘1)))
201 1re 11181 . . . . . . . . . . . . . . . . . . . . . . 23 1 ∈ ℝ
202 1lt3 12361 . . . . . . . . . . . . . . . . . . . . . . 23 1 < 3
203201, 202ltneii 11294 . . . . . . . . . . . . . . . . . . . . . 22 1 ≠ 3
204 neeq1 2988 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 = 1 → (𝑖 ≠ 3 ↔ 1 ≠ 3))
205203, 204mpbiri 258 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 = 1 → 𝑖 ≠ 3)
206205neneqd 2931 . . . . . . . . . . . . . . . . . . . 20 (𝑖 = 1 → ¬ 𝑖 = 3)
207206adantl 481 . . . . . . . . . . . . . . . . . . 19 ((⊤ ∧ 𝑖 = 1) → ¬ 𝑖 = 3)
208207iffalsed 4502 . . . . . . . . . . . . . . . . . 18 ((⊤ ∧ 𝑖 = 1) → if(𝑖 = 3, 1, 0) = 0)
209147, 208, 198, 157fvmptd 6978 . . . . . . . . . . . . . . . . 17 (⊤ → ((coe1‘(3 𝑋))‘1) = 0)
210 ax-1ne0 11144 . . . . . . . . . . . . . . . . . . . . . 22 1 ≠ 0
211 neeq1 2988 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 = 1 → (𝑖 ≠ 0 ↔ 1 ≠ 0))
212210, 211mpbiri 258 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 = 1 → 𝑖 ≠ 0)
213212neneqd 2931 . . . . . . . . . . . . . . . . . . . 20 (𝑖 = 1 → ¬ 𝑖 = 0)
214213adantl 481 . . . . . . . . . . . . . . . . . . 19 ((⊤ ∧ 𝑖 = 1) → ¬ 𝑖 = 0)
215214iffalsed 4502 . . . . . . . . . . . . . . . . . 18 ((⊤ ∧ 𝑖 = 1) → if(𝑖 = 0, 2, 0) = 0)
216155, 215, 198, 157fvmptd 6978 . . . . . . . . . . . . . . . . 17 (⊤ → ((coe1‘(𝐾‘2))‘1) = 0)
217209, 216oveq12d 7408 . . . . . . . . . . . . . . . 16 (⊤ → (((coe1‘(3 𝑋))‘1)(-g𝑄)((coe1‘(𝐾‘2))‘1)) = (0(-g𝑄)0))
218200, 217eqtrd 2765 . . . . . . . . . . . . . . 15 (⊤ → ((coe1‘((3 𝑋) (𝐾‘2)))‘1) = (0(-g𝑄)0))
219196, 218, 1933eqtrrd 2770 . . . . . . . . . . . . . 14 (⊤ → 0 = ((coe1𝐹)‘1))
220219mptru 1547 . . . . . . . . . . . . 13 0 = ((coe1𝐹)‘1)
221115fveq1d 6863 . . . . . . . . . . . . . . 15 (⊤ → ((coe1𝐹)‘0) = ((coe1‘((3 𝑋) (𝐾‘2)))‘0))
2222, 34, 35, 132coe1subfv 22159 . . . . . . . . . . . . . . . . 17 (((𝑄 ∈ Ring ∧ (3 𝑋) ∈ (Base‘𝑃) ∧ (𝐾‘2) ∈ (Base‘𝑃)) ∧ 0 ∈ ℕ0) → ((coe1‘((3 𝑋) (𝐾‘2)))‘0) = (((coe1‘(3 𝑋))‘0)(-g𝑄)((coe1‘(𝐾‘2))‘0)))
22344, 54, 66, 157, 222syl31anc 1375 . . . . . . . . . . . . . . . 16 (⊤ → ((coe1‘((3 𝑋) (𝐾‘2)))‘0) = (((coe1‘(3 𝑋))‘0)(-g𝑄)((coe1‘(𝐾‘2))‘0)))
22421necomi 2980 . . . . . . . . . . . . . . . . . . . . . 22 0 ≠ 3
225 neeq1 2988 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 = 0 → (𝑖 ≠ 3 ↔ 0 ≠ 3))
226224, 225mpbiri 258 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 = 0 → 𝑖 ≠ 3)
227226neneqd 2931 . . . . . . . . . . . . . . . . . . . 20 (𝑖 = 0 → ¬ 𝑖 = 3)
228227adantl 481 . . . . . . . . . . . . . . . . . . 19 ((⊤ ∧ 𝑖 = 0) → ¬ 𝑖 = 3)
