ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gausslemma2dlem0i Unicode version

Theorem gausslemma2dlem0i 15701
Description: Auxiliary lemma 9 for gausslemma2d 15713. (Contributed by AV, 14-Jul-2021.)
Hypotheses
Ref Expression
gausslemma2dlem0.p  |-  ( ph  ->  P  e.  ( Prime  \  { 2 } ) )
gausslemma2dlem0.m  |-  M  =  ( |_ `  ( P  /  4 ) )
gausslemma2dlem0.h  |-  H  =  ( ( P  - 
1 )  /  2
)
gausslemma2dlem0.n  |-  N  =  ( H  -  M
)
Assertion
Ref Expression
gausslemma2dlem0i  |-  ( ph  ->  ( ( ( 2  /L P )  mod  P )  =  ( ( -u 1 ^ N )  mod  P
)  ->  ( 2  /L P )  =  ( -u 1 ^ N ) ) )

Proof of Theorem gausslemma2dlem0i
StepHypRef Expression
1 2z 9442 . . . 4  |-  2  e.  ZZ
2 gausslemma2dlem0.p . . . . 5  |-  ( ph  ->  P  e.  ( Prime  \  { 2 } ) )
3 id 19 . . . . . . 7  |-  ( P  e.  ( Prime  \  {
2 } )  ->  P  e.  ( Prime  \  { 2 } ) )
43gausslemma2dlem0a 15693 . . . . . 6  |-  ( P  e.  ( Prime  \  {
2 } )  ->  P  e.  NN )
54nnzd 9536 . . . . 5  |-  ( P  e.  ( Prime  \  {
2 } )  ->  P  e.  ZZ )
62, 5syl 14 . . . 4  |-  ( ph  ->  P  e.  ZZ )
7 lgscl1 15667 . . . 4  |-  ( ( 2  e.  ZZ  /\  P  e.  ZZ )  ->  ( 2  /L
P )  e.  { -u 1 ,  0 ,  1 } )
81, 6, 7sylancr 414 . . 3  |-  ( ph  ->  ( 2  /L
P )  e.  { -u 1 ,  0 ,  1 } )
9 eltpg 3691 . . . 4  |-  ( ( 2  /L P )  e.  { -u
1 ,  0 ,  1 }  ->  (
( 2  /L
P )  e.  { -u 1 ,  0 ,  1 }  <->  ( (
2  /L P )  =  -u 1  \/  ( 2  /L
P )  =  0  \/  ( 2  /L P )  =  1 ) ) )
108, 9syl 14 . . 3  |-  ( ph  ->  ( ( 2  /L P )  e. 
{ -u 1 ,  0 ,  1 }  <->  ( (
2  /L P )  =  -u 1  \/  ( 2  /L
P )  =  0  \/  ( 2  /L P )  =  1 ) ) )
118, 10mpbid 147 . 2  |-  ( ph  ->  ( ( 2  /L P )  = 
-u 1  \/  (
2  /L P )  =  0  \/  ( 2  /L
P )  =  1 ) )
12 gausslemma2dlem0.m . . . . . . . . 9  |-  M  =  ( |_ `  ( P  /  4 ) )
13 gausslemma2dlem0.h . . . . . . . . 9  |-  H  =  ( ( P  - 
1 )  /  2
)
14 gausslemma2dlem0.n . . . . . . . . 9  |-  N  =  ( H  -  M
)
152, 12, 13, 14gausslemma2dlem0h 15700 . . . . . . . 8  |-  ( ph  ->  N  e.  NN0 )
1615nn0zd 9535 . . . . . . 7  |-  ( ph  ->  N  e.  ZZ )
17 m1expcl2 10750 . . . . . . 7  |-  ( N  e.  ZZ  ->  ( -u 1 ^ N )  e.  { -u 1 ,  1 } )
1816, 17syl 14 . . . . . 6  |-  ( ph  ->  ( -u 1 ^ N )  e.  { -u 1 ,  1 } )
19 elprg 3666 . . . . . . 7  |-  ( (
-u 1 ^ N
)  e.  { -u
1 ,  1 }  ->  ( ( -u
