Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2sqr3minply Structured version   Visualization version   GIF version

Theorem 2sqr3minply 33620
Description: The polynomial ((𝑋↑3) − 2) is the minimal polynomial for (2↑𝑐(1 / 3)) over , and its degree is 3. (Contributed by Thierry Arnoux, 14-Jun-2025.)
Hypotheses
Ref Expression
2sqr3minply.q 𝑄 = (ℂflds ℚ)
2sqr3minply.1 = (-g𝑃)
2sqr3minply.2 = (.g‘(mulGrp‘𝑃))
2sqr3minply.p 𝑃 = (Poly1𝑄)
2sqr3minply.k 𝐾 = (algSc‘𝑃)
2sqr3minply.x 𝑋 = (var1𝑄)
2sqr3minply.d 𝐷 = (deg1𝑄)
2sqr3minply.f 𝐹 = ((3 𝑋) (𝐾‘2))
2sqr3minply.a 𝐴 = (2↑𝑐(1 / 3))
2sqr3minply.m 𝑀 = (ℂfld minPoly ℚ)
Assertion
Ref Expression
2sqr3minply (𝐹 = (𝑀𝐴) ∧ (𝐷𝐹) = 3)

Proof of Theorem 2sqr3minply
Dummy variables 𝑖 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2726 . . . 4 (ℂfld evalSub1 ℚ) = (ℂfld evalSub1 ℚ)
2 2sqr3minply.p . . . . 5 𝑃 = (Poly1𝑄)
3 2sqr3minply.q . . . . . 6 𝑄 = (ℂflds ℚ)
43fveq2i 6896 . . . . 5 (Poly1𝑄) = (Poly1‘(ℂflds ℚ))
52, 4eqtri 2754 . . . 4 𝑃 = (Poly1‘(ℂflds ℚ))
6 cnfldbas 21343 . . . 4 ℂ = (Base‘ℂfld)
7 cndrng 21386 . . . . . 6 fld ∈ DivRing
8 cncrng 21376 . . . . . 6 fld ∈ CRing
9 isfld 20714 . . . . . 6 (ℂfld ∈ Field ↔ (ℂfld ∈ DivRing ∧ ℂfld ∈ CRing))
107, 8, 9mpbir2an 709 . . . . 5 fld ∈ Field
1110a1i 11 . . . 4 (⊤ → ℂfld ∈ Field)
12 qsubdrg 21412 . . . . . . 7 (ℚ ∈ (SubRing‘ℂfld) ∧ (ℂflds ℚ) ∈ DivRing)
1312simpli 482 . . . . . 6 ℚ ∈ (SubRing‘ℂfld)
1412simpri 484 . . . . . 6 (ℂflds ℚ) ∈ DivRing
15 issdrg 20763 . . . . . 6 (ℚ ∈ (SubDRing‘ℂfld) ↔ (ℂfld ∈ DivRing ∧ ℚ ∈ (SubRing‘ℂfld) ∧ (ℂflds ℚ) ∈ DivRing))
167, 13, 14, 15mpbir3an 1338 . . . . 5 ℚ ∈ (SubDRing‘ℂfld)
1716a1i 11 . . . 4 (⊤ → ℚ ∈ (SubDRing‘ℂfld))
18 2sqr3minply.a . . . . . 6 𝐴 = (2↑𝑐(1 / 3))
19 2cn 12333 . . . . . . 7 2 ∈ ℂ
20 3cn 12339 . . . . . . . 8 3 ∈ ℂ
21 3ne0 12364 . . . . . . . 8 3 ≠ 0
2220, 21reccli 11989 . . . . . . 7 (1 / 3) ∈ ℂ
23 cxpcl 26698 . . . . . . 7 ((2 ∈ ℂ ∧ (1 / 3) ∈ ℂ) → (2↑𝑐(1 / 3)) ∈ ℂ)
2419, 22, 23mp2an 690 . . . . . 6 (2↑𝑐(1 / 3)) ∈ ℂ
2518, 24eqeltri 2822 . . . . 5 𝐴 ∈ ℂ
2625a1i 11 . . . 4 (⊤ → 𝐴 ∈ ℂ)
27 cnfld0 21380 . . . 4 0 = (0g‘ℂfld)
28 2sqr3minply.m . . . 4 𝑀 = (ℂfld minPoly ℚ)
29 eqid 2726 . . . 4 (0g𝑃) = (0g𝑃)
30 2sqr3minply.f . . . . . . . 8 𝐹 = ((3 𝑋) (𝐾‘2))
3130fveq2i 6896 . . . . . . 7 ((ℂfld evalSub1 ℚ)‘𝐹) = ((ℂfld evalSub1 ℚ)‘((3 𝑋) (𝐾‘2)))
3231fveq1i 6894 . . . . . 6 (((ℂfld evalSub1 ℚ)‘𝐹)‘𝐴) = (((ℂfld evalSub1 ℚ)‘((3 𝑋) (𝐾‘2)))‘𝐴)
3332a1i 11 . . . . 5 (⊤ → (((ℂfld evalSub1 ℚ)‘𝐹)‘𝐴) = (((ℂfld evalSub1 ℚ)‘((3 𝑋) (𝐾‘2)))‘𝐴))
34 eqid 2726 . . . . . 6 (Base‘𝑃) = (Base‘𝑃)
35 2sqr3minply.1 . . . . . 6 = (-g𝑃)
36 cnfldsub 21385 . . . . . 6 − = (-g‘ℂfld)
378a1i 11 . . . . . 6 (⊤ → ℂfld ∈ CRing)
3813a1i 11 . . . . . 6 (⊤ → ℚ ∈ (SubRing‘ℂfld))
39 eqid 2726 . . . . . . . 8 (mulGrp‘𝑃) = (mulGrp‘𝑃)
4039, 34mgpbas 20119 . . . . . . 7 (Base‘𝑃) = (Base‘(mulGrp‘𝑃))
41 2sqr3minply.2 . . . . . . 7 = (.g‘(mulGrp‘𝑃))
423qdrng 27646 . . . . . . . . . . 11 𝑄 ∈ DivRing
4342a1i 11 . . . . . . . . . 10 (⊤ → 𝑄 ∈ DivRing)
4443drngringd 20711 . . . . . . . . 9 (⊤ → 𝑄 ∈ Ring)
452ply1ring 22233 . . . . . . . . 9 (𝑄 ∈ Ring → 𝑃 ∈ Ring)
4644, 45syl 17 . . . . . . . 8 (⊤ → 𝑃 ∈ Ring)
4739ringmgp 20218 . . . . . . . 8 (𝑃 ∈ Ring → (mulGrp‘𝑃) ∈ Mnd)
4846, 47syl 17 . . . . . . 7 (⊤ → (mulGrp‘𝑃) ∈ Mnd)
49 3nn0 12536 . . . . . . . 8 3 ∈ ℕ0
5049a1i 11 . . . . . . 7 (⊤ → 3 ∈ ℕ0)
51 2sqr3minply.x . . . . . . . . 9 𝑋 = (var1𝑄)
5251, 2, 34vr1cl 22203 . . . . . . . 8 (𝑄 ∈ Ring → 𝑋 ∈ (Base‘𝑃))
5344, 52syl 17 . . . . . . 7 (⊤ → 𝑋 ∈ (Base‘𝑃))
5440, 41, 48, 50, 53mulgnn0cld 19085 . . . . . 6 (⊤ → (3 𝑋) ∈ (Base‘𝑃))
55 2sqr3minply.k . . . . . . . 8 𝐾 = (algSc‘𝑃)
5644mptru 1541 . . . . . . . . 9 𝑄 ∈ Ring
572ply1sca 22238 . . . . . . . . 9 (𝑄 ∈ Ring → 𝑄 = (Scalar‘𝑃))
5856, 57ax-mp 5 . . . . . . . 8 𝑄 = (Scalar‘𝑃)
592ply1lmod 22237 . . . . . . . . 9 (𝑄 ∈ Ring → 𝑃 ∈ LMod)
6044, 59syl 17 . . . . . . . 8 (⊤ → 𝑃 ∈ LMod)
613qrngbas 27645 . . . . . . . 8 ℚ = (Base‘𝑄)
6255, 58, 46, 60, 61, 34asclf 21875 . . . . . . 7 (⊤ → 𝐾:ℚ⟶(Base‘𝑃))
63 2z 12640 . . . . . . . 8 2 ∈ ℤ
64 zq 12984 . . . . . . . 8 (2 ∈ ℤ → 2 ∈ ℚ)
6563, 64mp1i 13 . . . . . . 7 (⊤ → 2 ∈ ℚ)
6662, 65ffvelcdmd 7091 . . . . . 6 (⊤ → (𝐾‘2) ∈ (Base‘𝑃))
671, 6, 2, 3, 34, 35, 36, 37, 38, 54, 66, 26evls1subd 33450 . . . . 5 (⊤ → (((ℂfld evalSub1 ℚ)‘((3 𝑋) (𝐾‘2)))‘𝐴) = ((((ℂfld evalSub1 ℚ)‘(3 𝑋))‘𝐴) − (((ℂfld evalSub1 ℚ)‘(𝐾‘2))‘𝐴)))
68 eqid 2726 . . . . . . . . . 10 (.g‘(mulGrp‘ℂfld)) = (.g‘(mulGrp‘ℂfld))
