ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gausslemma2dlem0i Unicode version

Theorem gausslemma2dlem0i 15382
Description: Auxiliary lemma 9 for gausslemma2d 15394. (Contributed by AV, 14-Jul-2021.)
Hypotheses
Ref Expression
gausslemma2dlem0.p  |-  ( ph  ->  P  e.  ( Prime  \  { 2 } ) )
gausslemma2dlem0.m  |-  M  =  ( |_ `  ( P  /  4 ) )
gausslemma2dlem0.h  |-  H  =  ( ( P  - 
1 )  /  2
)
gausslemma2dlem0.n  |-  N  =  ( H  -  M
)
Assertion
Ref Expression
gausslemma2dlem0i  |-  ( ph  ->  ( ( ( 2  /L P )  mod  P )  =  ( ( -u 1 ^ N )  mod  P
)  ->  ( 2  /L P )  =  ( -u 1 ^ N ) ) )

Proof of Theorem gausslemma2dlem0i
StepHypRef Expression
1 2z 9371 . . . 4  |-  2  e.  ZZ
2 gausslemma2dlem0.p . . . . 5  |-  ( ph  ->  P  e.  ( Prime  \  { 2 } ) )
3 id 19 . . . . . . 7  |-  ( P  e.  ( Prime  \  {
2 } )  ->  P  e.  ( Prime  \  { 2 } ) )
43gausslemma2dlem0a 15374 . . . . . 6  |-  ( P  e.  ( Prime  \  {
2 } )  ->  P  e.  NN )
54nnzd 9464 . . . . 5  |-  ( P  e.  ( Prime  \  {
2 } )  ->  P  e.  ZZ )
62, 5syl 14 . . . 4  |-  ( ph  ->  P  e.  ZZ )
7 lgscl1 15348 . . . 4  |-  ( ( 2  e.  ZZ  /\  P  e.  ZZ )  ->  ( 2  /L
P )  e.  { -u 1 ,  0 ,  1 } )
81, 6, 7sylancr 414 . . 3  |-  ( ph  ->  ( 2  /L
P )  e.  { -u 1 ,  0 ,  1 } )
9 eltpg 3668 . . . 4  |-  ( ( 2  /L P )  e.  { -u
1 ,  0 ,  1 }  ->  (
( 2  /L
P )  e.  { -u 1 ,  0 ,  1 }  <->  ( (
2  /L P )  =  -u 1  \/  ( 2  /L
P )  =  0  \/  ( 2  /L P )  =  1 ) ) )
108, 9syl 14 . . 3  |-  ( ph  ->  ( ( 2  /L P )  e. 
{ -u 1 ,  0 ,  1 }  <->  ( (
2  /L P )  =  -u 1  \/  ( 2  /L
P )  =  0  \/  ( 2  /L P )  =  1 ) ) )
118, 10mpbid 147 . 2  |-  ( ph  ->  ( ( 2  /L P )  = 
-u 1  \/  (
2  /L P )  =  0  \/  ( 2  /L
P )  =  1 ) )
12 gausslemma2dlem0.m . . . . . . . . 9  |-  M  =  ( |_ `  ( P  /  4 ) )
13 gausslemma2dlem0.h . . . . . . . . 9  |-  H  =  ( ( P  - 
1 )  /  2
)
14 gausslemma2dlem0.n . . . . . . . . 9  |-  N  =  ( H  -  M
)
152, 12, 13, 14gausslemma2dlem0h 15381 . . . . . . . 8  |-  ( ph  ->  N  e.  NN0 )
1615nn0zd 9463 . . . . . . 7  |-  ( ph  ->  N  e.  ZZ )
17 m1expcl2 10670 . . . . . . 7  |-  ( N  e.  ZZ  ->  ( -u 1 ^ N )  e.  { -u 1 ,  1 } )
1816, 17syl 14 . . . . . 6  |-  ( ph  ->  ( -u 1 ^ N )  e.  { -u 1 ,  1 } )