1 ^ N )  e.  { -u 1 ,  1 }  <->  ( ( -u 1 ^ N )  =  -u 1  \/  ( -u 1 ^ N )  =  1 ) ) )
2018, 19syl 14 . . . . . 6  |-  ( ph  ->  ( ( -u 1 ^ N )  e.  { -u 1 ,  1 }  <-> 
( ( -u 1 ^ N )  =  -u
1  \/  ( -u
1 ^ N )  =  1 ) ) )
2118, 20mpbid 147 . . . . 5  |-  ( ph  ->  ( ( -u 1 ^ N )  =  -u
1  \/  ( -u
1 ^ N )  =  1 ) )
22 eqcom 2211 . . . . . . . 8  |-  ( (
-u 1 ^ N
)  =  -u 1  <->  -u 1  =  ( -u
1 ^ N ) )
2322biimpi 120 . . . . . . 7  |-  ( (
-u 1 ^ N
)  =  -u 1  -> 
-u 1  =  (
-u 1 ^ N
) )
24232a1d 23 . . . . . 6  |-  ( (
-u 1 ^ N
)  =  -u 1  ->  ( ph  ->  (
( -u 1  mod  P
)  =  ( (
-u 1 ^ N
)  mod  P )  -> 
-u 1  =  (
-u 1 ^ N
) ) ) )
252gausslemma2dlem0a 15693 . . . . . . . . . . 11  |-  ( ph  ->  P  e.  NN )
26 nnq 9796 . . . . . . . . . . 11  |-  ( P  e.  NN  ->  P  e.  QQ )
2725, 26syl 14 . . . . . . . . . 10  |-  ( ph  ->  P  e.  QQ )
282eldifad 3188 . . . . . . . . . . 11  |-  ( ph  ->  P  e.  Prime )
29 prmgt1 12620 . . . . . . . . . . 11  |-  ( P  e.  Prime  ->  1  < 
P )
3028, 29syl 14 . . . . . . . . . 10  |-  ( ph  ->  1  <  P )
31 q1mod 10545 . . . . . . . . . 10  |-  ( ( P  e.  QQ  /\  1  <  P )  -> 
( 1  mod  P
)  =  1 )
3227, 30, 31syl2anc 411 . . . . . . . . 9  |-  ( ph  ->  ( 1  mod  P
)  =  1 )
3332eqeq2d 2221 . . . . . . . 8  |-  ( ph  ->  ( ( -u 1  mod  P )  =  ( 1  mod  P )  <-> 
( -u 1  mod  P
)  =  1 ) )
34 oddprmge3 12623 . . . . . . . . 9  |-  ( P  e.  ( Prime  \  {
2 } )  ->  P  e.  ( ZZ>= ` 
3 ) )
35 m1modge3gt1 10560 . . . . . . . . . 10  |-  ( P  e.  ( ZZ>= `  3
)  ->  1  <  (
-u 1  mod  P
) )
36 breq2 4066 . . . . . . . . . . 11  |-  ( (
-u 1  mod  P
)  =  1  -> 
( 1  <  ( -u 1  mod  P )  <->  1  <  1 ) )
37 1re 8113 . . . . . . . . . . . . 13  |-  1  e.  RR
3837ltnri 8207 . . . . . . . . . . . 12  |-  -.  1  <  1
3938pm2.21i 649 . . . . . . . . . . 11  |-  ( 1  <  1  ->  -u 1  =  1 )
4036, 39biimtrdi 163 . . . . . . . . . 10  |-  ( (
-u 1  mod  P
)  =  1  -> 
( 1  <  ( -u 1  mod  P )  ->  -u 1  =  1 ) )
4135, 40syl5com 29 . . . . . . . . 9  |-  ( P  e.  ( ZZ>= `  3
)  ->  ( ( -u 1  mod  P )  =  1  ->  -u 1  =  1 ) )
422, 34, 413syl 17 . . . . . . . 8  |-  ( ph  ->  ( ( -u 1  mod  P )  =  1  ->  -u 1  =  1 ) )
4333, 42sylbid 150 . . . . . . 7  |-  ( ph  ->  ( ( -u 1  mod  P )  =  ( 1  mod  P )  ->  -u 1  =  1 ) )
44 oveq1 5981 . . . . . . . . 9  |-  ( (
-u 1 ^ N
