ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gausslemma2dlem0i Unicode version

Theorem gausslemma2dlem0i 15578
Description: Auxiliary lemma 9 for gausslemma2d 15590. (Contributed by AV, 14-Jul-2021.)
Hypotheses
Ref Expression
gausslemma2dlem0.p  |-  ( ph  ->  P  e.  ( Prime  \  { 2 } ) )
gausslemma2dlem0.m  |-  M  =  ( |_ `  ( P  /  4 ) )
gausslemma2dlem0.h  |-  H  =  ( ( P  - 
1 )  /  2
)
gausslemma2dlem0.n  |-  N  =  ( H  -  M
)
Assertion
Ref Expression
gausslemma2dlem0i  |-  ( ph  ->  ( ( ( 2  /L P )  mod  P )  =  ( ( -u 1 ^ N )  mod  P
)  ->  ( 2  /L P )  =  ( -u 1 ^ N ) ) )

Proof of Theorem gausslemma2dlem0i
StepHypRef Expression
1 2z 9407 . . . 4  |-  2  e.  ZZ
2 gausslemma2dlem0.p . . . . 5  |-  ( ph  ->  P  e.  ( Prime  \  { 2 } ) )
3 id 19 . . . . . . 7  |-  ( P  e.  ( Prime  \  {
2 } )  ->  P  e.  ( Prime  \  { 2 } ) )
43gausslemma2dlem0a 15570 . . . . . 6  |-  ( P  e.  ( Prime  \  {
2 } )  ->  P  e.  NN )
54nnzd 9501 . . . . 5  |-  ( P  e.  ( Prime  \  {
2 } )  ->  P  e.  ZZ )
62, 5syl 14 . . . 4  |-  ( ph  ->  P  e.  ZZ )
7 lgscl1 15544 . . . 4  |-  ( ( 2  e.  ZZ  /\  P  e.  ZZ )  ->  ( 2  /L
P )  e.  { -u 1 ,  0 ,  1 } )
81, 6, 7sylancr 414 . . 3  |-  ( ph  ->  ( 2  /L
P )  e.  { -u 1 ,  0 ,  1 } )
9 eltpg 3679 . . . 4  |-  ( ( 2  /L P )  e.  { -u
1 ,  0 ,  1 }  ->  (
( 2  /L
P )  e.  { -u 1 ,  0 ,  1 }  <->  ( (
2  /L P )  =  -u 1  \/  ( 2  /L
P )  =  0  \/  ( 2  /L P )  =  1 ) ) )
108, 9syl 14 . . 3  |-  ( ph  ->  ( ( 2  /L P )  e. 
{ -u 1 ,  0 ,  1 }  <->  ( (
2  /L P )  =  -u 1  \/  ( 2  /L
P )  =  0  \/  ( 2  /L P )  =  1 ) ) )
118, 10mpbid 147 . 2  |-  ( ph  ->  ( ( 2  /L P )  = 
-u 1  \/  (
2  /L P )  =  0  \/  ( 2  /L
P )  =  1 ) )
12 gausslemma2dlem0.m . . . . . . . . 9  |-  M  =  ( |_ `  ( P  /  4 ) )
13 gausslemma2dlem0.h . . . . . . . . 9  |-  H  =  ( ( P  - 
1 )  /  2
)
14 gausslemma2dlem0.n . . . . . . . . 9  |-  N  =  ( H  -  M
)
152, 12, 13, 14gausslemma2dlem0h 15577 . . . . . . . 8  |-  ( ph  ->  N  e.  NN0 )
1615nn0zd 9500 . . . . . . 7  |-  ( ph  ->  N  e.  ZZ )
17 m1expcl2 10713 . . . . . . 7  |-  ( N  e.  ZZ  ->  ( -u 1 ^ N )  e.  { -u 1 ,  1 } )
1816, 17syl 14 . . . . . 6  |-  ( ph  ->  ( -u 1 ^ N )  e.  { -u 1 ,  1 } )
19 elprg 3654 . . . . . . 7  |-  ( (
-u 1 ^ N
)  e.  { -u
1 ,  1 }  ->  ( ( -u
1 ^ N )  e.  { -u 1 ,  1 }  <->  ( ( -u 1 ^ N )  =  -u 1  \/  ( -u 1 ^ N )  =  1 ) ) )
2018, 19syl 14 . . . . . 6  |-  ( ph  ->  ( ( -u 1 ^ N )  e.  { -u 1 ,  1 }  <-> 
( ( -u 1 ^ N )  =  -u
1  \/  ( -u
1 ^ N )  =  1 ) ) )
2118, 20mpbid 147 . . . . 5  |-  ( ph  ->  ( ( -u 1 ^ N )  =  -u
1  \/  ( -u
1 ^ N )  =  1 ) )
22 eqcom 2208 . . . . . . . 8  |-  ( (
-u 1 ^ N
)  =  -u 1  <->  -u 1  =  ( -u
1 ^ N ) )
2322biimpi 120 . . . . . . 7  |-  ( (
-u 1 ^ N
)  =  -u 1  -> 
-u 1  =  (
-u 1 ^ N
) )
24232a1d 23 . . . . . 6  |-  ( (
-u 1 ^ N
)  =  -u 1  ->  ( ph  ->  (
( -u 1  mod  P
)  =  ( (
-u 1 ^ N
)  mod  P )  -> 
-u 1  =  (
-u 1 ^ N
) ) ) )
252gausslemma2dlem0a 15570 . . . . . . . . . . 11  |-  ( ph  ->  P  e.  NN )
26 nnq 9761 . . . . . . . . . . 11  |-  ( P  e.  NN  ->  P  e.  QQ )
2725, 26syl 14 . . . . . . . . . 10  |-  ( ph  ->  P  e.  QQ )
282eldifad 3178 . . . . . . . . . . 11  |-  ( ph  ->  P  e.  Prime )
29 prmgt1 12498 . . . . . . . . . . 11  |-  ( P  e.  Prime  ->  1  < 
P )
3028, 29syl 14 . . . . . . . . . 10  |-  ( ph  ->  1  <  P )
31 q1mod 10508 . . . . . . . . . 10  |-  ( ( P  e.  QQ  /\  1  <  P )  -> 
( 1  mod  P
)  =  1 )
3227, 30, 31syl2anc 411 . . . . . . . . 9  |-  ( ph  ->  ( 1  mod  P
)  =  1 )
3332eqeq2d 2218 . . . . . . . 8  |-  ( ph  ->  ( ( -u 1  mod  P )  =  ( 1  mod  P )  <-> 
( -u 1  mod  P
)  =  1 ) )
34 oddprmge3 12501 . . . . . . . . 9  |-  ( P  e.  ( Prime  \  {
2 } )  ->  P  e.  ( ZZ>= ` 
3 ) )
35 m1modge3gt1 10523 . . . . . . . . . 10  |-  ( P  e.  ( ZZ>= `  3
)  ->  1  <  (
-u 1  mod  P
) )
36 breq2 4051 . . . . . . . . . . 11  |-  ( (
-u 1  mod  P
)  =  1  -> 
( 1  <  ( -u 1  mod  P )  <->  1  <  1 ) )
37 1re 8078 . . . . . . . . . . . . 13  |-  1  e.  RR
3837ltnri 8172 . . . . . . . . . . . 12  |-  -.  1  <  1
3938pm2.21i 647 . . . . . . . . . . 11  |-  ( 1  <  1  ->  -u 1  =  1 )
4036, 39biimtrdi 163 . . . . . . . . . 10  |-  ( (
-u 1  mod  P
)  =  1  -> 
( 1  <  ( -u 1  mod  P )  ->  -u 1  =  1 ) )
4135, 40syl5com 29 . . . . . . . . 9  |-  ( P  e.  ( ZZ>= `  3
)  ->  ( ( -u 1  mod  P )  =  1  ->  -u 1  =  1 ) )
422, 34, 413syl 17 . . . . . . . 8  |-  ( ph  ->  ( ( -u 1  mod  P )  =  1  ->  -u 1  =  1 ) )
4333, 42sylbid 150 . . . . . . 7  |-  ( ph  ->  ( ( -u 1  mod  P )  =  ( 1  mod  P )  ->  -u 1  =  1 ) )
44 oveq1 5958 . . . . . . . . 9  |-  ( (
-u 1 ^ N
)  =  1  -> 
( ( -u 1 ^ N )  mod  P
)  =  ( 1  mod  P ) )
4544eqeq2d 2218 . . . . . . . 8  |-  ( (
-u 1 ^ N
)  =  1  -> 
( ( -u 1  mod  P )  =  ( ( -u 1 ^ N )  mod  P
)  <->  ( -u 1  mod  P )  =  ( 1  mod  P ) ) )
46 eqeq2 2216 . . . . . . . 8  |-  ( (
-u 1 ^ N
)  =  1  -> 
( -u 1  =  (
-u 1 ^ N
)  <->  -u 1  =  1 ) )
4745, 46imbi12d 234 . . . . . . 7  |-  ( (
-u 1 ^ N
)  =  1  -> 
( ( ( -u
1  mod  P )  =  ( ( -u
1 ^ N )  mod  P )  ->  -u 1  =  ( -u
1 ^ N ) )  <->  ( ( -u
1  mod  P )  =  ( 1  mod 
P )  ->  -u 1  =  1 ) ) )
4843, 47imbitrrid 156 . . . . . 6  |-  ( (
-u 1 ^ N
)  =  1  -> 
( ph  ->  ( (
-u 1  mod  P
)  =  ( (
-u 1 ^ N
)  mod  P )  -> 
-u 1  =  (
-u 1 ^ N
) ) ) )
4924, 48jaoi 718 . . . . 5  |-  ( ( ( -u 1 ^ N )  =  -u
1  \/  ( -u
1 ^ N )  =  1 )  -> 
( ph  ->  ( (
-u 1  mod  P
)  =  ( (
-u 1 ^ N
)  mod  P )  -> 
-u 1  =  (
-u 1 ^ N
) ) ) )
5021, 49mpcom 36 . . . 4  |-  ( ph  ->  ( ( -u 1  mod  P )  =  ( ( -u 1 ^ N )  mod  P
)  ->  -u 1  =  ( -u 1 ^ N ) ) )
51 oveq1 5958 . . . . . 6  |-  ( ( 2  /L P )  =  -u 1  ->  ( ( 2  /L P )  mod 
P )  =  (
-u 1  mod  P
) )
5251eqeq1d 2215 . . . . 5  |-  ( ( 2  /L P )  =  -u 1  ->  ( ( ( 2  /L P )  mod  P )  =  ( ( -u 1 ^ N )  mod  P
)  <->  ( -u 1  mod  P )  =  ( ( -u 1 ^ N )  mod  P
) ) )
53 eqeq1 2213 . . . . 5  |-  ( ( 2  /L P )  =  -u 1  ->  ( ( 2  /L P )  =  ( -u 1 ^ N )  <->  -u 1  =  ( -u 1 ^ N ) ) )
5452, 53imbi12d 234 . . . 4  |-  ( ( 2  /L P )  =  -u 1  ->  ( ( ( ( 2  /L P )  mod  P )  =  ( ( -u
1 ^ N )  mod  P )  -> 
( 2  /L
P )  =  (
-u 1 ^ N
) )  <->  ( ( -u 1  mod  P )  =  ( ( -u
1 ^ N )  mod  P )  ->  -u 1  =  ( -u
1 ^ N ) ) ) )
5550, 54imbitrrid 156 . . 3  |-  ( ( 2  /L P )  =  -u 1  ->  ( ph  ->  (
( ( 2  /L P )  mod 
P )  =  ( ( -u 1 ^ N )  mod  P
)  ->  ( 2  /L P )  =  ( -u 1 ^ N ) ) ) )
5625nngt0d 9087 . . . . . . 7  |-  ( ph  ->  0  <  P )
57 q0mod 10507 . . . . . . 7  |-  ( ( P  e.  QQ  /\  0  <  P )  -> 
( 0  mod  P
)  =  0 )
5827, 56, 57syl2anc 411 . . . . . 6  |-  ( ph  ->  ( 0  mod  P
)  =  0 )
5958eqeq1d 2215 . . . . 5  |-  ( ph  ->  ( ( 0  mod 
P )  =  ( ( -u 1 ^ N )  mod  P
)  <->  0  =  ( ( -u 1 ^ N )  mod  P
) ) )
60 oveq1 5958 . . . . . . . . . . 11  |-  ( (
-u 1 ^ N
)  =  -u 1  ->  ( ( -u 1 ^ N )  mod  P
)  =  ( -u
1  mod  P )
)
6160eqeq2d 2218 . . . . . . . . . 10  |-  ( (
-u 1 ^ N
)  =  -u 1  ->  ( 0  =  ( ( -u 1 ^ N )  mod  P
)  <->  0  =  (
-u 1  mod  P
) ) )
6261adantr 276 . . . . . . . . 9  |-  ( ( ( -u 1 ^ N )  =  -u
1  /\  ph )  -> 
( 0  =  ( ( -u 1 ^ N )  mod  P
)  <->  0  =  (
-u 1  mod  P
) ) )
63 1z 9405 . . . . . . . . . . . . . 14  |-  1  e.  ZZ
64 zq 9754 . . . . . . . . . . . . . 14  |-  ( 1  e.  ZZ  ->  1  e.  QQ )
6563, 64ax-mp 5 . . . . . . . . . . . . 13  |-  1  e.  QQ
66 negqmod0 10483 . . . . . . . . . . . . 13  |-  ( ( 1  e.  QQ  /\  P  e.  QQ  /\  0  <  P )  ->  (
( 1  mod  P
)  =  0  <->  ( -u 1  mod  P )  =  0 ) )
6765, 27, 56, 66mp3an2i 1355 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( 1  mod 
P )  =  0  <-> 
( -u 1  mod  P
)  =  0 ) )
68 eqcom 2208 . . . . . . . . . . . 12  |-  ( (
-u 1  mod  P
)  =  0  <->  0  =  ( -u 1  mod  P ) )
6967, 68bitrdi 196 . . . . . . . . . . 11  |-  ( ph  ->  ( ( 1  mod 
P )  =  0  <->  0  =  ( -u
1  mod  P )
) )
7032eqeq1d 2215 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( 1  mod 
P )  =  0  <->  1  =  0 ) )
71 1ne0 9111 . . . . . . . . . . . . 13  |-  1  =/=  0
72 eqneqall 2387 . . . . . . . . . . . . 13  |-  ( 1  =  0  ->  (
1  =/=  0  -> 
0  =  ( -u
1 ^ N ) ) )
7371, 72mpi 15 . . . . . . . . . . . 12  |-  ( 1  =  0  ->  0  =  ( -u 1 ^ N ) )
7470, 73biimtrdi 163 . . . . . . . . . . 11  |-  ( ph  ->  ( ( 1  mod 
P )  =  0  ->  0  =  (
-u 1 ^ N
) ) )
7569, 74sylbird 170 . . . . . . . . . 10  |-  ( ph  ->  ( 0  =  (
-u 1  mod  P
)  ->  0  =  ( -u 1 ^ N
) ) )
7675adantl 277 . . . . . . . . 9  |-  ( ( ( -u 1 ^ N )  =  -u
1  /\  ph )  -> 
( 0  =  (
-u 1  mod  P
)  ->  0  =  ( -u 1 ^ N
) ) )
7762, 76sylbid 150 . . . . . . . 8  |-  ( ( ( -u 1 ^ N )  =  -u
1  /\  ph )  -> 
( 0  =  ( ( -u 1 ^ N )  mod  P
)  ->  0  =  ( -u 1 ^ N
) ) )
7877ex 115 . . . . . . 7  |-  ( (
-u 1 ^ N
)  =  -u 1  ->  ( ph  ->  (
0  =  ( (
-u 1 ^ N
)  mod  P )  ->  0  =  ( -u
1 ^ N ) ) ) )
7944eqeq2d 2218 . . . . . . . . . 10  |-  ( (
-u 1 ^ N
)  =  1  -> 
( 0  =  ( ( -u 1 ^ N )  mod  P
)  <->  0  =  ( 1  mod  P ) ) )
8079adantr 276 . . . . . . . . 9  |-  ( ( ( -u 1 ^ N )  =  1  /\  ph )  -> 
( 0  =  ( ( -u 1 ^ N )  mod  P
)  <->  0  =  ( 1  mod  P ) ) )
81 eqcom 2208 . . . . . . . . . . . 12  |-  ( 0  =  ( 1  mod 
P )  <->  ( 1  mod  P )  =  0 )
8281, 70bitrid 192 . . . . . . . . . . 11  |-  ( ph  ->  ( 0  =  ( 1  mod  P )  <->  1  =  0 ) )
8382, 73biimtrdi 163 . . . . . . . . . 10  |-  ( ph  ->  ( 0  =  ( 1  mod  P )  ->  0  =  (
-u 1 ^ N
) ) )
8483adantl 277 . . . . . . . . 9  |-  ( ( ( -u 1 ^ N )  =  1  /\  ph )  -> 
( 0  =  ( 1  mod  P )  ->  0  =  (
-u 1 ^ N
) ) )
8580, 84sylbid 150 . . . . . . . 8  |-  ( ( ( -u 1 ^ N )  =  1  /\  ph )  -> 
( 0  =  ( ( -u 1 ^ N )  mod  P
)  ->  0  =  ( -u 1 ^ N
) ) )
8685ex 115 . . . . . . 7  |-  ( (
-u 1 ^ N
)  =  1  -> 
( ph  ->  ( 0  =  ( ( -u
1 ^ N )  mod  P )  -> 
0  =  ( -u
1 ^ N ) ) ) )
8778, 86jaoi 718 . . . . . 6  |-  ( ( ( -u 1 ^ N )  =  -u
1  \/  ( -u
1 ^ N )  =  1 )  -> 
( ph  ->  ( 0  =  ( ( -u
1 ^ N )  mod  P )  -> 
0  =  ( -u
1 ^ N ) ) ) )
8821, 87mpcom 36 . . . . 5  |-  ( ph  ->  ( 0  =  ( ( -u 1 ^ N )  mod  P
)  ->  0  =  ( -u 1 ^ N
) ) )
8959, 88sylbid 150 . . . 4  |-  ( ph  ->  ( ( 0  mod 
P )  =  ( ( -u 1 ^ N )  mod  P
)  ->  0  =  ( -u 1 ^ N
) ) )
90 oveq1 5958 . . . . . 6  |-  ( ( 2  /L P )  =  0  -> 
( ( 2  /L P )  mod 
P )  =  ( 0  mod  P ) )
9190eqeq1d 2215 . . . . 5  |-  ( ( 2  /L P )  =  0  -> 
( ( ( 2  /L P )  mod  P )  =  ( ( -u 1 ^ N )  mod  P
)  <->  ( 0  mod 
P )  =  ( ( -u 1 ^ N )  mod  P
) ) )
92 eqeq1 2213 . . . . 5  |-  ( ( 2  /L P )  =  0  -> 
( ( 2  /L P )  =  ( -u 1 ^ N )  <->  0  =  ( -u 1 ^ N
) ) )
9391, 92imbi12d 234 . . . 4  |-  ( ( 2  /L P )  =  0  -> 
( ( ( ( 2  /L P )  mod  P )  =  ( ( -u
1 ^ N )  mod  P )  -> 
( 2  /L
P )  =  (
-u 1 ^ N
) )  <->  ( (
0  mod  P )  =  ( ( -u
1 ^ N )  mod  P )  -> 
0  =  ( -u
1 ^ N ) ) ) )
9489, 93imbitrrid 156 . . 3  |-  ( ( 2  /L P )  =  0  -> 
( ph  ->  ( ( ( 2  /L
P )  mod  P
)  =  ( (
-u 1 ^ N
)  mod  P )  ->  ( 2  /L
P )  =  (
-u 1 ^ N
) ) ) )
9532eqeq1d 2215 . . . . 5  |-  ( ph  ->  ( ( 1  mod 
P )  =  ( ( -u 1 ^ N )  mod  P
)  <->  1  =  ( ( -u 1 ^ N )  mod  P
) ) )
96 eqcom 2208 . . . . . . . . 9  |-  ( 1  =  ( -u 1  mod  P )  <->  ( -u 1  mod  P )  =  1 )
97 eqcom 2208 . . . . . . . . 9  |-  ( 1  =  -u 1  <->  -u 1  =  1 )
9842, 96, 973imtr4g 205 . . . . . . . 8  |-  ( ph  ->  ( 1  =  (
-u 1  mod  P
)  ->  1  =  -u 1 ) )
9960eqeq2d 2218 . . . . . . . . 9  |-  ( (
-u 1 ^ N
)  =  -u 1  ->  ( 1  =  ( ( -u 1 ^ N )  mod  P
)  <->  1  =  (
-u 1  mod  P
) ) )
100 eqeq2 2216 . . . . . . . . 9  |-  ( (
-u 1 ^ N
)  =  -u 1  ->  ( 1  =  (
-u 1 ^ N
)  <->  1  =  -u
1 ) )
10199, 100imbi12d 234 . . . . . . . 8  |-  ( (
-u 1 ^ N
)  =  -u 1  ->  ( ( 1  =  ( ( -u 1 ^ N )  mod  P
)  ->  1  =  ( -u 1 ^ N
) )  <->  ( 1  =  ( -u 1  mod  P )  ->  1  =  -u 1 ) ) )
10298, 101imbitrrid 156 . . . . . . 7  |-  ( (
-u 1 ^ N
)  =  -u 1  ->  ( ph  ->  (
1  =  ( (
-u 1 ^ N
)  mod  P )  ->  1  =  ( -u
1 ^ N ) ) ) )
103 eqcom 2208 . . . . . . . . 9  |-  ( (
-u 1 ^ N
)  =  1  <->  1  =  ( -u 1 ^ N ) )
104103biimpi 120 . . . . . . . 8  |-  ( (
-u 1 ^ N
)  =  1  -> 
1  =  ( -u
1 ^ N ) )
1051042a1d 23 . . . . . . 7  |-  ( (
-u 1 ^ N
)  =  1  -> 
( ph  ->  ( 1  =  ( ( -u
1 ^ N )  mod  P )  -> 
1  =  ( -u
1 ^ N ) ) ) )
106102, 105jaoi 718 . . . . . 6  |-  ( ( ( -u 1 ^ N )  =  -u
1  \/  ( -u
1 ^ N )  =  1 )  -> 
( ph  ->  ( 1  =  ( ( -u
1 ^ N )  mod  P )  -> 
1  =  ( -u
1 ^ N ) ) ) )
10721, 106mpcom 36 . . . . 5  |-  ( ph  ->  ( 1  =  ( ( -u 1 ^ N )  mod  P
)  ->  1  =  ( -u 1 ^ N
) ) )
10895, 107sylbid 150 . . . 4  |-  ( ph  ->  ( ( 1  mod 
P )  =  ( ( -u 1 ^ N )  mod  P
)  ->  1  =  ( -u 1 ^ N
) ) )
109 oveq1 5958 . . . . . 6  |-  ( ( 2  /L P )  =  1  -> 
( ( 2  /L P )  mod 
P )  =  ( 1  mod  P ) )
110109eqeq1d 2215 . . . . 5  |-  ( ( 2  /L P )  =  1  -> 
( ( ( 2  /L P )  mod  P )  =  ( ( -u 1 ^ N )  mod  P
)  <->  ( 1  mod 
P )  =  ( ( -u 1 ^ N )  mod  P
) ) )
111 eqeq1 2213 . . . . 5  |-  ( ( 2  /L P )  =  1  -> 
( ( 2  /L P )  =  ( -u 1 ^ N )  <->  1  =  ( -u 1 ^ N
) ) )
112110, 111imbi12d 234 . . . 4  |-  ( ( 2  /L P )  =  1  -> 
( ( ( ( 2  /L P )  mod  P )  =  ( ( -u
1 ^ N )  mod  P )  -> 
( 2  /L
P )  =  (
-u 1 ^ N
) )  <->  ( (
1  mod  P )  =  ( ( -u
1 ^ N )  mod  P )  -> 
1  =  ( -u
1 ^ N ) ) ) )
113108, 112imbitrrid 156 . . 3  |-  ( ( 2  /L P )  =  1  -> 
( ph  ->  ( ( ( 2  /L
P )  mod  P
)  =  ( (
-u 1 ^ N
)  mod  P )  ->  ( 2  /L
P )  =  (
-u 1 ^ N
) ) ) )
11455, 94, 1133jaoi 1316 . 2  |-  ( ( ( 2  /L
P )  =  -u
1  \/  ( 2  /L P )  =  0  \/  (
2  /L P )  =  1 )  ->  ( ph  ->  ( ( ( 2  /L P )  mod 
P )  =  ( ( -u 1 ^ N )  mod  P
)  ->  ( 2  /L P )  =  ( -u 1 ^ N ) ) ) )
11511, 114mpcom 36 1  |-  ( ph  ->  ( ( ( 2  /L P )  mod  P )  =  ( ( -u 1 ^ N )  mod  P
)  ->  ( 2  /L P )  =  ( -u 1 ^ N ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 710    \/ w3o 980    = wceq 1373    e. wcel 2177    =/= wne 2377    \ cdif 3164   {csn 3634   {cpr 3635   {ctp 3636   class class class wbr 4047   ` cfv 5276  (class class class)co 5951   0cc0 7932   1c1 7933    < clt 8114    - cmin 8250   -ucneg 8251    / cdiv 8752   NNcn 9043   2c2 9094   3c3 9095   4c4 9096   ZZcz 9379   ZZ>=cuz 9655   QQcq 9747   |_cfl 10418    mod cmo 10474   ^cexp 10690   Primecprime 12473    /Lclgs 15518
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-nul 4174  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-iinf 4640  ax-cnex 8023  ax-resscn 8024  ax-1cn 8025  ax-1re 8026  ax-icn 8027  ax-addcl 8028  ax-addrcl 8029  ax-mulcl 8030  ax-mulrcl 8031  ax-addcom 8032  ax-mulcom 8033  ax-addass 8034  ax-mulass 8035  ax-distr 8036  ax-i2m1 8037  ax-0lt1 8038  ax-1rid 8039  ax-0id 8040  ax-rnegex 8041  ax-precex 8042  ax-cnre 8043  ax-pre-ltirr 8044  ax-pre-ltwlin 8045  ax-pre-lttrn 8046  ax-pre-apti 8047  ax-pre-ltadd 8048  ax-pre-mulgt0 8049  ax-pre-mulext 8050  ax-arch 8051  ax-caucvg 8052
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-xor 1396  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-if 3573  df-pw 3619  df-sn 3640  df-pr 3641  df-tp 3642  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-tr 4147  df-id 4344  df-po 4347  df-iso 4348  df-iord 4417  df-on 4419  df-ilim 4420  df-suc 4422  df-iom 4643  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-isom 5285  df-riota 5906  df-ov 5954  df-oprab 5955  df-mpo 5956  df-1st 6233  df-2nd 6234  df-recs 6398  df-irdg 6463  df-frec 6484  df-1o 6509  df-2o 6510  df-oadd 6513  df-er 6627  df-en 6835  df-dom 6836  df-fin 6837  df-sup 7093  df-inf 7094  df-pnf 8116  df-mnf 8117  df-xr 8118  df-ltxr 8119  df-le 8120  df-sub 8252  df-neg 8253  df-reap 8655  df-ap 8662  df-div 8753  df-inn 9044  df-2 9102  df-3 9103  df-4 9104  df-5 9105  df-6 9106  df-7 9107  df-8 9108  df-n0 9303  df-z 9380  df-uz 9656  df-q 9748  df-rp 9783  df-fz 10138  df-fzo 10272  df-fl 10420  df-mod 10475  df-seqfrec 10600  df-exp 10691  df-ihash 10928  df-cj 11197  df-re 11198  df-im 11199  df-rsqrt 11353  df-abs 11354  df-clim 11634  df-proddc 11906  df-dvds 12143  df-gcd 12319  df-prm 12474  df-phi 12577  df-pc 12652  df-lgs 15519
This theorem is referenced by:  gausslemma2d  15590
  Copyright terms: Public domain W3C validator