229228iffalsed 4502 . . . . . . . . . . . . . . . . . 18 ((⊤ ∧ 𝑖 = 0) → if(𝑖 = 3, 1, 0) = 0)
230147, 229, 157, 157fvmptd 6978 . . . . . . . . . . . . . . . . 17 (⊤ → ((coe1‘(3 𝑋))‘0) = 0)
231 simpr 484 . . . . . . . . . . . . . . . . . . 19 ((⊤ ∧ 𝑖 = 0) → 𝑖 = 0)
232231iftrued 4499 . . . . . . . . . . . . . . . . . 18 ((⊤ ∧ 𝑖 = 0) → if(𝑖 = 0, 2, 0) = 2)
233155, 232, 157, 169fvmptd 6978 . . . . . . . . . . . . . . . . 17 (⊤ → ((coe1‘(𝐾‘2))‘0) = 2)
234230, 233oveq12d 7408 . . . . . . . . . . . . . . . 16 (⊤ → (((coe1‘(3 𝑋))‘0)(-g𝑄)((coe1‘(𝐾‘2))‘0)) = (0(-g𝑄)2))
235223, 234eqtrd 2765 . . . . . . . . . . . . . . 15 (⊤ → ((coe1‘((3 𝑋) (𝐾‘2)))‘0) = (0(-g𝑄)2))
236 df-neg 11415 . . . . . . . . . . . . . . . 16 -2 = (0 − 2)
23736, 3, 132subgsub 19077 . . . . . . . . . . . . . . . . 17 ((ℚ ∈ (SubGrp‘ℂfld) ∧ 0 ∈ ℚ ∧ 2 ∈ ℚ) → (0 − 2) = (0(-g𝑄)2))
238136, 189, 65, 237syl3anc 1373 . . . . . . . . . . . . . . . 16 (⊤ → (0 − 2) = (0(-g𝑄)2))
239236, 238eqtr2id 2778 . . . . . . . . . . . . . . 15 (⊤ → (0(-g𝑄)2) = -2)
240221, 235, 2393eqtrrd 2770 . . . . . . . . . . . . . 14 (⊤ → -2 = ((coe1𝐹)‘0))
241240mptru 1547 . . . . . . . . . . . . 13 -2 = ((coe1𝐹)‘0)
24295a1i 11 . . . . . . . . . . . . . 14 (𝑥 ∈ ℚ → 𝑄 ∈ Field)
243242fldcrngd 20658 . . . . . . . . . . . . 13 (𝑥 ∈ ℚ → 𝑄 ∈ CRing)
244100mptru 1547 . . . . . . . . . . . . . 14 𝐹 ∈ (Base‘𝑃)
245244a1i 11 . . . . . . . . . . . . 13 (𝑥 ∈ ℚ → 𝐹 ∈ (Base‘𝑃))
246130mptru 1547 . . . . . . . . . . . . . 14 (𝐷𝐹) = 3
247246a1i 11 . . . . . . . . . . . . 13 (𝑥 ∈ ℚ → (𝐷𝐹) = 3)
248 id 22 . . . . . . . . . . . . 13 (𝑥 ∈ ℚ → 𝑥 ∈ ℚ)
2492, 91, 61, 34, 108, 111, 112, 113, 92, 166, 195, 220, 241, 243, 245, 247, 248evl1deg3 33554 . . . . . . . . . . . 12 (𝑥 ∈ ℚ → (((eval1𝑄)‘𝐹)‘𝑥) = (((1 · (3(.g‘(mulGrp‘𝑄))𝑥)) + (0 · (2(.g‘(mulGrp‘𝑄))𝑥))) + ((0 · 𝑥) + -2)))
250 qsscn 12926 . . . . . . . . . . . . . . . . . 18 ℚ ⊆ ℂ
251 eqid 2730 . . . . . . . . . . . . . . . . . . . . . 22 ((mulGrp‘ℂfld) ↾s ℚ) = ((mulGrp‘ℂfld) ↾s ℚ)
252 eqid 2730 . . . . . . . . . . . . . . . . . . . . . . 23 (mulGrp‘ℂfld) = (mulGrp‘ℂfld)
253252, 6mgpbas 20061 . . . . . . . . . . . . . . . . . . . . . 22 ℂ = (Base‘(mulGrp‘ℂfld))
254251, 253ressbas2 17215 . . . . . . . . . . . . . . . . . . . . 21 (ℚ ⊆ ℂ → ℚ = (Base‘((mulGrp‘ℂfld) ↾s ℚ)))
255250, 254ax-mp 5 . . . . . . . . . . . . . . . . . . . 20 ℚ = (Base‘((mulGrp‘ℂfld) ↾s ℚ))
2563, 252mgpress 20066 . . . . . . . . . . . . . . . . . . . . . 22 ((ℂfld ∈ DivRing ∧ ℚ ∈ (SubRing‘ℂfld)) → ((mulGrp‘ℂfld) ↾s ℚ) = (mulGrp‘𝑄))