691, 6, 2, 3, 34, 37, 38, 41, 68, 50, 53, 26evls1expd 22355 . . . . . . . . 9 (⊤ → (((ℂfld evalSub1 ℚ)‘(3 𝑋))‘𝐴) = (3(.g‘(mulGrp‘ℂfld))(((ℂfld evalSub1 ℚ)‘𝑋)‘𝐴)))
701, 51, 3, 6, 37, 38evls1var 22326 . . . . . . . . . . . 12 (⊤ → ((ℂfld evalSub1 ℚ)‘𝑋) = ( I ↾ ℂ))
7170fveq1d 6895 . . . . . . . . . . 11 (⊤ → (((ℂfld evalSub1 ℚ)‘𝑋)‘𝐴) = (( I ↾ ℂ)‘𝐴))
72 fvresi 7179 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → (( I ↾ ℂ)‘𝐴) = 𝐴)
7325, 72mp1i 13 . . . . . . . . . . 11 (⊤ → (( I ↾ ℂ)‘𝐴) = 𝐴)
7471, 73eqtrd 2766 . . . . . . . . . 10 (⊤ → (((ℂfld evalSub1 ℚ)‘𝑋)‘𝐴) = 𝐴)
7574oveq2d 7432 . . . . . . . . 9 (⊤ → (3(.g‘(mulGrp‘ℂfld))(((ℂfld evalSub1 ℚ)‘𝑋)‘𝐴)) = (3(.g‘(mulGrp‘ℂfld))𝐴))
76 cnfldexp 21392 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 3 ∈ ℕ0) → (3(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴↑3))
7726, 50, 76syl2anc 582 . . . . . . . . 9 (⊤ → (3(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴↑3))
7869, 75, 773eqtrd 2770 . . . . . . . 8 (⊤ → (((ℂfld evalSub1 ℚ)‘(3 𝑋))‘𝐴) = (𝐴↑3))
7918oveq1i 7426 . . . . . . . . 9 (𝐴↑3) = ((2↑𝑐(1 / 3))↑3)
80 3nn 12337 . . . . . . . . . 10 3 ∈ ℕ
81 cxproot 26714 . . . . . . . . . 10 ((2 ∈ ℂ ∧ 3 ∈ ℕ) → ((2↑𝑐(1 / 3))↑3) = 2)
8219, 80, 81mp2an 690 . . . . . . . . 9 ((2↑𝑐(1 / 3))↑3) = 2
8379, 82eqtri 2754 . . . . . . . 8 (𝐴↑3) = 2
8478, 83eqtrdi 2782 . . . . . . 7 (⊤ → (((ℂfld evalSub1 ℚ)‘(3 𝑋))‘𝐴) = 2)
851, 2, 3, 6, 55, 37, 38, 65, 26evls1scafv 22354 . . . . . . 7 (⊤ → (((ℂfld evalSub1 ℚ)‘(𝐾‘2))‘𝐴) = 2)
8684, 85oveq12d 7434 . . . . . 6 (⊤ → ((((ℂfld evalSub1 ℚ)‘(3 𝑋))‘𝐴) − (((ℂfld evalSub1 ℚ)‘(𝐾‘2))‘𝐴)) = (2 − 2))
8719subidi 11572 . . . . . 6 (2 − 2) = 0
8886, 87eqtrdi 2782 . . . . 5 (⊤ → ((((ℂfld evalSub1 ℚ)‘(3 𝑋))‘𝐴) − (((ℂfld evalSub1 ℚ)‘(𝐾‘2))‘𝐴)) = 0)
8933, 67, 883eqtrd 2770 . . . 4 (⊤ → (((ℂfld evalSub1 ℚ)‘𝐹)‘𝐴) = 0)
903qrng0 27647 . . . . 5 0 = (0g𝑄)
91 eqid 2726 . . . . 5 (eval1𝑄) = (eval1𝑄)
92 2sqr3minply.d . . . . 5 𝐷 = (deg1𝑄)
93 fldsdrgfld 20773 . . . . . . . 8 ((ℂfld ∈ Field ∧ ℚ ∈ (SubDRing‘ℂfld)) → (ℂflds ℚ) ∈ Field)
9410, 16, 93mp2an 690 . . . . . . 7 (ℂflds ℚ) ∈ Field
953, 94eqeltri 2822 . . . . . 6 𝑄 ∈ Field
9695a1i 11 . . . . 5 (⊤ → 𝑄 ∈ Field)
9746ringgrpd 20221 . . . . . . 7 (⊤ → 𝑃 ∈ Grp)
9834, 35grpsubcl 19010 . . . . . . 7 ((𝑃 ∈ Grp ∧ (3 𝑋) ∈ (Base‘𝑃) ∧ (𝐾‘2) ∈ (Base‘𝑃)) → ((3 𝑋) (𝐾‘2)) ∈ (Base‘𝑃))
9997, 54, 66, 98syl3anc 1368 . . . . . 6 (⊤ → ((3 𝑋) (𝐾‘2)) ∈ (Base‘𝑃))
10030, 99eqeltrid 2830 . . . . 5 (⊤ → 𝐹 ∈ (Base‘𝑃))
10196fldcrngd 20716 . . . . . . . . 9 (⊤ → 𝑄 ∈ CRing)
10291, 2, 34, 101, 61, 100evl1fvf 33442 . . . . . . . 8 (⊤ → ((eval1𝑄)‘𝐹):ℚ⟶ℚ)
103102ffnd 6721 . . . . . . 7 (⊤ → ((eval1𝑄)‘𝐹) Fn ℚ)
104 fniniseg2 7067 . . . . . . 7 (((eval1𝑄)‘𝐹) Fn ℚ → (((eval1𝑄)‘𝐹) “ {0}) = {𝑥 ∈ ℚ ∣ (((eval1𝑄)‘𝐹)‘𝑥) = 0})
105103, 104syl 17 . . . . . 6 (⊤ → (((eval1𝑄)‘𝐹) “ {0}) = {𝑥 ∈ ℚ ∣ (((eval1𝑄)‘𝐹)‘𝑥) = 0})
106 cnfldmul 21347 . . . . . . . . . . . . . . 15 · = (.r‘ℂfld)
1073, 106ressmulr 17316 . . . . . . . . . . . . . 14 (ℚ ∈ (SubRing‘ℂfld) → · = (.r𝑄))
10813, 107ax-mp 5 . . . . . . . . . . . . 13 · = (.r𝑄)
109 cnfldadd 21345 . . . . . . . . . . . . . . 15 + = (+g‘ℂfld)
1103, 109ressplusg 17299 . . . . . . . . . . . . . 14 (ℚ ∈ (SubRing‘ℂfld) → + = (+g𝑄))
11113, 110ax-mp 5 . . . . . . . . . . . . 13 + = (+g𝑄)
112 eqid 2726 . . . . . . . . . . . . 13 (.g‘(mulGrp‘𝑄)) = (.g‘(mulGrp‘𝑄))
113 eqid 2726 . . . . . . . . . . . . 13 (coe1𝐹) = (coe1𝐹)
11430fveq2i 6896 . . . . . . . . . . . . . . . . . 18 (coe1𝐹) = (coe1‘((3 𝑋) (𝐾‘2)))
115114a1i 11 . . . . . . . . . . . . . . . . 17 (⊤ → (coe1𝐹) = (coe1‘((3 𝑋) (𝐾‘2))))
11630fveq2i 6896 . . . . . . . . . . . . . . . . . . 19 (𝐷𝐹) = (𝐷‘((3 𝑋) (𝐾‘2)))
117116a1i 11 . . . . . . . . . . . . . . . . . 18 (⊤ → (𝐷𝐹) = (𝐷‘((3 𝑋) (𝐾‘2))))
118 3pos 12363 . . . . . . . . . . . . . . . . . . . . 21 0 < 3
119118a1i 11 . . . . . . . . . . . . . . . . . . . 20 (⊤ → 0 < 3)
120 2ne0 12362 . . . . . . . . . . . . . . . . . . . . . 22 2 ≠ 0
121120a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (⊤ → 2 ≠ 0)
12292, 2, 61, 55, 90deg1scl 26137 . . . . . . . . . . . . . . . . . . . . 21 ((𝑄 ∈ Ring ∧ 2 ∈ ℚ ∧ 2 ≠ 0) → (𝐷‘(𝐾‘2)) = 0)
12344, 65, 121, 122syl3anc 1368 . . . . . . . . . . . . . . . . . . . 20 (⊤ → (𝐷‘(𝐾‘2)) = 0)
124 drngnzr 20722 . . . . . . . . . . . . . . . . . . . . . 22 (𝑄 ∈ DivRing → 𝑄 ∈ NzRing)
12542, 124mp1i 13 . . . . . . . . . . . . . . . . . . . . 21 (⊤ → 𝑄 ∈ NzRing)
12692, 2, 51, 39, 41deg1pw 26145 . . . . . . . . . . . . . . . . . . . . 21 ((𝑄 ∈ NzRing ∧ 3 ∈ ℕ0) → (𝐷‘(3 𝑋)) = 3)