)  =  1  -> 
( ( -u 1 ^ N )  mod  P
)  =  ( 1  mod  P ) )
4544eqeq2d 2221 . . . . . . . 8  |-  ( (
-u 1 ^ N
)  =  1  -> 
( ( -u 1  mod  P )  =  ( ( -u 1 ^ N )  mod  P
)  <->  ( -u 1  mod  P )  =  ( 1  mod  P ) ) )
46 eqeq2 2219 . . . . . . . 8  |-  ( (
-u 1 ^ N
)  =  1  -> 
( -u 1  =  (
-u 1 ^ N
)  <->  -u 1  =  1 ) )
4745, 46imbi12d 234 . . . . . . 7  |-  ( (
-u 1 ^ N
)  =  1  -> 
( ( ( -u
1  mod  P )  =  ( ( -u
1 ^ N )  mod  P )  ->  -u 1  =  ( -u
1 ^ N ) )  <->  ( ( -u
1  mod  P )  =  ( 1  mod 
P )  ->  -u 1  =  1 ) ) )
4843, 47imbitrrid 156 . . . . . 6  |-  ( (
-u 1 ^ N
)  =  1  -> 
( ph  ->  ( (
-u 1  mod  P
)  =  ( (
-u 1 ^ N
)  mod  P )  -> 
-u 1  =  (
-u 1 ^ N
) ) ) )
4924, 48jaoi 720 . . . . 5  |-  ( ( ( -u 1 ^ N )  =  -u
1  \/  ( -u
1 ^ N )  =  1 )  -> 
( ph  ->  ( (
-u 1  mod  P
)  =  ( (
-u 1 ^ N
)  mod  P )  -> 
-u 1  =  (
-u 1 ^ N
) ) ) )
5021, 49mpcom 36 . . . 4  |-  ( ph  ->  ( ( -u 1  mod  P )  =  ( ( -u 1 ^ N )  mod  P
)  ->  -u 1  =  ( -u 1 ^ N ) ) )
51 oveq1 5981 . . . . . 6  |-  ( ( 2  /L P )  =  -u 1  ->  ( ( 2  /L P )  mod 
P )  =  (
-u 1  mod  P
) )
5251eqeq1d 2218 . . . . 5  |-  ( ( 2  /L P )  =  -u 1  ->  ( ( ( 2  /L P )  mod  P )  =  ( ( -u 1 ^ N )  mod  P
)  <->  ( -u 1  mod  P )  =  ( ( -u 1 ^ N )  mod  P
) ) )
53 eqeq1 2216 . . . . 5  |-  ( ( 2  /L P )  =  -u 1  ->  ( ( 2  /L P )  =  ( -u 1 ^ N )  <->  -u 1  =  ( -u 1 ^ N ) ) )
5452, 53imbi12d 234 . . . 4  |-  ( ( 2  /L P )  =  -u 1  ->  ( ( ( ( 2  /L P )  mod  P )  =  ( ( -u
1 ^ N )  mod  P )  -> 
( 2  /L
P )  =  (
-u 1 ^ N
) )  <->  ( ( -u 1  mod  P )  =  ( ( -u
1 ^ N )  mod  P )  ->  -u 1  =  ( -u
1 ^ N ) ) ) )
5550, 54imbitrrid 156 . . 3  |-  ( ( 2  /L P )  =  -u 1  ->  ( ph  ->  (
( ( 2  /L P )  mod 
P )  =  ( ( -u 1 ^ N )  mod  P
)  ->  ( 2  /L P )  =  ( -u 1 ^ N ) ) ) )
5625nngt0d 9122 . . . . . . 7  |-  ( ph  ->  0  <  P )
57 q0mod 10544 . . . . . . 7  |-  ( ( P  e.  QQ  /\  0  <  P )  -> 
( 0  mod  P
)  =  0 )
5827, 56, 57syl2anc 411 . . . . . 6  |-  ( ph  ->  ( 0  mod  P
)  =  0 )
5958eqeq1d 2218 . . . . 5  |-  ( ph  ->  ( ( 0  mod 
P )  =  ( ( -u 1 ^ N )  mod  P
)  <->  0  =  ( ( -u 1 ^ N )  mod  P
) ) )
60 oveq1 5981 . . . . . . . . . . 11  |-  ( (
-u 1 ^ N
)  =  -u 1  ->  ( ( -u 1 ^ N )  mod  P
)  =  ( -u
1  mod  P )
)
6160eqeq2d 2221 . . . . . . . . . 10  |-  ( (