2577, 13, 256mp2an 692 . . . . . . . . . . . . . . . . . . . . 21 ((mulGrp‘ℂfld) ↾s ℚ) = (mulGrp‘𝑄)
258257fveq2i 6864 . . . . . . . . . . . . . . . . . . . 20 (Base‘((mulGrp‘ℂfld) ↾s ℚ)) = (Base‘(mulGrp‘𝑄))
259255, 258eqtri 2753 . . . . . . . . . . . . . . . . . . 19 ℚ = (Base‘(mulGrp‘𝑄))
260 eqid 2730 . . . . . . . . . . . . . . . . . . . . 21 (mulGrp‘𝑄) = (mulGrp‘𝑄)
261260ringmgp 20155 . . . . . . . . . . . . . . . . . . . 20 (𝑄 ∈ Ring → (mulGrp‘𝑄) ∈ Mnd)
26256, 261mp1i 13 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ℚ → (mulGrp‘𝑄) ∈ Mnd)
26349a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ℚ → 3 ∈ ℕ0)
264259, 112, 262, 263, 248mulgnn0cld 19034 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℚ → (3(.g‘(mulGrp‘𝑄))𝑥) ∈ ℚ)
265250, 264sselid 3947 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℚ → (3(.g‘(mulGrp‘𝑄))𝑥) ∈ ℂ)
266265mullidd 11199 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℚ → (1 · (3(.g‘(mulGrp‘𝑄))𝑥)) = (3(.g‘(mulGrp‘𝑄))𝑥))
267257eqcomi 2739 . . . . . . . . . . . . . . . . 17 (mulGrp‘𝑄) = ((mulGrp‘ℂfld) ↾s ℚ)
268250, 253sseqtri 3998 . . . . . . . . . . . . . . . . . 18 ℚ ⊆ (Base‘(mulGrp‘ℂfld))
269268a1i 11 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℚ → ℚ ⊆ (Base‘(mulGrp‘ℂfld)))
27080a1i 11 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℚ → 3 ∈ ℕ)
271267, 269, 248, 270ressmulgnnd 19017 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℚ → (3(.g‘(mulGrp‘𝑄))𝑥) = (3(.g‘(mulGrp‘ℂfld))𝑥))
272 qcn 12929 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℚ → 𝑥 ∈ ℂ)
273 cnfldexp 21323 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℂ ∧ 3 ∈ ℕ0) → (3(.g‘(mulGrp‘ℂfld))𝑥) = (𝑥↑3))
274272, 263, 273syl2anc 584 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℚ → (3(.g‘(mulGrp‘ℂfld))𝑥) = (𝑥↑3))
275266, 271, 2743eqtrd 2769 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℚ → (1 · (3(.g‘(mulGrp‘𝑄))𝑥)) = (𝑥↑3))
276168a1i 11 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℚ → 2 ∈ ℕ0)
277259, 112, 262, 276, 248mulgnn0cld 19034 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℚ → (2(.g‘(mulGrp‘𝑄))𝑥) ∈ ℚ)
278250, 277sselid 3947 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℚ → (2(.g‘(mulGrp‘𝑄))𝑥) ∈ ℂ)
279278mul02d 11379 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℚ → (0 · (2(.g‘(mulGrp‘𝑄))𝑥)) = 0)
280275, 279oveq12d 7408 . . . . . . . . . . . . . 14 (𝑥 ∈ ℚ → ((1 · (3(.g‘(mulGrp‘𝑄))𝑥)) + (0 · (2(.g‘(mulGrp‘𝑄))𝑥))) = ((𝑥↑3) + 0))
281272, 263expcld 14118 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℚ → (𝑥↑3) ∈ ℂ)
