![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ovolun | Structured version Visualization version GIF version |
Description: The Lebesgue outer measure function is finitely sub-additive. (Unlike the stronger ovoliun 25447, this does not require any choice principles.) (Contributed by Mario Carneiro, 12-Jun-2014.) |
Ref | Expression |
---|---|
ovolun | ⊢ (((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) → (vol*‘(𝐴 ∪ 𝐵)) ≤ ((vol*‘𝐴) + (vol*‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpll 766 | . . . 4 ⊢ ((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) ∧ 𝑥 ∈ ℝ+) → (𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ)) | |
2 | simplr 768 | . . . 4 ⊢ ((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) ∧ 𝑥 ∈ ℝ+) → (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) | |
3 | simpr 484 | . . . 4 ⊢ ((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ+) | |
4 | 1, 2, 3 | ovolunlem2 25440 | . . 3 ⊢ ((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) ∧ 𝑥 ∈ ℝ+) → (vol*‘(𝐴 ∪ 𝐵)) ≤ (((vol*‘𝐴) + (vol*‘𝐵)) + 𝑥)) |
5 | 4 | ralrimiva 3143 | . 2 ⊢ (((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) → ∀𝑥 ∈ ℝ+ (vol*‘(𝐴 ∪ 𝐵)) ≤ (((vol*‘𝐴) + (vol*‘𝐵)) + 𝑥)) |
6 | unss 4184 | . . . . . 6 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ↔ (𝐴 ∪ 𝐵) ⊆ ℝ) | |
7 | 6 | biimpi 215 | . . . . 5 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) → (𝐴 ∪ 𝐵) ⊆ ℝ) |
8 | 7 | ad2ant2r 746 | . . . 4 ⊢ (((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) → (𝐴 ∪ 𝐵) ⊆ ℝ) |
9 | ovolcl 25420 | . . . 4 ⊢ ((𝐴 ∪ 𝐵) ⊆ ℝ → (vol*‘(𝐴 ∪ 𝐵)) ∈ ℝ*) | |
10 | 8, 9 | syl 17 | . . 3 ⊢ (((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) → (vol*‘(𝐴 ∪ 𝐵)) ∈ ℝ*) |
11 | readdcl 11222 | . . . 4 ⊢ (((vol*‘𝐴) ∈ ℝ ∧ (vol*‘𝐵) ∈ ℝ) → ((vol*‘𝐴) + (vol*‘𝐵)) ∈ ℝ) | |
12 | 11 | ad2ant2l 745 | . . 3 ⊢ (((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) → ((vol*‘𝐴) + (vol*‘𝐵)) ∈ ℝ) |
13 | xralrple 13217 | . . 3 ⊢ (((vol*‘(𝐴 ∪ 𝐵)) ∈ ℝ* ∧ ((vol*‘𝐴) + (vol*‘𝐵)) ∈ ℝ) → ((vol*‘(𝐴 ∪ 𝐵)) ≤ ((vol*‘𝐴) + (vol*‘𝐵)) ↔ ∀𝑥 ∈ ℝ+ (vol*‘(𝐴 ∪ 𝐵)) ≤ (((vol*‘𝐴) + (vol*‘𝐵)) + 𝑥))) | |
14 | 10, 12, 13 | syl2anc 583 | . 2 ⊢ (((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) → ((vol*‘(𝐴 ∪ 𝐵)) ≤ ((vol*‘𝐴) + (vol*‘𝐵)) ↔ ∀𝑥 ∈ ℝ+ (vol*‘(𝐴 ∪ 𝐵)) ≤ (((vol*‘𝐴) + (vol*‘𝐵)) + 𝑥))) |
15 | 5, 14 | mpbird 257 | 1 ⊢ (((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) → (vol*‘(𝐴 ∪ 𝐵)) ≤ ((vol*‘𝐴) + (vol*‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∈ wcel 2099 ∀wral 3058 ∪ cun 3945 ⊆ wss 3947 class class class wbr 5148 ‘cfv 6548 (class class class)co 7420 ℝcr 11138 + caddc 11142 ℝ*cxr 11278 ≤ cle 11280 ℝ+crp 13007 vol*covol 25404 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-cnex 11195 ax-resscn 11196 ax-1cn 11197 ax-icn 11198 ax-addcl 11199 ax-addrcl 11200 ax-mulcl 11201 ax-mulrcl 11202 ax-mulcom 11203 ax-addass 11204 ax-mulass 11205 ax-distr 11206 ax-i2m1 11207 ax-1ne0 11208 ax-1rid 11209 ax-rnegex 11210 ax-rrecex 11211 ax-cnre 11212 ax-pre-lttri 11213 ax-pre-lttrn 11214 ax-pre-ltadd 11215 ax-pre-mulgt0 11216 ax-pre-sup 11217 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3373 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-om 7871 df-1st 7993 df-2nd 7994 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-er 8725 df-map 8847 df-en 8965 df-dom 8966 df-sdom 8967 df-sup 9466 df-inf 9467 df-pnf 11281 df-mnf 11282 df-xr 11283 df-ltxr 11284 df-le 11285 df-sub 11477 df-neg 11478 df-div 11903 df-nn 12244 df-2 12306 df-3 12307 df-n0 12504 df-z 12590 df-uz 12854 df-q 12964 df-rp 13008 df-ioo 13361 df-ico 13363 df-fz 13518 df-fl 13790 df-seq 14000 df-exp 14060 df-cj 15079 df-re 15080 df-im 15081 df-sqrt 15215 df-abs 15216 df-ovol 25406 |
This theorem is referenced by: ovolunnul 25442 ovolfiniun 25443 ismbl2 25469 nulmbl2 25478 unmbl 25479 volun 25487 voliunlem2 25493 uniioombllem3 25527 uniioombllem4 25528 volcn 25548 mblfinlem3 37132 mblfinlem4 37133 ovolsplit 45376 |
Copyright terms: Public domain | W3C validator |