-u 1 ^ N
)  =  -u 1  ->  ( 0  =  ( ( -u 1 ^ N )  mod  P
)  <->  0  =  (
-u 1  mod  P
) ) )
6261adantr 276 . . . . . . . . 9  |-  ( ( ( -u 1 ^ N )  =  -u
1  /\  ph )  -> 
( 0  =  ( ( -u 1 ^ N )  mod  P
)  <->  0  =  (
-u 1  mod  P
) ) )
63 1z 9440 . . . . . . . . . . . . . 14  |-  1  e.  ZZ
64 zq 9789 . . . . . . . . . . . . . 14  |-  ( 1  e.  ZZ  ->  1  e.  QQ )
6563, 64ax-mp 5 . . . . . . . . . . . . 13  |-  1  e.  QQ
66 negqmod0 10520 . . . . . . . . . . . . 13  |-  ( ( 1  e.  QQ  /\  P  e.  QQ  /\  0  <  P )  ->  (
( 1  mod  P
)  =  0  <->  ( -u 1  mod  P )  =  0 ) )
6765, 27, 56, 66mp3an2i 1357 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( 1  mod 
P )  =  0  <-> 
( -u 1  mod  P
)  =  0 ) )
68 eqcom 2211 . . . . . . . . . . . 12  |-  ( (
-u 1  mod  P
)  =  0  <->  0  =  ( -u 1  mod  P ) )
6967, 68bitrdi 196 . . . . . . . . . . 11  |-  ( ph  ->  ( ( 1  mod 
P )  =  0  <->  0  =  ( -u
1  mod  P )
) )
7032eqeq1d 2218 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( 1  mod 
P )  =  0  <->  1  =  0 ) )
71 1ne0 9146 . . . . . . . . . . . . 13  |-  1  =/=  0
72 eqneqall 2390 . . . . . . . . . . . . 13  |-  ( 1  =  0  ->  (
1  =/=  0  -> 
0  =  ( -u
1 ^ N ) ) )
7371, 72mpi 15 . . . . . . . . . . . 12  |-  ( 1  =  0  ->  0  =  ( -u 1 ^ N ) )
7470, 73biimtrdi 163 . . . . . . . . . . 11  |-  ( ph  ->  ( ( 1  mod 
P )  =  0  ->  0  =  (
-u 1 ^ N
) ) )
7569, 74sylbird 170 . . . . . . . . . 10  |-  ( ph  ->  ( 0  =  (
-u 1  mod  P
)  ->  0  =  ( -u 1 ^ N
) ) )
7675adantl 277 . . . . . . . . 9  |-  ( ( ( -u 1 ^ N )  =  -u
1  /\  ph )  -> 
( 0  =  (
-u 1  mod  P
)  ->  0  =  ( -u 1 ^ N
) ) )
7762, 76sylbid 150 . . . . . . . 8  |-  ( ( ( -u 1 ^ N )  =  -u
1  /\  ph )  -> 
( 0  =  ( ( -u 1 ^ N )  mod  P
)  ->  0  =  ( -u 1 ^ N
) ) )
7877ex 115 . . . . . . 7  |-  ( (
-u 1 ^ N
)  =  -u 1  ->  ( ph  ->  (
0  =  ( (
-u 1 ^ N
)  mod  P )  ->  0  =  ( -u
1 ^ N ) ) ) )
7944eqeq2d 2221 . . . . . . . . . 10  |-  ( (
-u 1 ^ N
)  =  1  -> 
( 0  =  ( ( -u 1 ^ N )  mod  P
)  <->  0  =  ( 1  mod  P ) ) )
8079adantr 276 . . . . . . . . 9  |-  ( ( ( -u 1 ^ N )  =  1  /\  ph )  -> 
( 0  =  ( ( -u 1 ^ N )  mod  P
)  <->  0  =  ( 1  mod  P ) ) )
81 eqcom 2211 . . . . . . . . . . . 12  |-  ( 0  =  ( 1  mod 
P )  <->  ( 1  mod  P )  =  0 )
8281, 70bitrid 192 . . . . . . . . . . 11  |-  ( ph  ->  ( 0  =  ( 1  mod  P )  <->  1  =  0 ) )