282281addridd 11381 . . . . . . . . . . . . . 14 (𝑥 ∈ ℚ → ((𝑥↑3) + 0) = (𝑥↑3))
283280, 282eqtrd 2765 . . . . . . . . . . . . 13 (𝑥 ∈ ℚ → ((1 · (3(.g‘(mulGrp‘𝑄))𝑥)) + (0 · (2(.g‘(mulGrp‘𝑄))𝑥))) = (𝑥↑3))
284272mul02d 11379 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℚ → (0 · 𝑥) = 0)
285284oveq1d 7405 . . . . . . . . . . . . . 14 (𝑥 ∈ ℚ → ((0 · 𝑥) + -2) = (0 + -2))
28619a1i 11 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℚ → 2 ∈ ℂ)
287286negcld 11527 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℚ → -2 ∈ ℂ)
288287addlidd 11382 . . . . . . . . . . . . . 14 (𝑥 ∈ ℚ → (0 + -2) = -2)
289285, 288eqtrd 2765 . . . . . . . . . . . . 13 (𝑥 ∈ ℚ → ((0 · 𝑥) + -2) = -2)
290283, 289oveq12d 7408 . . . . . . . . . . . 12 (𝑥 ∈ ℚ → (((1 · (3(.g‘(mulGrp‘𝑄))𝑥)) + (0 · (2(.g‘(mulGrp‘𝑄))𝑥))) + ((0 · 𝑥) + -2)) = ((𝑥↑3) + -2))
291281, 286negsubd 11546 . . . . . . . . . . . 12 (𝑥 ∈ ℚ → ((𝑥↑3) + -2) = ((𝑥↑3) − 2))
292249, 290, 2913eqtrd 2769 . . . . . . . . . . 11 (𝑥 ∈ ℚ → (((eval1𝑄)‘𝐹)‘𝑥) = ((𝑥↑3) − 2))
293 2prm 16669 . . . . . . . . . . . . . . 15 2 ∈ ℙ
294 3z 12573 . . . . . . . . . . . . . . . 16 3 ∈ ℤ
295 3re 12273 . . . . . . . . . . . . . . . . 17 3 ∈ ℝ
296172, 295, 173ltleii 11304 . . . . . . . . . . . . . . . 16 2 ≤ 3
29763eluz1i 12808 . . . . . . . . . . . . . . . 16 (3 ∈ (ℤ‘2) ↔ (3 ∈ ℤ ∧ 2 ≤ 3))
298294, 296, 297mpbir2an 711 . . . . . . . . . . . . . . 15 3 ∈ (ℤ‘2)
299 rtprmirr 26677 . . . . . . . . . . . . . . 15 ((2 ∈ ℙ ∧ 3 ∈ (ℤ‘2)) → (2↑𝑐(1 / 3)) ∈ (ℝ ∖ ℚ))
300293, 298, 299mp2an 692 . . . . . . . . . . . . . 14 (2↑𝑐(1 / 3)) ∈ (ℝ ∖ ℚ)
301 eldifn 4098 . . . . . . . . . . . . . 14 ((2↑𝑐(1 / 3)) ∈ (ℝ ∖ ℚ) → ¬ (2↑𝑐(1 / 3)) ∈ ℚ)
302300, 301ax-mp 5 . . . . . . . . . . . . 13 ¬ (2↑𝑐(1 / 3)) ∈ ℚ
303 nelne2 3024 . . . . . . . . . . . . 13 ((𝑥 ∈ ℚ ∧ ¬ (2↑𝑐(1 / 3)) ∈ ℚ) → 𝑥 ≠ (2↑𝑐(1 / 3)))
304302, 303mpan2 691 . . . . . . . . . . . 12 (𝑥 ∈ ℚ → 𝑥 ≠ (2↑𝑐(1 / 3)))
305 qre 12919 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℚ → 𝑥 ∈ ℝ)
306305adantr 480 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℚ ∧ ((𝑥↑3) − 2) = 0) → 𝑥 ∈ ℝ)
307 2pos 12296 . . . . . . . . . . . . . . . . . 18 0 < 2
308281, 286subeq0ad 11550 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ℚ → (((𝑥↑3) − 2) = 0 ↔ (𝑥↑3) = 2))
309308biimpa 476 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℚ ∧ ((𝑥↑3) − 2) = 0) → (𝑥↑3) = 2)
310307, 309breqtrrid 5148 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℚ ∧ ((𝑥↑3) − 2) = 0) → 0 < (𝑥↑3))