127125, 50, 126syl2anc 582 . . . . . . . . . . . . . . . . . . . 20 (⊤ → (𝐷‘(3 𝑋)) = 3)
128119, 123, 1273brtr4d 5177 . . . . . . . . . . . . . . . . . . 19 (⊤ → (𝐷‘(𝐾‘2)) < (𝐷‘(3 𝑋)))
1292, 92, 44, 34, 35, 54, 66, 128deg1sub 26132 . . . . . . . . . . . . . . . . . 18 (⊤ → (𝐷‘((3 𝑋) (𝐾‘2))) = (𝐷‘(3 𝑋)))
130117, 129, 1273eqtrd 2770 . . . . . . . . . . . . . . . . 17 (⊤ → (𝐷𝐹) = 3)
131115, 130fveq12d 6900 . . . . . . . . . . . . . . . 16 (⊤ → ((coe1𝐹)‘(𝐷𝐹)) = ((coe1‘((3 𝑋) (𝐾‘2)))‘3))
132 eqid 2726 . . . . . . . . . . . . . . . . . 18 (-g𝑄) = (-g𝑄)
1332, 34, 35, 132coe1subfv 22253 . . . . . . . . . . . . . . . . 17 (((𝑄 ∈ Ring ∧ (3 𝑋) ∈ (Base‘𝑃) ∧ (𝐾‘2) ∈ (Base‘𝑃)) ∧ 3 ∈ ℕ0) → ((coe1‘((3 𝑋) (𝐾‘2)))‘3) = (((coe1‘(3 𝑋))‘3)(-g𝑄)((coe1‘(𝐾‘2))‘3)))
13444, 54, 66, 50, 133syl31anc 1370 . . . . . . . . . . . . . . . 16 (⊤ → ((coe1‘((3 𝑋) (𝐾‘2)))‘3) = (((coe1‘(3 𝑋))‘3)(-g𝑄)((coe1‘(𝐾‘2))‘3)))
135 subrgsubg 20557 . . . . . . . . . . . . . . . . . . 19 (ℚ ∈ (SubRing‘ℂfld) → ℚ ∈ (SubGrp‘ℂfld))
13613, 135mp1i 13 . . . . . . . . . . . . . . . . . 18 (⊤ → ℚ ∈ (SubGrp‘ℂfld))
137 eqid 2726 . . . . . . . . . . . . . . . . . . . 20 (coe1‘(3 𝑋)) = (coe1‘(3 𝑋))
138137, 34, 2, 61coe1fvalcl 22198 . . . . . . . . . . . . . . . . . . 19 (((3 𝑋) ∈ (Base‘𝑃) ∧ 3 ∈ ℕ0) → ((coe1‘(3 𝑋))‘3) ∈ ℚ)
13954, 50, 138syl2anc 582 . . . . . . . . . . . . . . . . . 18 (⊤ → ((coe1‘(3 𝑋))‘3) ∈ ℚ)
140 eqid 2726 . . . . . . . . . . . . . . . . . . . 20 (coe1‘(𝐾‘2)) = (coe1‘(𝐾‘2))
141140, 34, 2, 61coe1fvalcl 22198 . . . . . . . . . . . . . . . . . . 19 (((𝐾‘2) ∈ (Base‘𝑃) ∧ 3 ∈ ℕ0) → ((coe1‘(𝐾‘2))‘3) ∈ ℚ)
14266, 50, 141syl2anc 582 . . . . . . . . . . . . . . . . . 18 (⊤ → ((coe1‘(𝐾‘2))‘3) ∈ ℚ)
14336, 3, 132subgsub 19128 . . . . . . . . . . . . . . . . . 18 ((ℚ ∈ (SubGrp‘ℂfld) ∧ ((coe1‘(3 𝑋))‘3) ∈ ℚ ∧ ((coe1‘(𝐾‘2))‘3) ∈ ℚ) → (((coe1‘(3 𝑋))‘3) − ((coe1‘(𝐾‘2))‘3)) = (((coe1‘(3 𝑋))‘3)(-g𝑄)((coe1‘(𝐾‘2))‘3)))
144136, 139, 142, 143syl3anc 1368 . . . . . . . . . . . . . . . . 17 (⊤ → (((coe1‘(3 𝑋))‘3) − ((coe1‘(𝐾‘2))‘3)) = (((coe1‘(3 𝑋))‘3)(-g𝑄)((coe1‘(𝐾‘2))‘3)))
145 iftrue 4529 . . . . . . . . . . . . . . . . . . . 20 (𝑖 = 3 → if(𝑖 = 3, 1, 0) = 1)
1463qrng1 27648 . . . . . . . . . . . . . . . . . . . . 21 1 = (1r𝑄)
1472, 51, 41, 44, 50, 90, 146coe1mon 33463 . . . . . . . . . . . . . . . . . . . 20 (⊤ → (coe1‘(3 𝑋)) = (𝑖 ∈ ℕ0 ↦ if(𝑖 = 3, 1, 0)))
148 1cnd 11250 . . . . . . . . . . . . . . . . . . . 20 (⊤ → 1 ∈ ℂ)
149145, 147, 50, 148fvmptd4 7025 . . . . . . . . . . . . . . . . . . 19 (⊤ → ((coe1‘(3 𝑋))‘3) = 1)
15021neii 2932 . . . . . . . . . . . . . . . . . . . . . 22 ¬ 3 = 0
151 eqeq1 2730 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 = 3 → (𝑖 = 0 ↔ 3 = 0))
152150, 151mtbiri 326 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 = 3 → ¬ 𝑖 = 0)
153152iffalsed 4534 . . . . . . . . . . . . . . . . . . . 20 (𝑖 = 3 → if(𝑖 = 0, 2, 0) = 0)
1542, 55, 61, 90coe1scl 22274 . . . . . . . . . . . . . . . . . . . . 21 ((𝑄 ∈ Ring ∧ 2 ∈ ℚ) → (coe1‘(𝐾‘2)) = (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, 2, 0)))
15544, 65, 154syl2anc 582 . . . . . . . . . . . . . . . . . . . 20 (⊤ → (coe1‘(𝐾‘2)) = (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, 2, 0)))
156 0nn0 12533 . . . . . . . . . . . . . . . . . . . . 21 0 ∈ ℕ0
157156a1i 11 . . . . . . . . . . . . . . . . . . . 20 (⊤ → 0 ∈ ℕ0)
158153, 155, 50, 157fvmptd4 7025 . . . . . . . . . . . . . . . . . . 19 (⊤ → ((coe1‘(𝐾‘2))‘3) = 0)
159149, 158oveq12d 7434 . . . . . . . . . . . . . . . . . 18 (⊤ → (((coe1‘(3 𝑋))‘3) − ((coe1‘(𝐾‘2))‘3)) = (1 − 0))
160 1m0e1 12379 . . . . . . . . . . . . . . . . . 18 (1 − 0) = 1
161159, 160eqtrdi 2782 . . . . . . . . . . . . . . . . 17 (⊤ → (((coe1‘(3 𝑋))‘3) − ((coe1‘(𝐾‘2))‘3)) = 1)
162144, 161eqtr3d 2768 . . . . . . . . . . . . . . . 16 (⊤ → (((coe1‘(3 𝑋))‘3)(-g𝑄)((coe1‘(𝐾‘2))‘3)) = 1)
163131, 134, 1623eqtrd 2770 . . . . . . . . . . . . . . 15 (⊤ → ((coe1𝐹)‘(𝐷𝐹)) = 1)
164130fveq2d 6897 . . . . . . . . . . . . . . 15 (⊤ → ((coe1𝐹)‘(𝐷𝐹)) = ((coe1𝐹)‘3))
165163, 164eqtr3d 2768 . . . . . . . . . . . . . 14 (⊤ → 1 = ((coe1𝐹)‘3))
166165mptru 1541 . . . . . . . . . . . . 13 1 = ((coe1𝐹)‘3)
167115fveq1d 6895 . . . . . . . . . . . . . . 15 (⊤ → ((coe1𝐹)‘2) = ((coe1‘((3 𝑋) (𝐾‘2)))‘2))
168 2nn0 12535 . . . . . . . . . . . . . . . . . 18 2 ∈ ℕ0
169168a1i 11 . . . . . . . . . . . . . . . . 17 (⊤ → 2 ∈ ℕ0)