8382, 73biimtrdi 163 . . . . . . . . . 10  |-  ( ph  ->  ( 0  =  ( 1  mod  P )  ->  0  =  (
-u 1 ^ N
) ) )
8483adantl 277 . . . . . . . . 9  |-  ( ( ( -u 1 ^ N )  =  1  /\  ph )  -> 
( 0  =  ( 1  mod  P )  ->  0  =  (
-u 1 ^ N
) ) )
8580, 84sylbid 150 . . . . . . . 8  |-  ( ( ( -u 1 ^ N )  =  1  /\  ph )  -> 
( 0  =  ( ( -u 1 ^ N )  mod  P
)  ->  0  =  ( -u 1 ^ N
) ) )
8685ex 115 . . . . . . 7  |-  ( (
-u 1 ^ N
)  =  1  -> 
( ph  ->  ( 0  =  ( ( -u
1 ^ N )  mod  P )  -> 
0  =  ( -u
1 ^ N ) ) ) )
8778, 86jaoi 720 . . . . . 6  |-  ( ( ( -u 1 ^ N )  =  -u
1  \/  ( -u
1 ^ N )  =  1 )  -> 
( ph  ->  ( 0  =  ( ( -u
1 ^ N )  mod  P )  -> 
0  =  ( -u
1 ^ N ) ) ) )
8821, 87mpcom 36 . . . . 5  |-  ( ph  ->  ( 0  =  ( ( -u 1 ^ N )  mod  P
)  ->  0  =  ( -u 1 ^ N
) ) )
8959, 88sylbid 150 . . . 4  |-  ( ph  ->  ( ( 0  mod 
P )  =  ( ( -u 1 ^ N )  mod  P
)  ->  0  =  ( -u 1 ^ N
) ) )
90 oveq1 5981 . . . . . 6  |-  ( ( 2  /L P )  =  0  -> 
( ( 2  /L P )  mod 
P )  =  ( 0  mod  P ) )
9190eqeq1d 2218 . . . . 5  |-  ( ( 2  /L P )  =  0  -> 
( ( ( 2  /L P )  mod  P )  =  ( ( -u 1 ^ N )  mod  P
)  <->  ( 0  mod 
P )  =  ( ( -u 1 ^ N )  mod  P
) ) )
92 eqeq1 2216 . . . . 5  |-  ( ( 2  /L P )  =  0  -> 
( ( 2  /L P )  =  ( -u 1 ^ N )  <->  0  =  ( -u 1 ^ N
) ) )
9391, 92imbi12d 234 . . . 4  |-  ( ( 2  /L P )  =  0  -> 
( ( ( ( 2  /L P )  mod  P )  =  ( ( -u
1 ^ N )  mod  P )  -> 
( 2  /L
P )  =  (
-u 1 ^ N
) )  <->  ( (
0  mod  P )  =  ( ( -u
1 ^ N )  mod  P )  -> 
0  =  ( -u
1 ^ N ) ) ) )
9489, 93imbitrrid 156 . . 3  |-  ( ( 2  /L P )  =  0  -> 
( ph  ->  ( ( ( 2  /L
P )  mod  P
)  =  ( (
-u 1 ^ N
)  mod  P )  ->  ( 2  /L
P )  =  (
-u 1 ^ N
) ) ) )
9532eqeq1d 2218 . . . . 5  |-  ( ph  ->  ( ( 1  mod 
P )  =  ( ( -u 1 ^ N )  mod  P
)  <->  1  =  ( ( -u 1 ^ N )  mod  P
) ) )
96 eqcom 2211 . . . . . . . . 9  |-  ( 1  =  ( -u 1  mod  P )  <->  ( -u 1  mod  P )  =  1 )
97 eqcom 2211 . . . . . . . . 9  |-  ( 1  =  -u 1  <->  -u 1  =  1 )
9842, 96, 973imtr4g 205 . . . . . . . 8  |-  ( ph  ->  ( 1  =  (
-u 1  mod  P
)  ->  1  =  -u 1 ) )
9960eqeq2d 2221 . . . . . . . . 9  |-  ( (
-u 1 ^ N
)  =  -u 1  ->  ( 1  =  ( ( -u 1 ^ N )  mod  P
)  <->  1  =  (
-u 1  mod  P
) ) )
100 eqeq2 2219 . . . . . . . . 9  |-  ( (
-u 1 ^ N
)  =  -u 1  ->  ( 1  =  (