31180a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℚ ∧ ((𝑥↑3) − 2) = 0) → 3 ∈ ℕ)
312 n2dvds3 16348 . . . . . . . . . . . . . . . . . . 19 ¬ 2 ∥ 3
313312a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℚ ∧ ((𝑥↑3) − 2) = 0) → ¬ 2 ∥ 3)
314306, 311, 313expgt0b 32748 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℚ ∧ ((𝑥↑3) − 2) = 0) → (0 < 𝑥 ↔ 0 < (𝑥↑3)))
315310, 314mpbird 257 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℚ ∧ ((𝑥↑3) − 2) = 0) → 0 < 𝑥)
316306, 315elrpd 12999 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℚ ∧ ((𝑥↑3) − 2) = 0) → 𝑥 ∈ ℝ+)
317295a1i 11 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℚ ∧ ((𝑥↑3) − 2) = 0) → 3 ∈ ℝ)
31822a1i 11 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℚ ∧ ((𝑥↑3) − 2) = 0) → (1 / 3) ∈ ℂ)
319316, 317, 318cxpmuld 26653 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℚ ∧ ((𝑥↑3) − 2) = 0) → (𝑥𝑐(3 · (1 / 3))) = ((𝑥𝑐3)↑𝑐(1 / 3)))
32020a1i 11 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℚ → 3 ∈ ℂ)
32121a1i 11 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℚ → 3 ≠ 0)
322320, 321recidd 11960 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℚ → (3 · (1 / 3)) = 1)
323322oveq2d 7406 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℚ → (𝑥𝑐(3 · (1 / 3))) = (𝑥𝑐1))
324272cxp1d 26622 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℚ → (𝑥𝑐1) = 𝑥)
325323, 324eqtrd 2765 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℚ → (𝑥𝑐(3 · (1 / 3))) = 𝑥)
326325adantr 480 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℚ ∧ ((𝑥↑3) − 2) = 0) → (𝑥𝑐(3 · (1 / 3))) = 𝑥)
327 cxpexp 26584 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℂ ∧ 3 ∈ ℕ0) → (𝑥𝑐3) = (𝑥↑3))
328272, 263, 327syl2anc 584 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℚ → (𝑥𝑐3) = (𝑥↑3))
329328oveq1d 7405 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℚ → ((𝑥𝑐3)↑𝑐(1 / 3)) = ((𝑥↑3)↑𝑐(1 / 3)))
330329adantr 480 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℚ ∧ ((𝑥↑3) − 2) = 0) → ((𝑥𝑐3)↑𝑐(1 / 3)) = ((𝑥↑3)↑𝑐(1 / 3)))
331319, 326, 3303eqtr3rd 2774 . . . . . . . . . . . . 13 ((𝑥 ∈ ℚ ∧ ((𝑥↑3) − 2) = 0) → ((𝑥↑3)↑𝑐(1 / 3)) = 𝑥)
332309oveq1d 7405 . . . . . . . . . . . . 13 ((𝑥 ∈ ℚ ∧ ((𝑥↑3) − 2) = 0) → ((𝑥↑3)↑𝑐(1 / 3)) = (2↑𝑐(1 / 3)))
333331, 332eqtr3d 2767 . . . . . . . . . . . 12 ((𝑥 ∈ ℚ ∧ ((𝑥↑3) − 2) = 0) → 𝑥 = (2↑𝑐(1 / 3)))
334304, 333mteqand 3017 . . . . . . . . . . 11 (𝑥 ∈ ℚ → ((𝑥↑3) − 2) ≠ 0)
335292, 334eqnetrd 2993 . . . . . . . . . 10 (𝑥 ∈ ℚ → (((eval1𝑄)‘𝐹)‘𝑥) ≠ 0)
336335neneqd 2931 . . . . . . . . 9 (𝑥 ∈ ℚ → ¬ (((eval1𝑄)‘𝐹)‘𝑥) = 0)
