MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovolun Structured version   Visualization version   GIF version

Theorem ovolun 25433
Description: The Lebesgue outer measure function is finitely sub-additive. (Unlike the stronger ovoliun 25439, this does not require any choice principles.) (Contributed by Mario Carneiro, 12-Jun-2014.)
Assertion
Ref Expression
ovolun (((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) → (vol*‘(𝐴𝐵)) ≤ ((vol*‘𝐴) + (vol*‘𝐵)))

Proof of Theorem ovolun
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpll 766 . . . 4 ((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) ∧ 𝑥 ∈ ℝ+) → (𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ))
2 simplr 768 . . . 4 ((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) ∧ 𝑥 ∈ ℝ+) → (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ))
3 simpr 484 . . . 4 ((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ+)
41, 2, 3ovolunlem2 25432 . . 3 ((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) ∧ 𝑥 ∈ ℝ+) → (vol*‘(𝐴𝐵)) ≤ (((vol*‘𝐴) + (vol*‘𝐵)) + 𝑥))
54ralrimiva 3125 . 2 (((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) → ∀𝑥 ∈ ℝ+ (vol*‘(𝐴𝐵)) ≤ (((vol*‘𝐴) + (vol*‘𝐵)) + 𝑥))
6 unss 4149 . . . . . 6 ((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ↔ (𝐴𝐵) ⊆ ℝ)
76biimpi 216 . . . . 5 ((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) → (𝐴𝐵) ⊆ ℝ)
87ad2ant2r 747 . . . 4 (((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) → (𝐴𝐵) ⊆ ℝ)
9 ovolcl 25412 . . . 4 ((𝐴𝐵) ⊆ ℝ → (vol*‘(𝐴𝐵)) ∈ ℝ*)
108, 9syl 17 . . 3 (((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) → (vol*‘(𝐴𝐵)) ∈ ℝ*)
11 readdcl 11127 . . . 4 (((vol*‘𝐴) ∈ ℝ ∧ (vol*‘𝐵) ∈ ℝ) → ((vol*‘𝐴) + (vol*‘𝐵)) ∈ ℝ)
1211ad2ant2l 746 . . 3 (((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) → ((vol*‘𝐴) + (vol*‘𝐵)) ∈ ℝ)
13 xralrple 13141 . . 3 (((vol*‘(𝐴𝐵)) ∈ ℝ* ∧ ((vol*‘𝐴) + (vol*‘𝐵)) ∈ ℝ) → ((vol*‘(𝐴𝐵)) ≤ ((vol*‘𝐴) + (vol*‘𝐵)) ↔ ∀𝑥 ∈ ℝ+ (vol*‘(𝐴𝐵)) ≤ (((vol*‘𝐴) + (vol*‘𝐵)) + 𝑥)))
1410, 12, 13syl2anc 584 . 2 (((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) → ((vol*‘(𝐴𝐵)) ≤ ((vol*‘𝐴) + (vol*‘𝐵)) ↔ ∀𝑥 ∈ ℝ+ (vol*‘(𝐴𝐵)) ≤ (((vol*‘𝐴) + (vol*‘𝐵)) + 𝑥)))
155, 14mpbird 257 1 (((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) → (vol*‘(𝐴𝐵)) ≤ ((vol*‘𝐴) + (vol*‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2109  wral 3044  cun 3909  wss 3911   class class class wbr 5102  cfv 6499  (class class class)co 7369  cr 11043   + caddc 11047  *cxr 11183  cle 11185  +crp 12927  vol*covol 25396
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-sup 9369  df-inf 9370  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-n0 12419  df-z 12506  df-uz 12770  df-q 12884  df-rp 12928  df-ioo 13286  df-ico 13288  df-fz 13445  df-fl 13730  df-seq 13943  df-exp 14003  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-ovol 25398
This theorem is referenced by:  ovolunnul  25434  ovolfiniun  25435  ismbl2  25461  nulmbl2  25470  unmbl  25471  volun  25479  voliunlem2  25485  uniioombllem3  25519  uniioombllem4  25520  volcn  25540  mblfinlem3  37646  mblfinlem4  37647  ovolsplit  45979
  Copyright terms: Public domain W3C validator