-u 1 ^ N
)  <->  1  =  -u
1 ) )
10199, 100imbi12d 234 . . . . . . . 8  |-  ( (
-u 1 ^ N
)  =  -u 1  ->  ( ( 1  =  ( ( -u 1 ^ N )  mod  P
)  ->  1  =  ( -u 1 ^ N
) )  <->  ( 1  =  ( -u 1  mod  P )  ->  1  =  -u 1 ) ) )
10298, 101imbitrrid 156 . . . . . . 7  |-  ( (
-u 1 ^ N
)  =  -u 1  ->  ( ph  ->  (
1  =  ( (
-u 1 ^ N
)  mod  P )  ->  1  =  ( -u
1 ^ N ) ) ) )
103 eqcom 2211 . . . . . . . . 9  |-  ( (
-u 1 ^ N
)  =  1  <->  1  =  ( -u 1 ^ N ) )
104103biimpi 120 . . . . . . . 8  |-  ( (
-u 1 ^ N
)  =  1  -> 
1  =  ( -u
1 ^ N ) )
1051042a1d 23 . . . . . . 7  |-  ( (
-u 1 ^ N
)  =  1  -> 
( ph  ->  ( 1  =  ( ( -u
1 ^ N )  mod  P )  -> 
1  =  ( -u
1 ^ N ) ) ) )
106102, 105jaoi 720 . . . . . 6  |-  ( ( ( -u 1 ^ N )  =  -u
1  \/  ( -u
1 ^ N )  =  1 )  -> 
( ph  ->  ( 1  =  ( ( -u
1 ^ N )  mod  P )  -> 
1  =  ( -u
1 ^ N ) ) ) )
10721, 106mpcom 36 . . . . 5  |-  ( ph  ->  ( 1  =  ( ( -u 1 ^ N )  mod  P
)  ->  1  =  ( -u 1 ^ N
) ) )
10895, 107sylbid 150 . . . 4  |-  ( ph  ->  ( ( 1  mod 
P )  =  ( ( -u 1 ^ N )  mod  P
)  ->  1  =  ( -u 1 ^ N
) ) )
109 oveq1 5981 . . . . . 6  |-  ( ( 2  /L P )  =  1  -> 
( ( 2  /L P )  mod 
P )  =  ( 1  mod  P ) )
110109eqeq1d 2218 . . . . 5  |-  ( ( 2  /L P )  =  1  -> 
( ( ( 2  /L P )  mod  P )  =  ( ( -u 1 ^ N )  mod  P
)  <->  ( 1  mod 
P )  =  ( ( -u 1 ^ N )  mod  P
) ) )
111 eqeq1 2216 . . . . 5  |-  ( ( 2  /L P )  =  1  -> 
( ( 2  /L P )  =  ( -u 1 ^ N )  <->  1  =  ( -u 1 ^ N
) ) )
112110, 111imbi12d 234 . . . 4  |-  ( ( 2  /L P )  =  1  -> 
( ( ( ( 2  /L P )  mod  P )  =  ( ( -u
1 ^ N )  mod  P )  -> 
( 2  /L
P )  =  (
-u 1 ^ N
) )  <->  ( (
1  mod  P )  =  ( ( -u
1 ^ N )  mod  P )  -> 
1  =  ( -u
1 ^ N ) ) ) )
113108, 112imbitrrid 156 . . 3  |-  ( ( 2  /L P )  =  1  -> 
( ph  ->  ( ( ( 2  /L
P )  mod  P
)  =  ( (
-u 1 ^ N
)  mod  P )  ->  ( 2  /L
P )  =  (
-u 1 ^ N
) ) ) )
11455, 94, 1133jaoi 1318 . 2  |-  ( ( ( 2  /L
P )  =  -u
1  \/  ( 2  /L P )  =  0  \/  (
2  /L P )  =  1 )  ->  ( ph  ->  ( ( ( 2  /L P )  mod 
P )  =  ( ( -u 1 ^ N )  mod  P
)  ->  ( 2  /L P )  =  ( -u 1 ^ N ) ) ) )
11511, 114mpcom 36 1  |-  ( ph  ->  ( ( ( 2  /L P )  mod  P )  =  ( ( -u 1 ^ N )  mod  P