337336rgen 3047 . . . . . . . 8 𝑥 ∈ ℚ ¬ (((eval1𝑄)‘𝐹)‘𝑥) = 0
338337a1i 11 . . . . . . 7 (⊤ → ∀𝑥 ∈ ℚ ¬ (((eval1𝑄)‘𝐹)‘𝑥) = 0)
339 rabeq0 4354 . . . . . . 7 ({𝑥 ∈ ℚ ∣ (((eval1𝑄)‘𝐹)‘𝑥) = 0} = ∅ ↔ ∀𝑥 ∈ ℚ ¬ (((eval1𝑄)‘𝐹)‘𝑥) = 0)
340338, 339sylibr 234 . . . . . 6 (⊤ → {𝑥 ∈ ℚ ∣ (((eval1𝑄)‘𝐹)‘𝑥) = 0} = ∅)
341105, 340eqtrd 2765 . . . . 5 (⊤ → (((eval1𝑄)‘𝐹) “ {0}) = ∅)
34290, 91, 92, 2, 34, 96, 100, 341, 130ply1dg3rt0irred 33558 . . . 4 (⊤ → 𝐹 ∈ (Irred‘𝑃))
343 eqid 2730 . . . . . . 7 (Irred‘𝑃) = (Irred‘𝑃)
344343, 29irredn0 20339 . . . . . 6 ((𝑃 ∈ Ring ∧ 𝐹 ∈ (Irred‘𝑃)) → 𝐹 ≠ (0g𝑃))
34546, 342, 344syl2anc 584 . . . . 5 (⊤ → 𝐹 ≠ (0g𝑃))
3463fveq2i 6864 . . . . . . 7 (deg1𝑄) = (deg1‘(ℂflds ℚ))
34792, 346eqtri 2753 . . . . . 6 𝐷 = (deg1‘(ℂflds ℚ))
348 eqid 2730 . . . . . 6 (Monic1p‘(ℂflds ℚ)) = (Monic1p‘(ℂflds ℚ))
349 eqid 2730 . . . . . . 7 (ℂflds ℚ) = (ℂflds ℚ)
350349qrng1 27540 . . . . . 6 1 = (1r‘(ℂflds ℚ))
3515, 34, 29, 347, 348, 350ismon1p 26055 . . . . 5 (𝐹 ∈ (Monic1p‘(ℂflds ℚ)) ↔ (𝐹 ∈ (Base‘𝑃) ∧ 𝐹 ≠ (0g𝑃) ∧ ((coe1𝐹)‘(𝐷𝐹)) = 1))
352100, 345, 163, 351syl3anbrc 1344 . . . 4 (⊤ → 𝐹 ∈ (Monic1p‘(ℂflds ℚ)))
3531, 5, 6, 11, 17, 26, 27, 28, 29, 89, 342, 352irredminply 33713 . . 3 (⊤ → 𝐹 = (𝑀𝐴))
354353, 130jca 511 . 2 (⊤ → (𝐹 = (𝑀𝐴) ∧ (𝐷𝐹) = 3))
355354mptru 1547 1 (𝐹 = (𝑀𝐴) ∧ (𝐷𝐹) = 3)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395   = wceq 1540  wtru 1541  wcel 2109  wne 2926  wral 3045  {crab 3408  cdif 3914  wss 3917  c0 4299  ifcif 4491  {csn 4592   class class class wbr 5110  cmpt 5191   I cid 5535  ccnv 5640  cres 5643  cima 5644   Fn wfn 6509  cfv 6514  (class class class)co 7390  cc 11073  cr 11074  0cc0 11075  1c1 11076   + caddc 11078   · cmul 11080   < clt 11215  cle 11216  cmin 11412  -cneg 11413   / cdiv 11842  cn 12193  2c2 12248  3c3 12249  0cn0 12449  cz 12536  cuz 12800  cq 12914  cexp 14033  cdvds 16229  cprime 16648  Basecbs 17186  s cress 17207  +gcplusg 17227  .rcmulr 17228  Scalarcsca 17230  0gc0g 17409  Mndcmnd 18668  Grpcgrp 18872  -gcsg 18874  .gcmg 19006  SubGrpcsubg 19059  mulGrpcmgp 20056  Ringcrg 20149  CRingccrg 20150  Irredcir 20272  NzRingcnzr 20428  SubRingcsubrg 20485  DivRingcdr 20645  Fieldcfield 20646  SubDRingcsdrg 20702  LModclmod 20773  fldccnfld 21271  algSccascl 21768  var1cv1 22067  Poly1cpl1 22068  coe1cco1 22069   evalSub1 ces1 22207  eval1ce1 22208  deg1cdg1 25966  Monic1pcmn1 26038  𝑐ccxp 26471   minPoly cminply 33696
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154  ax-mulf 11155