1702, 34, 35, 132coe1subfv 22253 . . . . . . . . . . . . . . . . 17 (((𝑄 ∈ Ring ∧ (3 𝑋) ∈ (Base‘𝑃) ∧ (𝐾‘2) ∈ (Base‘𝑃)) ∧ 2 ∈ ℕ0) → ((coe1‘((3 𝑋) (𝐾‘2)))‘2) = (((coe1‘(3 𝑋))‘2)(-g𝑄)((coe1‘(𝐾‘2))‘2)))
17144, 54, 66, 169, 170syl31anc 1370 . . . . . . . . . . . . . . . 16 (⊤ → ((coe1‘((3 𝑋) (𝐾‘2)))‘2) = (((coe1‘(3 𝑋))‘2)(-g𝑄)((coe1‘(𝐾‘2))‘2)))
172 2re 12332 . . . . . . . . . . . . . . . . . . . . . . 23 2 ∈ ℝ
173 2lt3 12430 . . . . . . . . . . . . . . . . . . . . . . 23 2 < 3
174172, 173ltneii 11368 . . . . . . . . . . . . . . . . . . . . . 22 2 ≠ 3
175 neeq1 2993 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 = 2 → (𝑖 ≠ 3 ↔ 2 ≠ 3))
176174, 175mpbiri 257 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 = 2 → 𝑖 ≠ 3)
177176adantl 480 . . . . . . . . . . . . . . . . . . . 20 ((⊤ ∧ 𝑖 = 2) → 𝑖 ≠ 3)
178177neneqd 2935 . . . . . . . . . . . . . . . . . . 19 ((⊤ ∧ 𝑖 = 2) → ¬ 𝑖 = 3)
179178iffalsed 4534 . . . . . . . . . . . . . . . . . 18 ((⊤ ∧ 𝑖 = 2) → if(𝑖 = 3, 1, 0) = 0)
180147, 179, 169, 157fvmptd 7008 . . . . . . . . . . . . . . . . 17 (⊤ → ((coe1‘(3 𝑋))‘2) = 0)
181 neeq1 2993 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 = 2 → (𝑖 ≠ 0 ↔ 2 ≠ 0))
182120, 181mpbiri 257 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 = 2 → 𝑖 ≠ 0)
183182neneqd 2935 . . . . . . . . . . . . . . . . . . . 20 (𝑖 = 2 → ¬ 𝑖 = 0)
184183adantl 480 . . . . . . . . . . . . . . . . . . 19 ((⊤ ∧ 𝑖 = 2) → ¬ 𝑖 = 0)
185184iffalsed 4534 . . . . . . . . . . . . . . . . . 18 ((⊤ ∧ 𝑖 = 2) → if(𝑖 = 0, 2, 0) = 0)
186155, 185, 169, 157fvmptd 7008 . . . . . . . . . . . . . . . . 17 (⊤ → ((coe1‘(𝐾‘2))‘2) = 0)
187180, 186oveq12d 7434 . . . . . . . . . . . . . . . 16 (⊤ → (((coe1‘(3 𝑋))‘2)(-g𝑄)((coe1‘(𝐾‘2))‘2)) = (0(-g𝑄)0))
188171, 187eqtrd 2766 . . . . . . . . . . . . . . 15 (⊤ → ((coe1‘((3 𝑋) (𝐾‘2)))‘2) = (0(-g𝑄)0))
189158, 142eqeltrrd 2827 . . . . . . . . . . . . . . . . 17 (⊤ → 0 ∈ ℚ)
19036, 3, 132subgsub 19128 . . . . . . . . . . . . . . . . 17 ((ℚ ∈ (SubGrp‘ℂfld) ∧ 0 ∈ ℚ ∧ 0 ∈ ℚ) → (0 − 0) = (0(-g𝑄)0))
191136, 189, 189, 190syl3anc 1368 . . . . . . . . . . . . . . . 16 (⊤ → (0 − 0) = (0(-g𝑄)0))
192 0m0e0 12378 . . . . . . . . . . . . . . . 16 (0 − 0) = 0
193191, 192eqtr3di 2781 . . . . . . . . . . . . . . 15 (⊤ → (0(-g𝑄)0) = 0)
194167, 188, 1933eqtrrd 2771 . . . . . . . . . . . . . 14 (⊤ → 0 = ((coe1𝐹)‘2))
195194mptru 1541 . . . . . . . . . . . . 13 0 = ((coe1𝐹)‘2)
196115fveq1d 6895 . . . . . . . . . . . . . . 15 (⊤ → ((coe1𝐹)‘1) = ((coe1‘((3 𝑋) (𝐾‘2)))‘1))
197 1nn0 12534 . . . . . . . . . . . . . . . . . 18 1 ∈ ℕ0
198197a1i 11 . . . . . . . . . . . . . . . . 17 (⊤ → 1 ∈ ℕ0)
1992, 34, 35, 132coe1subfv 22253 . . . . . . . . . . . . . . . . 17 (((𝑄 ∈ Ring ∧ (3 𝑋) ∈ (Base‘𝑃) ∧ (𝐾‘2) ∈ (Base‘𝑃)) ∧ 1 ∈ ℕ0) → ((coe1‘((3 𝑋) (𝐾‘2)))‘1) = (((coe1‘(3 𝑋))‘1)(-g𝑄)((coe1‘(𝐾‘2))‘1)))
20044, 54, 66, 198, 199syl31anc 1370 . . . . . . . . . . . . . . . 16 (⊤ → ((coe1‘((3 𝑋) (𝐾‘2)))‘1) = (((coe1‘(3 𝑋))‘1)(-g𝑄)((coe1‘(𝐾‘2))‘1)))
201 1re 11255 . . . . . . . . . . . . . . . . . . . . . . 23 1 ∈ ℝ
202 1lt3 12431 . . . . . . . . . . . . . . . . . . . . . . 23 1 < 3
203201, 202ltneii 11368 . . . . . . . . . . . . . . . . . . . . . 22 1 ≠ 3
204 neeq1 2993 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 = 1 → (𝑖 ≠ 3 ↔ 1 ≠ 3))
205203, 204mpbiri 257 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 = 1 → 𝑖 ≠ 3)
206205neneqd 2935 . . . . . . . . . . . . . . . . . . . 20 (𝑖 = 1 → ¬ 𝑖 = 3)
207206adantl 480 . . . . . . . . . . . . . . . . . . 19 ((⊤ ∧ 𝑖 = 1) → ¬ 𝑖 = 3)
208207iffalsed 4534 . . . . . . . . . . . . . . . . . 18 ((⊤ ∧ 𝑖 = 1) → if(𝑖 = 3, 1, 0) = 0)
209147, 208, 198, 157fvmptd 7008 . . . . . . . . . . . . . . . . 17 (⊤ → ((coe1‘(3 𝑋))‘1) = 0)
210 ax-1ne0 11218 . . . . . . . . . . . . . . . . . . . . . 22 1 ≠ 0
211 neeq1 2993 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 = 1 → (𝑖 ≠ 0 ↔ 1 ≠ 0))
212210, 211mpbiri 257 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 = 1 → 𝑖 ≠ 0)
213212neneqd 2935 . . . . . . . . . . . . . . . . . . . 20 (𝑖 = 1 → ¬ 𝑖 = 0)
214213adantl 480 . . . . . . . . . . . . . . . . . . 19 ((⊤ ∧ 𝑖 = 1) → ¬ 𝑖 = 0)
215214iffalsed 4534 . . . . . . . . . . . . . . . . . 18 ((⊤ ∧ 𝑖 = 1) → if(𝑖 = 0, 2, 0) = 0)
216155, 215, 198, 157fvmptd 7008 . . . . . . . . . . . . . . . . 17 (⊤ → ((coe1‘(𝐾‘2))‘1) = 0)
217209, 216oveq12d 7434 . . . . . . . . . . . . . . . 16 (⊤ → (((coe1‘(3 𝑋))‘1)(-g𝑄)((coe1‘(𝐾‘2))‘1)) = (0(-g𝑄)0))
218200, 217eqtrd 2766 . . . . . . . . . . . . . . 15 (⊤ → ((coe1‘((3 𝑋) (𝐾‘2)))‘1) = (0(-g𝑄)0))
219196, 218, 1933eqtrrd 2771 . . . . . . . . . . . . . 14 (⊤ → 0 = ((coe1𝐹)‘1))