19 elprg 3643 . . . . . . 7  |-  ( (
-u 1 ^ N
)  e.  { -u
1 ,  1 }  ->  ( ( -u
1 ^ N )  e.  { -u 1 ,  1 }  <->  ( ( -u 1 ^ N )  =  -u 1  \/  ( -u 1 ^ N )  =  1 ) ) )
2018, 19syl 14 . . . . . 6  |-  ( ph  ->  ( ( -u 1 ^ N )  e.  { -u 1 ,  1 }  <-> 
( ( -u 1 ^ N )  =  -u
1  \/  ( -u
1 ^ N )  =  1 ) ) )
2118, 20mpbid 147 . . . . 5  |-  ( ph  ->  ( ( -u 1 ^ N )  =  -u
1  \/  ( -u
1 ^ N )  =  1 ) )
22 eqcom 2198 . . . . . . . 8  |-  ( (
-u 1 ^ N
)  =  -u 1  <->  -u 1  =  ( -u
1 ^ N ) )
2322biimpi 120 . . . . . . 7  |-  ( (
-u 1 ^ N
)  =  -u 1  -> 
-u 1  =  (
-u 1 ^ N
) )
24232a1d 23 . . . . . 6  |-  ( (
-u 1 ^ N
)  =  -u 1  ->  ( ph  ->  (
( -u 1  mod  P
)  =  ( (
-u 1 ^ N
)  mod  P )  -> 
-u 1  =  (
-u 1 ^ N
) ) ) )
252gausslemma2dlem0a 15374 . . . . . . . . . . 11  |-  ( ph  ->  P  e.  NN )
26 nnq 9724 . . . . . . . . . . 11  |-  ( P  e.  NN  ->  P  e.  QQ )
2725, 26syl 14 . . . . . . . . . 10  |-  ( ph  ->  P  e.  QQ )
282eldifad 3168 . . . . . . . . . . 11  |-  ( ph  ->  P  e.  Prime )
29 prmgt1 12325 . . . . . . . . . . 11  |-  ( P  e.  Prime  ->  1  < 
P )
3028, 29syl 14 . . . . . . . . . 10  |-  ( ph  ->  1  <  P )
31 q1mod 10465 . . . . . . . . . 10  |-  ( ( P  e.  QQ  /\  1  <  P )  -> 
( 1  mod  P
)  =  1 )
3227, 30, 31syl2anc 411 . . . . . . . . 9  |-  ( ph  ->  ( 1  mod  P
)  =  1 )
3332eqeq2d 2208 . . . . . . . 8  |-  ( ph  ->  ( ( -u 1  mod  P )  =  ( 1  mod  P )  <-> 
( -u 1  mod  P
)  =  1 ) )
34 oddprmge3 12328 . . . . . . . . 9  |-  ( P  e.  ( Prime  \  {
2 } )  ->  P  e.  ( ZZ>= ` 
3 ) )
35 m1modge3gt1 10480 . . . . . . . . . 10  |-  ( P  e.  ( ZZ>= `  3
)  ->  1  <  (
-u 1  mod  P
) )
36 breq2 4038 . . . . . . . . . . 11  |-  ( (
-u 1  mod  P
)  =  1  -> 
( 1  <  ( -u 1  mod  P )  <->  1  <  1 ) )
37 1re 8042 . . . . . . . . . . . . 13  |-  1  e.  RR
3837ltnri 8136 . . . . . . . . . . . 12  |-  -.  1  <  1
3938pm2.21i 647 . . . . . . . . . . 11  |-  ( 1  <  1  ->  -u 1  =  1 )
4036, 39biimtrdi 163 . . . . . . . . . 10  |-  ( (
-u 1  mod  P
)  =  1  -> 
( 1  <  ( -u 1  mod  P )  ->  -u 1  =  1 ) )
4135, 40syl5com 29 . . . . . . . . 9  |-  ( P  e.  ( ZZ>= `  3
)  ->  ( ( -u 1  mod  P )  =  1  ->  -u 1  =  1 ) )
