Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > suceloni | Structured version Visualization version GIF version |
Description: The successor of an ordinal number is an ordinal number. Proposition 7.24 of [TakeutiZaring] p. 41. (Contributed by NM, 6-Jun-1994.) |
Ref | Expression |
---|---|
suceloni | ⊢ (𝐴 ∈ On → suc 𝐴 ∈ On) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | onelss 6255 | . . . . . . . 8 ⊢ (𝐴 ∈ On → (𝑥 ∈ 𝐴 → 𝑥 ⊆ 𝐴)) | |
2 | velsn 4557 | . . . . . . . . . 10 ⊢ (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴) | |
3 | eqimss 3957 | . . . . . . . . . 10 ⊢ (𝑥 = 𝐴 → 𝑥 ⊆ 𝐴) | |
4 | 2, 3 | sylbi 220 | . . . . . . . . 9 ⊢ (𝑥 ∈ {𝐴} → 𝑥 ⊆ 𝐴) |
5 | 4 | a1i 11 | . . . . . . . 8 ⊢ (𝐴 ∈ On → (𝑥 ∈ {𝐴} → 𝑥 ⊆ 𝐴)) |
6 | 1, 5 | orim12d 965 | . . . . . . 7 ⊢ (𝐴 ∈ On → ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ {𝐴}) → (𝑥 ⊆ 𝐴 ∨ 𝑥 ⊆ 𝐴))) |
7 | df-suc 6219 | . . . . . . . . 9 ⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) | |
8 | 7 | eleq2i 2829 | . . . . . . . 8 ⊢ (𝑥 ∈ suc 𝐴 ↔ 𝑥 ∈ (𝐴 ∪ {𝐴})) |
9 | elun 4063 | . . . . . . . 8 ⊢ (𝑥 ∈ (𝐴 ∪ {𝐴}) ↔ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ {𝐴})) | |
10 | 8, 9 | bitr2i 279 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ {𝐴}) ↔ 𝑥 ∈ suc 𝐴) |
11 | oridm 905 | . . . . . . 7 ⊢ ((𝑥 ⊆ 𝐴 ∨ 𝑥 ⊆ 𝐴) ↔ 𝑥 ⊆ 𝐴) | |
12 | 6, 10, 11 | 3imtr3g 298 | . . . . . 6 ⊢ (𝐴 ∈ On → (𝑥 ∈ suc 𝐴 → 𝑥 ⊆ 𝐴)) |
13 | sssucid 6290 | . . . . . 6 ⊢ 𝐴 ⊆ suc 𝐴 | |
14 | sstr2 3908 | . . . . . 6 ⊢ (𝑥 ⊆ 𝐴 → (𝐴 ⊆ suc 𝐴 → 𝑥 ⊆ suc 𝐴)) | |
15 | 12, 13, 14 | syl6mpi 67 | . . . . 5 ⊢ (𝐴 ∈ On → (𝑥 ∈ suc 𝐴 → 𝑥 ⊆ suc 𝐴)) |
16 | 15 | ralrimiv 3104 | . . . 4 ⊢ (𝐴 ∈ On → ∀𝑥 ∈ suc 𝐴𝑥 ⊆ suc 𝐴) |
17 | dftr3 5165 | . . . 4 ⊢ (Tr suc 𝐴 ↔ ∀𝑥 ∈ suc 𝐴𝑥 ⊆ suc 𝐴) | |
18 | 16, 17 | sylibr 237 | . . 3 ⊢ (𝐴 ∈ On → Tr suc 𝐴) |
19 | onss 7568 | . . . . 5 ⊢ (𝐴 ∈ On → 𝐴 ⊆ On) | |
20 | snssi 4721 | . . . . 5 ⊢ (𝐴 ∈ On → {𝐴} ⊆ On) | |
21 | 19, 20 | unssd 4100 | . . . 4 ⊢ (𝐴 ∈ On → (𝐴 ∪ {𝐴}) ⊆ On) |
22 | 7, 21 | eqsstrid 3949 | . . 3 ⊢ (𝐴 ∈ On → suc 𝐴 ⊆ On) |
23 | ordon 7561 | . . . 4 ⊢ Ord On | |
24 | trssord 6230 | . . . . 5 ⊢ ((Tr suc 𝐴 ∧ suc 𝐴 ⊆ On ∧ Ord On) → Ord suc 𝐴) | |
25 | 24 | 3exp 1121 | . . . 4 ⊢ (Tr suc 𝐴 → (suc 𝐴 ⊆ On → (Ord On → Ord suc 𝐴))) |
26 | 23, 25 | mpii 46 | . . 3 ⊢ (Tr suc 𝐴 → (suc 𝐴 ⊆ On → Ord suc 𝐴)) |
27 | 18, 22, 26 | sylc 65 | . 2 ⊢ (𝐴 ∈ On → Ord suc 𝐴) |
28 | sucexg 7589 | . . 3 ⊢ (𝐴 ∈ On → suc 𝐴 ∈ V) | |
29 | elong 6221 | . . 3 ⊢ (suc 𝐴 ∈ V → (suc 𝐴 ∈ On ↔ Ord suc 𝐴)) | |
30 | 28, 29 | syl 17 | . 2 ⊢ (𝐴 ∈ On → (suc 𝐴 ∈ On ↔ Ord suc 𝐴)) |
31 | 27, 30 | mpbird 260 | 1 ⊢ (𝐴 ∈ On → suc 𝐴 ∈ On) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∨ wo 847 = wceq 1543 ∈ wcel 2110 ∀wral 3061 Vcvv 3408 ∪ cun 3864 ⊆ wss 3866 {csn 4541 Tr wtr 5161 Ord word 6212 Oncon0 6213 suc csuc 6215 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-11 2158 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pr 5322 ax-un 7523 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-sb 2071 df-clab 2715 df-cleq 2729 df-clel 2816 df-ne 2941 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3410 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-br 5054 df-opab 5116 df-tr 5162 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-ord 6216 df-on 6217 df-suc 6219 |
This theorem is referenced by: ordsuc 7593 unon 7610 onsuci 7617 ordunisuc2 7623 ordzsl 7624 onzsl 7625 tfindsg 7639 dfom2 7646 findsg 7677 tfrlem12 8125 oasuc 8251 omsuc 8253 onasuc 8255 oacl 8262 oneo 8309 omeulem1 8310 omeulem2 8311 oeordi 8315 oeworde 8321 oelim2 8323 oelimcl 8328 oeeulem 8329 oeeui 8330 oaabs2 8374 omxpenlem 8746 card2inf 9171 cantnflt 9287 cantnflem1d 9303 cnfcom 9315 r1ordg 9394 bndrank 9457 r1pw 9461 r1pwALT 9462 tcrank 9500 onssnum 9654 dfac12lem2 9758 cfsuc 9871 cfsmolem 9884 fin1a2lem1 10014 fin1a2lem2 10015 ttukeylem7 10129 alephreg 10196 gch2 10289 winainflem 10307 winalim2 10310 r1wunlim 10351 nqereu 10543 noextend 33606 noresle 33637 nosupno 33643 madeoldsuc 33804 ontgval 34357 ontgsucval 34358 onsuctop 34359 sucneqond 35273 onsetreclem2 46082 |
Copyright terms: Public domain | W3C validator |