220219mptru 1541 . . . . . . . . . . . . 13 0 = ((coe1𝐹)‘1)
221115fveq1d 6895 . . . . . . . . . . . . . . 15 (⊤ → ((coe1𝐹)‘0) = ((coe1‘((3 𝑋) (𝐾‘2)))‘0))
2222, 34, 35, 132coe1subfv 22253 . . . . . . . . . . . . . . . . 17 (((𝑄 ∈ Ring ∧ (3 𝑋) ∈ (Base‘𝑃) ∧ (𝐾‘2) ∈ (Base‘𝑃)) ∧ 0 ∈ ℕ0) → ((coe1‘((3 𝑋) (𝐾‘2)))‘0) = (((coe1‘(3 𝑋))‘0)(-g𝑄)((coe1‘(𝐾‘2))‘0)))
22344, 54, 66, 157, 222syl31anc 1370 . . . . . . . . . . . . . . . 16 (⊤ → ((coe1‘((3 𝑋) (𝐾‘2)))‘0) = (((coe1‘(3 𝑋))‘0)(-g𝑄)((coe1‘(𝐾‘2))‘0)))
22421necomi 2985 . . . . . . . . . . . . . . . . . . . . . 22 0 ≠ 3
225 neeq1 2993 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 = 0 → (𝑖 ≠ 3 ↔ 0 ≠ 3))
226224, 225mpbiri 257 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 = 0 → 𝑖 ≠ 3)
227226neneqd 2935 . . . . . . . . . . . . . . . . . . . 20 (𝑖 = 0 → ¬ 𝑖 = 3)
228227adantl 480 . . . . . . . . . . . . . . . . . . 19 ((⊤ ∧ 𝑖 = 0) → ¬ 𝑖 = 3)
229228iffalsed 4534 . . . . . . . . . . . . . . . . . 18 ((⊤ ∧ 𝑖 = 0) → if(𝑖 = 3, 1, 0) = 0)
230147, 229, 157, 157fvmptd 7008 . . . . . . . . . . . . . . . . 17 (⊤ → ((coe1‘(3 𝑋))‘0) = 0)
231 simpr 483 . . . . . . . . . . . . . . . . . . 19 ((⊤ ∧ 𝑖 = 0) → 𝑖 = 0)
232231iftrued 4531 . . . . . . . . . . . . . . . . . 18 ((⊤ ∧ 𝑖 = 0) → if(𝑖 = 0, 2, 0) = 2)
233155, 232, 157, 169fvmptd 7008 . . . . . . . . . . . . . . . . 17 (⊤ → ((coe1‘(𝐾‘2))‘0) = 2)
234230, 233oveq12d 7434 . . . . . . . . . . . . . . . 16 (⊤ → (((coe1‘(3 𝑋))‘0)(-g𝑄)((coe1‘(𝐾‘2))‘0)) = (0(-g𝑄)2))
235223, 234eqtrd 2766 . . . . . . . . . . . . . . 15 (⊤ → ((coe1‘((3 𝑋) (𝐾‘2)))‘0) = (0(-g𝑄)2))
236 df-neg 11488 . . . . . . . . . . . . . . . 16 -2 = (0 − 2)
23736, 3, 132subgsub 19128 . . . . . . . . . . . . . . . . 17 ((ℚ ∈ (SubGrp‘ℂfld) ∧ 0 ∈ ℚ ∧ 2 ∈ ℚ) → (0 − 2) = (0(-g𝑄)2))
238136, 189, 65, 237syl3anc 1368 . . . . . . . . . . . . . . . 16 (⊤ → (0 − 2) = (0(-g𝑄)2))
239236, 238eqtr2id 2779 . . . . . . . . . . . . . . 15 (⊤ → (0(-g𝑄)2) = -2)
240221, 235, 2393eqtrrd 2771 . . . . . . . . . . . . . 14 (⊤ → -2 = ((coe1𝐹)‘0))
241240mptru 1541 . . . . . . . . . . . . 13 -2 = ((coe1𝐹)‘0)
24295a1i 11 . . . . . . . . . . . . . 14 (𝑥 ∈ ℚ → 𝑄 ∈ Field)
243242fldcrngd 20716 . . . . . . . . . . . . 13 (𝑥 ∈ ℚ → 𝑄 ∈ CRing)
244100mptru 1541 . . . . . . . . . . . . . 14 𝐹 ∈ (Base‘𝑃)
245244a1i 11 . . . . . . . . . . . . 13 (𝑥 ∈ ℚ → 𝐹 ∈ (Base‘𝑃))
246130mptru 1541 . . . . . . . . . . . . . 14 (𝐷𝐹) = 3
247246a1i 11 . . . . . . . . . . . . 13 (𝑥 ∈ ℚ → (𝐷𝐹) = 3)
248 id 22 . . . . . . . . . . . . 13 (𝑥 ∈ ℚ → 𝑥 ∈ ℚ)
2492, 91, 61, 34, 108, 111, 112, 113, 92, 166, 195, 220, 241, 243, 245, 247, 248evl1deg3 33456 . . . . . . . . . . . 12 (𝑥 ∈ ℚ → (((eval1𝑄)‘𝐹)‘𝑥) = (((1 · (3(.g‘(mulGrp‘𝑄))𝑥)) + (0 · (2(.g‘(mulGrp‘𝑄))𝑥))) + ((0 · 𝑥) + -2)))
250 qsscn 12990 . . . . . . . . . . . . . . . . . 18 ℚ ⊆ ℂ
251 eqid 2726 . . . . . . . . . . . . . . . . . . . . . 22 ((mulGrp‘ℂfld) ↾s ℚ) = ((mulGrp‘ℂfld) ↾s ℚ)
252 eqid 2726 . . . . . . . . . . . . . . . . . . . . . . 23 (mulGrp‘ℂfld) = (mulGrp‘ℂfld)
253252, 6mgpbas 20119 . . . . . . . . . . . . . . . . . . . . . 22 ℂ = (Base‘(mulGrp‘ℂfld))
254251, 253ressbas2 17246 . . . . . . . . . . . . . . . . . . . . 21 (ℚ ⊆ ℂ → ℚ = (Base‘((mulGrp‘ℂfld) ↾s ℚ)))
255250, 254ax-mp 5 . . . . . . . . . . . . . . . . . . . 20 ℚ = (Base‘((mulGrp‘ℂfld) ↾s ℚ))
2563, 252mgpress 20128 . . . . . . . . . . . . . . . . . . . . . 22 ((ℂfld ∈ DivRing ∧ ℚ ∈ (SubRing‘ℂfld)) → ((mulGrp‘ℂfld) ↾s ℚ) = (mulGrp‘𝑄))
2577, 13, 256mp2an 690 . . . . . . . . . . . . . . . . . . . . 21 ((mulGrp‘ℂfld) ↾s ℚ) = (mulGrp‘𝑄)
258257fveq2i 6896 . . . . . . . . . . . . . . . . . . . 20 (Base‘((mulGrp‘ℂfld) ↾s ℚ)) = (Base‘(mulGrp‘𝑄))
259255, 258eqtri 2754 . . . . . . . . . . . . . . . . . . 19 ℚ = (Base‘(mulGrp‘𝑄))
260 eqid 2726 . . . . . . . . . . . . . . . . . . . . 21 (mulGrp‘𝑄) = (mulGrp‘𝑄)
261260ringmgp 20218 . . . . . . . . . . . . . . . . . . . 20 (𝑄 ∈ Ring → (mulGrp‘𝑄) ∈ Mnd)
26256, 261mp1i 13 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ℚ → (mulGrp‘𝑄) ∈ Mnd)
26349a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ℚ → 3 ∈ ℕ0)
264259, 112, 262, 263, 248mulgnn0cld 19085 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℚ → (3(.g‘(mulGrp‘𝑄))𝑥) ∈ ℚ)
265250, 264sselid 3976 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℚ → (3(.g‘(mulGrp‘𝑄))𝑥) ∈ ℂ)
266265mullidd 11273 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℚ → (1 · (3(.g‘(mulGrp‘𝑄))𝑥)) = (3(.g‘(mulGrp‘𝑄))𝑥))