422, 34, 413syl 17 . . . . . . . 8  |-  ( ph  ->  ( ( -u 1  mod  P )  =  1  ->  -u 1  =  1 ) )
4333, 42sylbid 150 . . . . . . 7  |-  ( ph  ->  ( ( -u 1  mod  P )  =  ( 1  mod  P )  ->  -u 1  =  1 ) )
44 oveq1 5932 . . . . . . . . 9  |-  ( (
-u 1 ^ N
)  =  1  -> 
( ( -u 1 ^ N )  mod  P
)  =  ( 1  mod  P ) )
4544eqeq2d 2208 . . . . . . . 8  |-  ( (
-u 1 ^ N
)  =  1  -> 
( ( -u 1  mod  P )  =  ( ( -u 1 ^ N )  mod  P
)  <->  ( -u 1  mod  P )  =  ( 1  mod  P ) ) )
46 eqeq2 2206 . . . . . . . 8  |-  ( (
-u 1 ^ N
)  =  1  -> 
( -u 1  =  (
-u 1 ^ N
)  <->  -u 1  =  1 ) )
4745, 46imbi12d 234 . . . . . . 7  |-  ( (
-u 1 ^ N
)  =  1  -> 
( ( ( -u
1  mod  P )  =  ( ( -u
1 ^ N )  mod  P )  ->  -u 1  =  ( -u
1 ^ N ) )  <->  ( ( -u
1  mod  P )  =  ( 1  mod 
P )  ->  -u 1  =  1 ) ) )
4843, 47imbitrrid 156 . . . . . 6  |-  ( (
-u 1 ^ N
)  =  1  -> 
( ph  ->  ( (
-u 1  mod  P
)  =  ( (
-u 1 ^ N
)  mod  P )  -> 
-u 1  =  (
-u 1 ^ N
) ) ) )
4924, 48jaoi 717 . . . . 5  |-  ( ( ( -u 1 ^ N )  =  -u
1  \/  ( -u
1 ^ N )  =  1 )  -> 
( ph  ->  ( (
-u 1  mod  P
)  =  ( (
-u 1 ^ N
)  mod  P )  -> 
-u 1  =  (
-u 1 ^ N
) ) ) )
5021, 49mpcom 36 . . . 4  |-  ( ph  ->  ( ( -u 1  mod  P )  =  ( ( -u 1 ^ N )  mod  P
)  ->  -u 1  =  ( -u 1 ^ N ) ) )
51 oveq1 5932 . . . . . 6  |-  ( ( 2  /L P )  =  -u 1  ->  ( ( 2  /L P )  mod 
P )  =  (
-u 1  mod  P
) )
5251eqeq1d 2205 . . . . 5  |-  ( ( 2  /L P )  =  -u 1  ->  ( ( ( 2  /L P )  mod  P )  =  ( ( -u 1 ^ N )  mod  P
)  <->  ( -u 1  mod  P )  =  ( ( -u 1 ^ N )  mod  P
) ) )
53 eqeq1 2203 . . . . 5  |-  ( ( 2  /L P )  =  -u 1  ->  ( ( 2  /L P )  =  ( -u 1 ^ N )  <->  -u 1  =  ( -u 1 ^ N ) ) )
5452, 53imbi12d 234 . . . 4  |-  ( ( 2  /L P )  =  -u 1  ->  ( ( ( ( 2  /L P )  mod  P )  =  ( ( -u
1 ^ N )  mod  P )  -> 
( 2  /L
P )  =  (
-u 1 ^ N
) )  <->  ( ( -u 1  mod  P )  =  ( ( -u
1 ^ N )  mod  P )  ->  -u 1  =  ( -u
1 ^ N ) ) ) )
5550, 54imbitrrid 156 . . 3  |-  ( ( 2  /L P )  =  -u 1  ->  ( ph  ->  (
( ( 2  /L P )  mod 
P )  =  ( ( -u 1 ^ N )  mod  P
)  ->  ( 2  /L P )  =  ( -u 1 ^ N ) ) ) )
5625nngt0d 9051 . . . . . . 7  |-  ( ph  ->  0  <  P )
57 q0mod 10464 . . . . . . 7  |-  ( ( P  e.  QQ  /\  0  <  P )  -> 