)  ->  ( 2  /L P )  =  ( -u 1 ^ N ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 712    \/ w3o 982    = wceq 1375    e. wcel 2180    =/= wne 2380    \ cdif 3174   {csn 3646   {cpr 3647   {ctp 3648   class class class wbr 4062   ` cfv 5294  (class class class)co 5974   0cc0 7967   1c1 7968    < clt 8149    - cmin 8285   -ucneg 8286    / cdiv 8787   NNcn 9078   2c2 9129   3c3 9130   4c4 9131   ZZcz 9414   ZZ>=cuz 9690   QQcq 9782   |_cfl 10455    mod cmo 10511   ^cexp 10727   Primecprime 12595    /Lclgs 15641
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-nul 4189  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-iinf 4657  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-mulrcl 8066  ax-addcom 8067  ax-mulcom 8068  ax-addass 8069  ax-mulass 8070  ax-distr 8071  ax-i2m1 8072  ax-0lt1 8073  ax-1rid 8074  ax-0id 8075  ax-rnegex 8076  ax-precex 8077  ax-cnre 8078  ax-pre-ltirr 8079  ax-pre-ltwlin 8080  ax-pre-lttrn 8081  ax-pre-apti 8082  ax-pre-ltadd 8083  ax-pre-mulgt0 8084  ax-pre-mulext 8085  ax-arch 8086  ax-caucvg 8087
This theorem depends on definitions:  df-bi 117  df-stab 835  df-dc 839  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-xor 1398  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rmo 2496  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-if 3583  df-pw 3631  df-sn 3652  df-pr 3653  df-tp 3654  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-tr 4162  df-id 4361  df-po 4364  df-iso 4365  df-iord 4434  df-on 4436  df-ilim 4437  df-suc 4439  df-iom 4660  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-isom 5303  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-recs 6421  df-irdg 6486  df-frec 6507  df-1o 6532  df-2o 6533  df-oadd 6536  df-er 6650  df-en 6858  df-dom 6859  df-fin 6860  df-sup 7119  df-inf 7120  df-pnf 8151  df-mnf 8152  df-xr 8153  df-ltxr 8154  df-le 8155  df-sub 8287  df-neg 8288  df-reap 8690  df-ap 8697  df-div 8788  df-inn 9079  df-2 9137  df-3 9138  df-4 9139  df-5 9140  df-6 9141  df-7 9142  df-8 9143  df-n0 9338  df-z 9415  df-uz 9691  df-q 9783  df-rp 9818  df-fz 10173  df-fzo 10307  df-fl 10457  df-mod 10512  df-seqfrec 10637  df-exp 10728  df-ihash 10965  df-cj 11319  df-re 11320  df-im 11321  df-rsqrt 11475  df-abs 11476  df-clim 11756  df-proddc 12028  df-dvds 12265  df-gcd 12441  df-prm 12596  df-phi 12699  df-pc 12774  df-lgs 15642
This theorem is referenced by:  gausslemma2d  15713
  Copyright terms: Public domain W3C validator