| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ovolun | Structured version Visualization version GIF version | ||
| Description: The Lebesgue outer measure function is finitely sub-additive. (Unlike the stronger ovoliun 25412, this does not require any choice principles.) (Contributed by Mario Carneiro, 12-Jun-2014.) |
| Ref | Expression |
|---|---|
| ovolun | ⊢ (((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) → (vol*‘(𝐴 ∪ 𝐵)) ≤ ((vol*‘𝐴) + (vol*‘𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpll 766 | . . . 4 ⊢ ((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) ∧ 𝑥 ∈ ℝ+) → (𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ)) | |
| 2 | simplr 768 | . . . 4 ⊢ ((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) ∧ 𝑥 ∈ ℝ+) → (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) | |
| 3 | simpr 484 | . . . 4 ⊢ ((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ+) | |
| 4 | 1, 2, 3 | ovolunlem2 25405 | . . 3 ⊢ ((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) ∧ 𝑥 ∈ ℝ+) → (vol*‘(𝐴 ∪ 𝐵)) ≤ (((vol*‘𝐴) + (vol*‘𝐵)) + 𝑥)) |
| 5 | 4 | ralrimiva 3126 | . 2 ⊢ (((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) → ∀𝑥 ∈ ℝ+ (vol*‘(𝐴 ∪ 𝐵)) ≤ (((vol*‘𝐴) + (vol*‘𝐵)) + 𝑥)) |
| 6 | unss 4155 | . . . . . 6 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ↔ (𝐴 ∪ 𝐵) ⊆ ℝ) | |
| 7 | 6 | biimpi 216 | . . . . 5 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) → (𝐴 ∪ 𝐵) ⊆ ℝ) |
| 8 | 7 | ad2ant2r 747 | . . . 4 ⊢ (((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) → (𝐴 ∪ 𝐵) ⊆ ℝ) |
| 9 | ovolcl 25385 | . . . 4 ⊢ ((𝐴 ∪ 𝐵) ⊆ ℝ → (vol*‘(𝐴 ∪ 𝐵)) ∈ ℝ*) | |
| 10 | 8, 9 | syl 17 | . . 3 ⊢ (((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) → (vol*‘(𝐴 ∪ 𝐵)) ∈ ℝ*) |
| 11 | readdcl 11157 | . . . 4 ⊢ (((vol*‘𝐴) ∈ ℝ ∧ (vol*‘𝐵) ∈ ℝ) → ((vol*‘𝐴) + (vol*‘𝐵)) ∈ ℝ) | |
| 12 | 11 | ad2ant2l 746 | . . 3 ⊢ (((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) → ((vol*‘𝐴) + (vol*‘𝐵)) ∈ ℝ) |
| 13 | xralrple 13171 | . . 3 ⊢ (((vol*‘(𝐴 ∪ 𝐵)) ∈ ℝ* ∧ ((vol*‘𝐴) + (vol*‘𝐵)) ∈ ℝ) → ((vol*‘(𝐴 ∪ 𝐵)) ≤ ((vol*‘𝐴) + (vol*‘𝐵)) ↔ ∀𝑥 ∈ ℝ+ (vol*‘(𝐴 ∪ 𝐵)) ≤ (((vol*‘𝐴) + (vol*‘𝐵)) + 𝑥))) | |
| 14 | 10, 12, 13 | syl2anc 584 | . 2 ⊢ (((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) → ((vol*‘(𝐴 ∪ 𝐵)) ≤ ((vol*‘𝐴) + (vol*‘𝐵)) ↔ ∀𝑥 ∈ ℝ+ (vol*‘(𝐴 ∪ 𝐵)) ≤ (((vol*‘𝐴) + (vol*‘𝐵)) + 𝑥))) |
| 15 | 5, 14 | mpbird 257 | 1 ⊢ (((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) → (vol*‘(𝐴 ∪ 𝐵)) ≤ ((vol*‘𝐴) + (vol*‘𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 ∀wral 3045 ∪ cun 3914 ⊆ wss 3916 class class class wbr 5109 ‘cfv 6513 (class class class)co 7389 ℝcr 11073 + caddc 11077 ℝ*cxr 11213 ≤ cle 11215 ℝ+crp 12957 vol*covol 25369 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-cnex 11130 ax-resscn 11131 ax-1cn 11132 ax-icn 11133 ax-addcl 11134 ax-addrcl 11135 ax-mulcl 11136 ax-mulrcl 11137 ax-mulcom 11138 ax-addass 11139 ax-mulass 11140 ax-distr 11141 ax-i2m1 11142 ax-1ne0 11143 ax-1rid 11144 ax-rnegex 11145 ax-rrecex 11146 ax-cnre 11147 ax-pre-lttri 11148 ax-pre-lttrn 11149 ax-pre-ltadd 11150 ax-pre-mulgt0 11151 ax-pre-sup 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-om 7845 df-1st 7970 df-2nd 7971 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-er 8673 df-map 8803 df-en 8921 df-dom 8922 df-sdom 8923 df-sup 9399 df-inf 9400 df-pnf 11216 df-mnf 11217 df-xr 11218 df-ltxr 11219 df-le 11220 df-sub 11413 df-neg 11414 df-div 11842 df-nn 12188 df-2 12250 df-3 12251 df-n0 12449 df-z 12536 df-uz 12800 df-q 12914 df-rp 12958 df-ioo 13316 df-ico 13318 df-fz 13475 df-fl 13760 df-seq 13973 df-exp 14033 df-cj 15071 df-re 15072 df-im 15073 df-sqrt 15207 df-abs 15208 df-ovol 25371 |
| This theorem is referenced by: ovolunnul 25407 ovolfiniun 25408 ismbl2 25434 nulmbl2 25443 unmbl 25444 volun 25452 voliunlem2 25458 uniioombllem3 25492 uniioombllem4 25493 volcn 25513 mblfinlem3 37648 mblfinlem4 37649 ovolsplit 45979 |
| Copyright terms: Public domain | W3C validator |