( 0  mod  P
)  =  0 )
5827, 56, 57syl2anc 411 . . . . . 6  |-  ( ph  ->  ( 0  mod  P
)  =  0 )
5958eqeq1d 2205 . . . . 5  |-  ( ph  ->  ( ( 0  mod 
P )  =  ( ( -u 1 ^ N )  mod  P
)  <->  0  =  ( ( -u 1 ^ N )  mod  P
) ) )
60 oveq1 5932 . . . . . . . . . . 11  |-  ( (
-u 1 ^ N
)  =  -u 1  ->  ( ( -u 1 ^ N )  mod  P
)  =  ( -u
1  mod  P )
)
6160eqeq2d 2208 . . . . . . . . . 10  |-  ( (
-u 1 ^ N
)  =  -u 1  ->  ( 0  =  ( ( -u 1 ^ N )  mod  P
)  <->  0  =  (
-u 1  mod  P
) ) )
6261adantr 276 . . . . . . . . 9  |-  ( ( ( -u 1 ^ N )  =  -u
1  /\  ph )  -> 
( 0  =  ( ( -u 1 ^ N )  mod  P
)  <->  0  =  (
-u 1  mod  P
) ) )
63 1z 9369 . . . . . . . . . . . . . 14  |-  1  e.  ZZ
64 zq 9717 . . . . . . . . . . . . . 14  |-  ( 1  e.  ZZ  ->  1  e.  QQ )
6563, 64ax-mp 5 . . . . . . . . . . . . 13  |-  1  e.  QQ
66 negqmod0 10440 . . . . . . . . . . . . 13  |-  ( ( 1  e.  QQ  /\  P  e.  QQ  /\  0  <  P )  ->  (
( 1  mod  P
)  =  0  <->  ( -u 1  mod  P )  =  0 ) )
6765, 27, 56, 66mp3an2i 1353 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( 1  mod 
P )  =  0  <-> 
( -u 1  mod  P
)  =  0 ) )
68 eqcom 2198 . . . . . . . . . . . 12  |-  ( (
-u 1  mod  P
)  =  0  <->  0  =  ( -u 1  mod  P ) )
6967, 68bitrdi 196 . . . . . . . . . . 11  |-  ( ph  ->  ( ( 1  mod 
P )  =  0  <->  0  =  ( -u
1  mod  P )
) )
7032eqeq1d 2205 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( 1  mod 
P )  =  0  <->  1  =  0 ) )
71 1ne0 9075 . . . . . . . . . . . . 13  |-  1  =/=  0
72 eqneqall 2377 . . . . . . . . . . . . 13  |-  ( 1  =  0  ->  (
1  =/=  0  -> 
0  =  ( -u
1 ^ N ) ) )
7371, 72mpi 15 . . . . . . . . . . . 12  |-  ( 1  =  0  ->  0  =  ( -u 1 ^ N ) )
7470, 73biimtrdi 163 . . . . . . . . . . 11  |-  ( ph  ->  ( ( 1  mod 
P )  =  0  ->  0  =  (
-u 1 ^ N
) ) )
7569, 74sylbird 170 . . . . . . . . . 10  |-  ( ph  ->  ( 0  =  (
-u 1  mod  P
)  ->  0  =  ( -u 1 ^ N
) ) )
7675adantl 277 . . . . . . . . 9  |-  ( ( ( -u 1 ^ N )  =  -u
1  /\  ph )  -> 
( 0  =  (
-u 1  mod  P
)  ->  0  =  ( -u 1 ^ N
) ) )
7762, 76sylbid 150 . . . . . . . 8  |-  ( ( ( -u 1 ^ N )  =  -u
1  /\  ph )  -> 
( 0  =  ( ( -u 1 ^ N )  mod  P
)  ->  0  =  ( -u 1 ^ N
) ) )