267257eqcomi 2735 . . . . . . . . . . . . . . . . 17 (mulGrp‘𝑄) = ((mulGrp‘ℂfld) ↾s ℚ)
268250, 253sseqtri 4015 . . . . . . . . . . . . . . . . . 18 ℚ ⊆ (Base‘(mulGrp‘ℂfld))
269268a1i 11 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℚ → ℚ ⊆ (Base‘(mulGrp‘ℂfld)))
27080a1i 11 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℚ → 3 ∈ ℕ)
271267, 269, 248, 270ressmulgnnd 19068 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℚ → (3(.g‘(mulGrp‘𝑄))𝑥) = (3(.g‘(mulGrp‘ℂfld))𝑥))
272 qcn 12993 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℚ → 𝑥 ∈ ℂ)
273 cnfldexp 21392 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℂ ∧ 3 ∈ ℕ0) → (3(.g‘(mulGrp‘ℂfld))𝑥) = (𝑥↑3))
274272, 263, 273syl2anc 582 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℚ → (3(.g‘(mulGrp‘ℂfld))𝑥) = (𝑥↑3))
275266, 271, 2743eqtrd 2770 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℚ → (1 · (3(.g‘(mulGrp‘𝑄))𝑥)) = (𝑥↑3))
276168a1i 11 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℚ → 2 ∈ ℕ0)
277259, 112, 262, 276, 248mulgnn0cld 19085 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℚ → (2(.g‘(mulGrp‘𝑄))𝑥) ∈ ℚ)
278250, 277sselid 3976 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℚ → (2(.g‘(mulGrp‘𝑄))𝑥) ∈ ℂ)
279278mul02d 11453 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℚ → (0 · (2(.g‘(mulGrp‘𝑄))𝑥)) = 0)
280275, 279oveq12d 7434 . . . . . . . . . . . . . 14 (𝑥 ∈ ℚ → ((1 · (3(.g‘(mulGrp‘𝑄))𝑥)) + (0 · (2(.g‘(mulGrp‘𝑄))𝑥))) = ((𝑥↑3) + 0))
281272, 263expcld 14159 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℚ → (𝑥↑3) ∈ ℂ)
282281addridd 11455 . . . . . . . . . . . . . 14 (𝑥 ∈ ℚ → ((𝑥↑3) + 0) = (𝑥↑3))
283280, 282eqtrd 2766 . . . . . . . . . . . . 13 (𝑥 ∈ ℚ → ((1 · (3(.g‘(mulGrp‘𝑄))𝑥)) + (0 · (2(.g‘(mulGrp‘𝑄))𝑥))) = (𝑥↑3))
284272mul02d 11453 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℚ → (0 · 𝑥) = 0)
285284oveq1d 7431 . . . . . . . . . . . . . 14 (𝑥 ∈ ℚ → ((0 · 𝑥) + -2) = (0 + -2))
28619a1i 11 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℚ → 2 ∈ ℂ)
287286negcld 11599 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℚ → -2 ∈ ℂ)
288287addlidd 11456 . . . . . . . . . . . . . 14 (𝑥 ∈ ℚ → (0 + -2) = -2)
289285, 288eqtrd 2766 . . . . . . . . . . . . 13 (𝑥 ∈ ℚ → ((0 · 𝑥) + -2) = -2)
290283, 289oveq12d 7434 . . . . . . . . . . . 12 (𝑥 ∈ ℚ → (((1 · (3(.g‘(mulGrp‘𝑄))𝑥)) + (0 · (2(.g‘(mulGrp‘𝑄))𝑥))) + ((0 · 𝑥) + -2)) = ((𝑥↑3) + -2))
291281, 286negsubd 11618 . . . . . . . . . . . 12 (𝑥 ∈ ℚ → ((𝑥↑3) + -2) = ((𝑥↑3) − 2))
292249, 290, 2913eqtrd 2770 . . . . . . . . . . 11 (𝑥 ∈ ℚ → (((eval1𝑄)‘𝐹)‘𝑥) = ((𝑥↑3) − 2))
293 2prm 16688 . . . . . . . . . . . . . . 15 2 ∈ ℙ
294 3z 12641 . . . . . . . . . . . . . . . 16 3 ∈ ℤ
295 3re 12338 . . . . . . . . . . . . . . . . 17 3 ∈ ℝ
296172, 295, 173ltleii 11378 . . . . . . . . . . . . . . . 16 2 ≤ 3
29763eluz1i 12876 . . . . . . . . . . . . . . . 16 (3 ∈ (ℤ‘2) ↔ (3 ∈ ℤ ∧ 2 ≤ 3))
298294, 296, 297mpbir2an 709 . . . . . . . . . . . . . . 15 3 ∈ (ℤ‘2)
299 rtprmirr 26785 . . . . . . . . . . . . . . 15 ((2 ∈ ℙ ∧ 3 ∈ (ℤ‘2)) → (2↑𝑐(1 / 3)) ∈ (ℝ ∖ ℚ))
300293, 298, 299mp2an 690 . . . . . . . . . . . . . 14 (2↑𝑐(1 / 3)) ∈ (ℝ ∖ ℚ)
301 eldifn 4124 . . . . . . . . . . . . . 14 ((2↑𝑐(1 / 3)) ∈ (ℝ ∖ ℚ) → ¬ (2↑𝑐(1 / 3)) ∈ ℚ)
302300, 301ax-mp 5 . . . . . . . . . . . . 13 ¬ (2↑𝑐(1 / 3)) ∈ ℚ
303 nelne2 3030 . . . . . . . . . . . . 13 ((𝑥 ∈ ℚ ∧ ¬ (2↑𝑐(1 / 3)) ∈ ℚ) → 𝑥 ≠ (2↑𝑐(1 / 3)))
304302, 303mpan2 689 . . . . . . . . . . . 12 (𝑥 ∈ ℚ → 𝑥 ≠ (2↑𝑐(1 / 3)))
305 qre 12983 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℚ → 𝑥 ∈ ℝ)
306305adantr 479 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℚ ∧ ((𝑥↑3) − 2) = 0) → 𝑥 ∈ ℝ)
307 2pos 12361 . . . . . . . . . . . . . . . . . 18 0 < 2
308281, 286subeq0ad 11622 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ℚ → (((𝑥↑3) − 2) = 0 ↔ (𝑥↑3) = 2))
309308biimpa 475 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℚ ∧ ((𝑥↑3) − 2) = 0) → (𝑥↑3) = 2)
310307, 309breqtrrid 5183 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℚ ∧ ((𝑥↑3) − 2) = 0) → 0 < (𝑥↑3))
31180a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℚ ∧ ((𝑥↑3) − 2) = 0) → 3 ∈ ℕ)
312 n2dvds3 16368 . . . . . . . . . . . . . . . . . . 19 ¬ 2 ∥ 3
313312a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℚ ∧ ((𝑥↑3) − 2) = 0) → ¬ 2 ∥ 3)
314306, 311, 313expgt0b 32720 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℚ ∧ ((𝑥↑3) − 2) = 0) → (0 < 𝑥 ↔ 0 < (𝑥↑3)))
315310, 314mpbird 256 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℚ ∧ ((𝑥↑3) − 2) = 0) → 0 < 𝑥)
