Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > suceloni | Structured version Visualization version GIF version |
Description: The successor of an ordinal number is an ordinal number. Proposition 7.24 of [TakeutiZaring] p. 41. (Contributed by NM, 6-Jun-1994.) |
Ref | Expression |
---|---|
suceloni | ⊢ (𝐴 ∈ On → suc 𝐴 ∈ On) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | onelss 6293 | . . . . . . . 8 ⊢ (𝐴 ∈ On → (𝑥 ∈ 𝐴 → 𝑥 ⊆ 𝐴)) | |
2 | velsn 4574 | . . . . . . . . . 10 ⊢ (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴) | |
3 | eqimss 3973 | . . . . . . . . . 10 ⊢ (𝑥 = 𝐴 → 𝑥 ⊆ 𝐴) | |
4 | 2, 3 | sylbi 216 | . . . . . . . . 9 ⊢ (𝑥 ∈ {𝐴} → 𝑥 ⊆ 𝐴) |
5 | 4 | a1i 11 | . . . . . . . 8 ⊢ (𝐴 ∈ On → (𝑥 ∈ {𝐴} → 𝑥 ⊆ 𝐴)) |
6 | 1, 5 | orim12d 961 | . . . . . . 7 ⊢ (𝐴 ∈ On → ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ {𝐴}) → (𝑥 ⊆ 𝐴 ∨ 𝑥 ⊆ 𝐴))) |
7 | df-suc 6257 | . . . . . . . . 9 ⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) | |
8 | 7 | eleq2i 2830 | . . . . . . . 8 ⊢ (𝑥 ∈ suc 𝐴 ↔ 𝑥 ∈ (𝐴 ∪ {𝐴})) |
9 | elun 4079 | . . . . . . . 8 ⊢ (𝑥 ∈ (𝐴 ∪ {𝐴}) ↔ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ {𝐴})) | |
10 | 8, 9 | bitr2i 275 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ {𝐴}) ↔ 𝑥 ∈ suc 𝐴) |
11 | oridm 901 | . . . . . . 7 ⊢ ((𝑥 ⊆ 𝐴 ∨ 𝑥 ⊆ 𝐴) ↔ 𝑥 ⊆ 𝐴) | |
12 | 6, 10, 11 | 3imtr3g 294 | . . . . . 6 ⊢ (𝐴 ∈ On → (𝑥 ∈ suc 𝐴 → 𝑥 ⊆ 𝐴)) |
13 | sssucid 6328 | . . . . . 6 ⊢ 𝐴 ⊆ suc 𝐴 | |
14 | sstr2 3924 | . . . . . 6 ⊢ (𝑥 ⊆ 𝐴 → (𝐴 ⊆ suc 𝐴 → 𝑥 ⊆ suc 𝐴)) | |
15 | 12, 13, 14 | syl6mpi 67 | . . . . 5 ⊢ (𝐴 ∈ On → (𝑥 ∈ suc 𝐴 → 𝑥 ⊆ suc 𝐴)) |
16 | 15 | ralrimiv 3106 | . . . 4 ⊢ (𝐴 ∈ On → ∀𝑥 ∈ suc 𝐴𝑥 ⊆ suc 𝐴) |
17 | dftr3 5191 | . . . 4 ⊢ (Tr suc 𝐴 ↔ ∀𝑥 ∈ suc 𝐴𝑥 ⊆ suc 𝐴) | |
18 | 16, 17 | sylibr 233 | . . 3 ⊢ (𝐴 ∈ On → Tr suc 𝐴) |
19 | onss 7611 | . . . . 5 ⊢ (𝐴 ∈ On → 𝐴 ⊆ On) | |
20 | snssi 4738 | . . . . 5 ⊢ (𝐴 ∈ On → {𝐴} ⊆ On) | |
21 | 19, 20 | unssd 4116 | . . . 4 ⊢ (𝐴 ∈ On → (𝐴 ∪ {𝐴}) ⊆ On) |
22 | 7, 21 | eqsstrid 3965 | . . 3 ⊢ (𝐴 ∈ On → suc 𝐴 ⊆ On) |
23 | ordon 7604 | . . . 4 ⊢ Ord On | |
24 | trssord 6268 | . . . . 5 ⊢ ((Tr suc 𝐴 ∧ suc 𝐴 ⊆ On ∧ Ord On) → Ord suc 𝐴) | |
25 | 24 | 3exp 1117 | . . . 4 ⊢ (Tr suc 𝐴 → (suc 𝐴 ⊆ On → (Ord On → Ord suc 𝐴))) |
26 | 23, 25 | mpii 46 | . . 3 ⊢ (Tr suc 𝐴 → (suc 𝐴 ⊆ On → Ord suc 𝐴)) |
27 | 18, 22, 26 | sylc 65 | . 2 ⊢ (𝐴 ∈ On → Ord suc 𝐴) |
28 | sucexg 7632 | . . 3 ⊢ (𝐴 ∈ On → suc 𝐴 ∈ V) | |
29 | elong 6259 | . . 3 ⊢ (suc 𝐴 ∈ V → (suc 𝐴 ∈ On ↔ Ord suc 𝐴)) | |
30 | 28, 29 | syl 17 | . 2 ⊢ (𝐴 ∈ On → (suc 𝐴 ∈ On ↔ Ord suc 𝐴)) |
31 | 27, 30 | mpbird 256 | 1 ⊢ (𝐴 ∈ On → suc 𝐴 ∈ On) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∨ wo 843 = wceq 1539 ∈ wcel 2108 ∀wral 3063 Vcvv 3422 ∪ cun 3881 ⊆ wss 3883 {csn 4558 Tr wtr 5187 Ord word 6250 Oncon0 6251 suc csuc 6253 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-11 2156 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-tr 5188 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-ord 6254 df-on 6255 df-suc 6257 |
This theorem is referenced by: ordsuc 7636 unon 7653 onsuci 7660 ordunisuc2 7666 ordzsl 7667 onzsl 7668 tfindsg 7682 dfom2 7689 findsg 7720 tfrlem12 8191 oasuc 8316 omsuc 8318 onasuc 8320 oacl 8327 oneo 8374 omeulem1 8375 omeulem2 8376 oeordi 8380 oeworde 8386 oelim2 8388 oelimcl 8393 oeeulem 8394 oeeui 8395 oaabs2 8439 omxpenlem 8813 card2inf 9244 cantnflt 9360 cantnflem1d 9376 cnfcom 9388 r1ordg 9467 bndrank 9530 r1pw 9534 r1pwALT 9535 tcrank 9573 onssnum 9727 dfac12lem2 9831 cfsuc 9944 cfsmolem 9957 fin1a2lem1 10087 fin1a2lem2 10088 ttukeylem7 10202 alephreg 10269 gch2 10362 winainflem 10380 winalim2 10383 r1wunlim 10424 nqereu 10616 noextend 33796 noresle 33827 nosupno 33833 madeoldsuc 33994 ontgval 34547 ontgsucval 34548 onsuctop 34549 sucneqond 35463 onsetreclem2 46297 |
Copyright terms: Public domain | W3C validator |