7877ex 115 . . . . . . 7  |-  ( (
-u 1 ^ N
)  =  -u 1  ->  ( ph  ->  (
0  =  ( (
-u 1 ^ N
)  mod  P )  ->  0  =  ( -u
1 ^ N ) ) ) )
7944eqeq2d 2208 . . . . . . . . . 10  |-  ( (
-u 1 ^ N
)  =  1  -> 
( 0  =  ( ( -u 1 ^ N )  mod  P
)  <->  0  =  ( 1  mod  P ) ) )
8079adantr 276 . . . . . . . . 9  |-  ( ( ( -u 1 ^ N )  =  1  /\  ph )  -> 
( 0  =  ( ( -u 1 ^ N )  mod  P
)  <->  0  =  ( 1  mod  P ) ) )
81 eqcom 2198 . . . . . . . . . . . 12  |-  ( 0  =  ( 1  mod 
P )  <->  ( 1  mod  P )  =  0 )
8281, 70bitrid 192 . . . . . . . . . . 11  |-  ( ph  ->  ( 0  =  ( 1  mod  P )  <->  1  =  0 ) )
8382, 73biimtrdi 163 . . . . . . . . . 10  |-  ( ph  ->  ( 0  =  ( 1  mod  P )  ->  0  =  (
-u 1 ^ N
) ) )
8483adantl 277 . . . . . . . . 9  |-  ( ( ( -u 1 ^ N )  =  1  /\  ph )  -> 
( 0  =  ( 1  mod  P )  ->  0  =  (
-u 1 ^ N
) ) )
8580, 84sylbid 150 . . . . . . . 8  |-  ( ( ( -u 1 ^ N )  =  1  /\  ph )  -> 
( 0  =  ( ( -u 1 ^ N )  mod  P
)  ->  0  =  ( -u 1 ^ N
) ) )
8685ex 115 . . . . . . 7  |-  ( (
-u 1 ^ N
)  =  1  -> 
( ph  ->  ( 0  =  ( ( -u
1 ^ N )  mod  P )  -> 
0  =  ( -u
1 ^ N ) ) ) )
8778, 86jaoi 717 . . . . . 6  |-  ( ( ( -u 1 ^ N )  =  -u
1  \/  ( -u
1 ^ N )  =  1 )  -> 
( ph  ->  ( 0  =  ( ( -u
1 ^ N )  mod  P )  -> 
0  =  ( -u
1 ^ N ) ) ) )
8821, 87mpcom 36 . . . . 5  |-  ( ph  ->  ( 0  =  ( ( -u 1 ^ N )  mod  P
)  ->  0  =  ( -u 1 ^ N
) ) )
8959, 88sylbid 150 . . . 4  |-  ( ph  ->  ( ( 0  mod 
P )  =  ( ( -u 1 ^ N )  mod  P
)  ->  0  =  ( -u 1 ^ N
) ) )
90 oveq1 5932 . . . . . 6  |-  ( ( 2  /L P )  =  0  -> 
( ( 2  /L P )  mod 
P )  =  ( 0  mod  P ) )
9190eqeq1d 2205 . . . . 5  |-  ( ( 2  /L P )  =  0  -> 
( ( ( 2  /L P )  mod  P )  =  ( ( -u 1 ^ N )  mod  P
)  <->  ( 0  mod 
P )  =  ( ( -u 1 ^ N )  mod  P
) ) )
92 eqeq1 2203 . . . . 5  |-  ( ( 2  /L P )  =  0  -> 
( ( 2  /L P )  =  ( -u 1 ^ N )  <->  0  =  ( -u 1 ^ N
) ) )
9391, 92imbi12d 234 . . . 4  |-  ( ( 2  /L P )  =  0  -> 
( ( ( ( 2  /L P )  mod  P )  =  ( ( -u
1 ^ N )  mod  P )  -> 
( 2  /L
P )  =  (
-u 1 ^ N
) )  <->  ( (
0  mod  P )  =  ( ( -u
1 ^ N )  mod  P )  -> 
0  =  ( -u
1 ^ N ) ) ) )
9489, 93imbitrrid 156 . . 3  |-  ( ( 2  /L P )  =  0  -> 
( ph  ->  ( ( ( 2  /L
P )  mod  P
)  =  ( (
-u 1 ^ N
)  mod  P )  ->  ( 2  /L
P )  =  (
-u 1 ^ N
) ) ) )
9532eqeq1d 2205 . . . . 5  |-  ( ph  ->  ( ( 1  mod 
P )  =  ( ( -u 1 ^ N )  mod  P
)  <->  1  =  ( ( -u 1 ^ N )  mod  P
) ) )
96 eqcom 2198 . . . . . . . . 9  |-  ( 1  =  ( -u 1  mod  P )  <->  ( -u 1  mod  P )  =  1 )
97 eqcom 2198 . . . . . . . . 9  |-  ( 1  =  -u 1  <->  -u 1  =  1 )
9842, 96, 973imtr4g 205 . . . . . . . 8  |-  ( ph  ->  ( 1  =  (
-u 1  mod  P
)  ->  1  =  -u 1 ) )
9960eqeq2d 2208 . . . . . . . . 9  |-  ( (
-u 1 ^ N
)  =  -u 1  ->  ( 1  =  ( ( -u 1 ^ N )  mod  P
)  <->  1  =  (
-u 1  mod  P
) ) )
100 eqeq2 2206 . . . . . . . . 9  |-  ( (
-u 1 ^ N
)  =  -u 1  ->  ( 1  =  (
-u 1 ^ N
)  <->  1  =  -u
1 ) )
10199, 100imbi12d 234 . . . . . . . 8  |-  ( (
-u 1 ^ N
)  =  -u 1  ->  ( ( 1  =  ( ( -u 1 ^ N )  mod  P
)  ->  1  =  ( -u 1 ^ N
) )  <->  ( 1  =  ( -u 1  mod  P )  ->  1  =  -u 1 ) ) )
10298, 101imbitrrid 156 . . . . . . 7  |-  ( (
-u 1 ^ N
)  =  -u 1  ->  ( ph  ->  (
1  =  ( (
-u 1 ^ N
)  mod  P )  ->  1  =  ( -u
1 ^ N ) ) ) )
103 eqcom 2198 . . . . . . . . 9  |-  ( (
-u 1 ^ N
)  =  1  <->  1  =  ( -u 1 ^ N ) )
104103biimpi 120 . . . . . . . 8  |-  ( (
-u 1 ^ N
)  =  1  -> 
1  =  ( -u
1 ^ N ) )
1051042a1d 23 . . . . . . 7  |-  ( (
-u 1 ^ N
)  =  1  -> 
( ph  ->  ( 1  =  ( ( -u
1 ^ N )  mod  P )  -> 
1  =  ( -u
1 ^ N ) ) ) )
106102, 105jaoi 717 . . . . . 6  |-  ( ( ( -u 1 ^ N )  =  -u
1  \/  ( -u
1 ^ N )  =  1 )  -> 
( ph  ->  ( 1  =  ( ( -u
1 ^ N )  mod  P )  -> 
1  =  ( -u
1 ^ N ) ) ) )
10721, 106mpcom 36 . . . . 5  |-  ( ph  ->  ( 1  =  ( ( -u 1 ^ N )  mod  P
)  ->  1  =  ( -u 1 ^ N
) ) )
10895, 107sylbid 150 . . . 4  |-  ( ph  ->  ( ( 1  mod 
P )  =  ( ( -u 1 ^ N )  mod  P
)  ->  1  =  ( -u 1 ^ N
) ) )
109 oveq1 5932 . . . . . 6  |-  ( ( 2  /L P )  =  1  -> 
( ( 2  /L P )  mod 
P )  =  ( 1  mod  P ) )
110109eqeq1d 2205 . . . . 5  |-  ( ( 2  /L P )  =  1  -> 
( ( ( 2  /L P )  mod  P )  =  ( ( -u 1 ^ N )  mod  P
)  <->  ( 1  mod 
P )  =  ( ( -u 1 ^ N )  mod  P
) ) )
111 eqeq1 2203 . . . . 5  |-  ( ( 2  /L P )  =  1  -> 
( ( 2  /L P )  =  ( -u 1 ^ N )  <->  1  =  ( -u 1 ^ N
) ) )
112110, 111imbi12d 234 . . . 4  |-  ( ( 2  /L P )  =  1  -> 