316306, 315elrpd 13061 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℚ ∧ ((𝑥↑3) − 2) = 0) → 𝑥 ∈ ℝ+)
317295a1i 11 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℚ ∧ ((𝑥↑3) − 2) = 0) → 3 ∈ ℝ)
31822a1i 11 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℚ ∧ ((𝑥↑3) − 2) = 0) → (1 / 3) ∈ ℂ)
319316, 317, 318cxpmuld 26761 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℚ ∧ ((𝑥↑3) − 2) = 0) → (𝑥𝑐(3 · (1 / 3))) = ((𝑥𝑐3)↑𝑐(1 / 3)))
32020a1i 11 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℚ → 3 ∈ ℂ)
32121a1i 11 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℚ → 3 ≠ 0)
322320, 321recidd 12030 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℚ → (3 · (1 / 3)) = 1)
323322oveq2d 7432 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℚ → (𝑥𝑐(3 · (1 / 3))) = (𝑥𝑐1))
324272cxp1d 26730 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℚ → (𝑥𝑐1) = 𝑥)
325323, 324eqtrd 2766 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℚ → (𝑥𝑐(3 · (1 / 3))) = 𝑥)
326325adantr 479 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℚ ∧ ((𝑥↑3) − 2) = 0) → (𝑥𝑐(3 · (1 / 3))) = 𝑥)
327 cxpexp 26692 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℂ ∧ 3 ∈ ℕ0) → (𝑥𝑐3) = (𝑥↑3))
328272, 263, 327syl2anc 582 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℚ → (𝑥𝑐3) = (𝑥↑3))
329328oveq1d 7431 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℚ → ((𝑥𝑐3)↑𝑐(1 / 3)) = ((𝑥↑3)↑𝑐(1 / 3)))
330329adantr 479 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℚ ∧ ((𝑥↑3) − 2) = 0) → ((𝑥𝑐3)↑𝑐(1 / 3)) = ((𝑥↑3)↑𝑐(1 / 3)))
331319, 326, 3303eqtr3rd 2775 . . . . . . . . . . . . 13 ((𝑥 ∈ ℚ ∧ ((𝑥↑3) − 2) = 0) → ((𝑥↑3)↑𝑐(1 / 3)) = 𝑥)
332309oveq1d 7431 . . . . . . . . . . . . 13 ((𝑥 ∈ ℚ ∧ ((𝑥↑3) − 2) = 0) → ((𝑥↑3)↑𝑐(1 / 3)) = (2↑𝑐(1 / 3)))
333331, 332eqtr3d 2768 . . . . . . . . . . . 12 ((𝑥 ∈ ℚ ∧ ((𝑥↑3) − 2) = 0) → 𝑥 = (2↑𝑐(1 / 3)))
334304, 333mteqand 3023 . . . . . . . . . . 11 (𝑥 ∈ ℚ → ((𝑥↑3) − 2) ≠ 0)
335292, 334eqnetrd 2998 . . . . . . . . . 10 (𝑥 ∈ ℚ → (((eval1𝑄)‘𝐹)‘𝑥) ≠ 0)
336335neneqd 2935 . . . . . . . . 9 (𝑥 ∈ ℚ → ¬ (((eval1𝑄)‘𝐹)‘𝑥) = 0)
337336rgen 3053 . . . . . . . 8 𝑥 ∈ ℚ ¬ (((eval1𝑄)‘𝐹)‘𝑥) = 0
338337a1i 11 . . . . . . 7 (⊤ → ∀𝑥 ∈ ℚ ¬ (((eval1𝑄)‘𝐹)‘𝑥) = 0)
339 rabeq0 4382 . . . . . . 7 ({𝑥 ∈ ℚ ∣ (((eval1𝑄)‘𝐹)‘𝑥) = 0} = ∅ ↔ ∀𝑥 ∈ ℚ ¬ (((eval1𝑄)‘𝐹)‘𝑥) = 0)
340338, 339sylibr 233 . . . . . 6 (⊤ → {𝑥 ∈ ℚ ∣ (((eval1𝑄)‘𝐹)‘𝑥) = 0} = ∅)
341105, 340eqtrd 2766 . . . . 5 (⊤ → (((eval1𝑄)‘𝐹) “ {0}) = ∅)
34290, 91, 92, 2, 34, 96, 100, 341, 130ply1dg3rt0irred 33460 . . . 4 (⊤ → 𝐹 ∈ (Irred‘𝑃))
343 eqid 2726 . . . . . . 7 (Irred‘𝑃) = (Irred‘𝑃)
344343, 29irredn0 20401 . . . . . 6 ((𝑃 ∈ Ring ∧ 𝐹 ∈ (Irred‘𝑃)) → 𝐹 ≠ (0g𝑃))
34546, 342, 344syl2anc 582 . . . . 5 (⊤ → 𝐹 ≠ (0g𝑃))
3463fveq2i 6896 . . . . . . 7 (deg1𝑄) = (deg1‘(ℂflds ℚ))
34792, 346eqtri 2754 . . . . . 6 𝐷 = (deg1‘(ℂflds ℚ))
348 eqid 2726 . . . . . 6 (Monic1p‘(ℂflds ℚ)) = (Monic1p‘(ℂflds ℚ))
349 eqid 2726 . . . . . . 7 (ℂflds ℚ) = (ℂflds ℚ)
350349qrng1 27648 . . . . . 6 1 = (1r‘(ℂflds ℚ))
3515, 34, 29, 347, 348, 350ismon1p 26167 . . . . 5 (𝐹 ∈ (Monic1p‘(ℂflds ℚ)) ↔ (𝐹 ∈ (Base‘𝑃) ∧ 𝐹 ≠ (0g𝑃) ∧ ((coe1𝐹)‘(𝐷𝐹)) = 1))
352100, 345, 163, 351syl3anbrc 1340 . . . 4 (⊤ → 𝐹 ∈ (Monic1p‘(ℂflds ℚ)))
3531, 5, 6, 11, 17, 26, 27, 28, 29, 89, 342, 352irredminply 33589 . . 3 (⊤ → 𝐹 = (𝑀𝐴))
354353, 130jca 510 . 2 (⊤ → (𝐹 = (𝑀𝐴) ∧ (𝐷𝐹) = 3))
355354mptru 1541 1 (𝐹 = (𝑀𝐴) ∧ (𝐷𝐹) = 3)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 394   = wceq 1534  wtru 1535  wcel 2099  wne 2930  wral 3051  {crab 3419  cdif 3943  wss 3946  c0 4322  ifcif 4523  {csn 4623   class class class wbr 5145  cmpt 5228   I cid 5571  ccnv 5673  cres 5676  cima 5677   Fn wfn 6541  cfv 6546  (class class class)co 7416  cc 11147  cr 11148  0cc0 11149  1c1 11150   + caddc 11152   · cmul 11154   < clt 11289  cle 11290  cmin 11485  -cneg 11486   / cdiv 11912  cn 12258  2c2 12313  3c3 12314  0cn0 12518  cz 12604  cuz 12868  cq 12978  cexp 14075  cdvds 16251  cprime 16667  Basecbs 17208  s cress 17237  +gcplusg 17261  .rcmulr 17262  Scalarcsca 17264  0gc0g 17449  Mndcmnd 18722  Grpcgrp 18923  -gcsg 18925  .gcmg 19057  SubGrpcsubg 19110  mulGrpcmgp 20113  Ringcrg 20212  CRingccrg 20213  Irredcir 20334  NzRingcnzr 20490  SubRingcsubrg 20547  DivRingcdr 20703  Fieldcfield 20704  SubDRingcsdrg 20761  LModclmod 20832  fldccnfld 21339  algSccascl 21846  var1cv1 22161  Poly1cpl1 22162  coe1cco1 22163   evalSub1 ces1 22301  eval1ce1 22302  deg1cdg1 26075  Monic1pcmn1 26150  𝑐ccxp 26579   minPoly cminply 33574