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-ofr 7657  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-tpos 8208  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-fi 9369  df-sup 9400  df-inf 9401  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-ioo 13317  df-ioc 13318  df-ico 13319  df-icc 13320  df-fz 13476  df-fzo 13623  df-fl 13761  df-mod 13839  df-seq 13974  df-exp 14034  df-fac 14246  df-bc 14275  df-hash 14303  df-shft 15040  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-limsup 15444  df-clim 15461  df-rlim 15462  df-sum 15660  df-ef 16040  df-sin 16042  df-cos 16043  df-pi 16045  df-dvds 16230  df-gcd 16472  df-prm 16649  df-numer 16712  df-denom 16713  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-hom 17251  df-cco 17252  df-rest 17392  df-topn 17393  df-0g 17411  df-gsum 17412  df-topgen 17413  df-pt 17414  df-prds 17417  df-pws 17419  df-xrs 17472  df-qtop 17477  df-imas 17478  df-xps 17480  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-mhm 18717  df-submnd 18718  df-grp 18875  df-minusg 18876  df-sbg 18877  df-mulg 19007  df-subg 19062  df-ghm 19152  df-cntz 19256  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-srg 20103  df-ring 20151  df-cring 20152  df-oppr 20253  df-dvdsr 20273  df-unit 20274  df-irred 20275  df-invr 20304  df-dvr 20317  df-rhm 20388  df-nzr 20429  df-subrng 20462  df-subrg 20486  df-rlreg 20610  df-domn 20611  df-idom 20612  df-drng 20647  df-field 20648  df-sdrg 20703  df-lmod 20775  df-lss 20845  df-lsp 20885  df-sra 21087  df-rgmod 21088  df-lidl 21125  df-rsp 21126  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-fbas 21268  df-fg 21269  df-cnfld 21272  df-assa 21769  df-asp 21770  df-ascl 21771  df-psr 21825  df-mvr 21826  df-mpl 21827  df-opsr 21829  df-evls 21988  df-evl 21989  df-psr1 22071  df-vr1 22072  df-ply1 22073  df-coe1 22074  df-evls1 22209  df-evl1 22210  df-top 22788  df-topon 22805  df-topsp 22827  df-bases 22840  df-cld 22913  df-ntr 22914  df-cls 22915  df-nei 22992  df-lp 23030  df-perf 23031  df-cn 23121  df-cnp 23122  df-haus 23209  df-tx 23456  df-hmeo 23649  df-fil 23740  df-fm 23832  df-flim 23833  df-flf 23834  df-xms 24215  df-ms 24216  df-tms 24217  df-cncf 24778  df-limc 25774  df-dv 25775  df-mdeg 25967  df-deg1 25968  df-mon1 26043  df-uc1p 26044  df-q1p 26045  df-r1p 26046  df-ig1p 26047  df-log 26472  df-cxp 26473  df-irng 33686  df-minply 33697
This theorem is referenced by:  2sqr3nconstr  33778
  Copyright terms: Public domain W3C validator