( ( ( ( 2  /L P )  mod  P )  =  ( ( -u
1 ^ N )  mod  P )  -> 
( 2  /L
P )  =  (
-u 1 ^ N
) )  <->  ( (
1  mod  P )  =  ( ( -u
1 ^ N )  mod  P )  -> 
1  =  ( -u
1 ^ N ) ) ) )
113108, 112imbitrrid 156 . . 3  |-  ( ( 2  /L P )  =  1  -> 
( ph  ->  ( ( ( 2  /L
P )  mod  P
)  =  ( (
-u 1 ^ N
)  mod  P )  ->  ( 2  /L
P )  =  (
-u 1 ^ N
) ) ) )
11455, 94, 1133jaoi 1314 . 2  |-  ( ( ( 2  /L
P )  =  -u
1  \/  ( 2  /L P )  =  0  \/  (
2  /L P )  =  1 )  ->  ( ph  ->  ( ( ( 2  /L P )  mod 
P )  =  ( ( -u 1 ^ N )  mod  P
)  ->  ( 2  /L P )  =  ( -u 1 ^ N ) ) ) )
11511, 114mpcom 36 1  |-  ( ph  ->  ( ( ( 2  /L P )  mod  P )  =  ( ( -u 1 ^ N )  mod  P
)  ->  ( 2  /L P )  =  ( -u 1 ^ N ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    \/ w3o 979    = wceq 1364    e. wcel 2167    =/= wne 2367    \ cdif 3154   {csn 3623   {cpr 3624   {ctp 3625   class class class wbr 4034   ` cfv 5259  (class class class)co 5925   0cc0 7896   1c1 7897    < clt 8078    - cmin 8214   -ucneg 8215    / cdiv 8716   NNcn 9007   2c2 9058   3c3 9059   4c4 9060   ZZcz 9343   ZZ>=cuz 9618   QQcq 9710   |_cfl 10375    mod cmo 10431   ^cexp 10647   Primecprime 12300    /Lclgs 15322
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014  ax-arch 8015  ax-caucvg 8016
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-xor 1387  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-tp 3631  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-isom 5268  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-irdg 6437  df-frec 6458  df-1o 6483  df-2o 6484  df-oadd 6487  df-er 6601  df-en 6809  df-dom 6810  df-fin 6811  df-sup 7059  df-inf 7060  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-5 9069  df-6 9070  df-7 9071  df-8 9072  df-n0 9267  df-z 9344  df-uz 9619  df-q 9711  df-rp 9746  df-fz 10101  df-fzo 10235  df-fl 10377  df-mod 10432  df-seqfrec 10557  df-exp 10648  df-ihash 10885  df-cj 11024  df-re 11025  df-im 11026  df-rsqrt 11180  df-abs 11181  df-clim 11461  df-proddc 11733  df-dvds 11970  df-gcd 12146  df-prm 12301  df-phi 12404  df-pc 12479  df-lgs 15323
This theorem is referenced by:  gausslemma2d  15394
  Copyright terms: Public domain W3C validator