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5282  ax-sep 5296  ax-nul 5303  ax-pow 5361  ax-pr 5425  ax-un 7738  ax-inf2 9677  ax-cnex 11205  ax-resscn 11206  ax-1cn 11207  ax-icn 11208  ax-addcl 11209  ax-addrcl 11210  ax-mulcl 11211  ax-mulrcl 11212  ax-mulcom 11213  ax-addass 11214  ax-mulass 11215  ax-distr 11216  ax-i2m1 11217  ax-1ne0 11218  ax-1rid 11219  ax-rnegex 11220  ax-rrecex 11221  ax-cnre 11222  ax-pre-lttri 11223  ax-pre-lttrn 11224  ax-pre-ltadd 11225  ax-pre-mulgt0 11226  ax-pre-sup 11227  ax-addf 11228  ax-mulf 11229
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3966  df-nul 4323  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-tp 4628  df-op 4630  df-uni 4906  df-int 4947  df-iun 4995  df-iin 4996  df-br 5146  df-opab 5208  df-mpt 5229  df-tr 5263  df-id 5572  df-eprel 5578  df-po 5586  df-so 5587  df-fr 5629  df-se 5630  df-we 5631  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687  df-pred 6304  df-ord 6371  df-on 6372  df-lim 6373  df-suc 6374  df-iota 6498  df-fun 6548  df-fn 6549  df-f 6550  df-f1 6551  df-fo 6552  df-f1o 6553  df-fv 6554  df-isom 6555  df-riota 7372  df-ov 7419  df-oprab 7420  df-mpo 7421  df-of 7682  df-ofr 7683  df-om 7869  df-1st 7995  df-2nd 7996  df-supp 8167  df-tpos 8233  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-2o 8489  df-er 8726  df-map 8849  df-pm 8850  df-ixp 8919  df-en 8967  df-dom 8968  df-sdom 8969  df-fin 8970  df-fsupp 9399  df-fi 9447  df-sup 9478  df-inf 9479  df-oi 9546  df-card 9975  df-pnf 11291  df-mnf 11292  df-xr 11293  df-ltxr 11294  df-le 11295  df-sub 11487  df-neg 11488  df-div 11913  df-nn 12259  df-2 12321  df-3 12322  df-4 12323  df-5 12324  df-6 12325  df-7 12326  df-8 12327  df-9 12328  df-n0 12519  df-z 12605  df-dec 12724  df-uz 12869  df-q 12979  df-rp 13023  df-xneg 13140  df-xadd 13141  df-xmul 13142  df-ioo 13376  df-ioc 13377  df-ico 13378  df-icc 13379  df-fz 13533  df-fzo 13676  df-fl 13806  df-mod 13884  df-seq 14016  df-exp 14076  df-fac 14286  df-bc 14315  df-hash 14343  df-shft 15067  df-cj 15099  df-re 15100  df-im 15101  df-sqrt 15235  df-abs 15236  df-limsup 15468  df-clim 15485  df-rlim 15486  df-sum 15686  df-ef 16064  df-sin 16066  df-cos 16067  df-pi 16069  df-dvds 16252  df-gcd 16490  df-prm 16668  df-numer 16732  df-denom 16733  df-struct 17144  df-sets 17161  df-slot 17179  df-ndx 17191  df-base 17209  df-ress 17238  df-plusg 17274  df-mulr 17275  df-starv 17276  df-sca 17277  df-vsca 17278  df-ip 17279  df-tset 17280  df-ple 17281  df-ds 17283  df-unif 17284  df-hom 17285  df-cco 17286  df-rest 17432  df-topn 17433  df-0g 17451  df-gsum 17452  df-topgen 17453  df-pt 17454  df-prds 17457  df-pws 17459  df-xrs 17512  df-qtop 17517  df-imas 17518  df-xps 17520  df-mre 17594  df-mrc 17595  df-acs 17597  df-mgm 18628  df-sgrp 18707  df-mnd 18723  df-mhm 18768  df-submnd 18769  df-grp 18926  df-minusg 18927  df-sbg 18928  df-mulg 19058  df-subg 19113  df-ghm 19203  df-cntz 19307  df-cmn 19776  df-abl 19777  df-mgp 20114  df-rng 20132  df-ur 20161  df-srg 20166  df-ring 20214  df-cring 20215  df-oppr 20312  df-dvdsr 20335  df-unit 20336  df-irred 20337  df-invr 20366  df-dvr 20379  df-rhm 20450  df-nzr 20491  df-subrng 20524  df-subrg 20549  df-rlreg 20668  df-domn 20669  df-idom 20670  df-drng 20705  df-field 20706  df-sdrg 20762  df-lmod 20834  df-lss 20905  df-lsp 20945  df-sra 21147  df-rgmod 21148  df-lidl 21193  df-rsp 21194  df-psmet 21331  df-xmet 21332  df-met 21333  df-bl 21334  df-mopn 21335  df-fbas 21336  df-fg 21337  df-cnfld 21340  df-assa 21847  df-asp 21848  df-ascl 21849  df-psr 21902  df-mvr 21903  df-mpl 21904  df-opsr 21906  df-evls 22083  df-evl 22084  df-psr1 22165  df-vr1 22166  df-ply1 22167  df-coe1 22168  df-evls1 22303  df-evl1 22304  df-top 22884  df-topon 22901  df-topsp 22923  df-bases 22937  df-cld 23011  df-ntr 23012  df-cls 23013  df-nei 23090  df-lp 23128  df-perf 23129  df-cn 23219  df-cnp 23220  df-haus 23307  df-tx 23554  df-hmeo 23747  df-fil 23838  df-fm 23930  df-flim 23931  df-flf 23932  df-xms 24314  df-ms 24315  df-tms 24316  df-cncf 24886  df-limc 25883  df-dv 25884  df-mdeg 26076  df-deg1 26077  df-mon1 26155  df-uc1p 26156  df-q1p 26157  df-r1p 26158  df-ig1p 26159  df-log 26580  df-cxp 26581  df-irng 33566  df-minply 33575
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator