ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gausslemma2dlem0i GIF version

Theorem gausslemma2dlem0i 15701
Description: Auxiliary lemma 9 for gausslemma2d 15713. (Contributed by AV, 14-Jul-2021.)
Hypotheses
Ref Expression
gausslemma2dlem0.p (𝜑𝑃 ∈ (ℙ ∖ {2}))
gausslemma2dlem0.m 𝑀 = (⌊‘(𝑃 / 4))
gausslemma2dlem0.h 𝐻 = ((𝑃 − 1) / 2)
gausslemma2dlem0.n 𝑁 = (𝐻𝑀)
Assertion
Ref Expression
gausslemma2dlem0i (𝜑 → (((2 /L 𝑃) mod 𝑃) = ((-1↑𝑁) mod 𝑃) → (2 /L 𝑃) = (-1↑𝑁)))

Proof of Theorem gausslemma2dlem0i
StepHypRef Expression
1 2z 9442 . . . 4 2 ∈ ℤ
2 gausslemma2dlem0.p . . . . 5 (𝜑𝑃 ∈ (ℙ ∖ {2}))
3 id 19 . . . . . . 7 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ (ℙ ∖ {2}))
43gausslemma2dlem0a 15693 . . . . . 6 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℕ)
54nnzd 9536 . . . . 5 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℤ)
62, 5syl 14 . . . 4 (𝜑𝑃 ∈ ℤ)
7 lgscl1 15667 . . . 4 ((2 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (2 /L 𝑃) ∈ {-1, 0, 1})
81, 6, 7sylancr 414 . . 3 (𝜑 → (2 /L 𝑃) ∈ {-1, 0, 1})
9 eltpg 3691 . . . 4 ((2 /L 𝑃) ∈ {-1, 0, 1} → ((2 /L 𝑃) ∈ {-1, 0, 1} ↔ ((2 /L 𝑃) = -1 ∨ (2 /L 𝑃) = 0 ∨ (2 /L 𝑃) = 1)))
108, 9syl 14 . . 3 (𝜑 → ((2 /L 𝑃) ∈ {-1, 0, 1} ↔ ((2 /L 𝑃) = -1 ∨ (2 /L 𝑃) = 0 ∨ (2 /L 𝑃) = 1)))
118, 10mpbid 147 . 2 (𝜑 → ((2 /L 𝑃) = -1 ∨ (2 /L 𝑃) = 0 ∨ (2 /L 𝑃) = 1))
12 gausslemma2dlem0.m . . . . . . . . 9 𝑀 = (⌊‘(𝑃 / 4))
13 gausslemma2dlem0.h . . . . . . . . 9 𝐻 = ((𝑃 − 1) / 2)
14 gausslemma2dlem0.n . . . . . . . . 9 𝑁 = (𝐻𝑀)
152, 12, 13, 14gausslemma2dlem0h 15700 . . . . . . . 8 (𝜑𝑁 ∈ ℕ0)
1615nn0zd 9535 . . . . . . 7 (𝜑𝑁 ∈ ℤ)
17 m1expcl2 10750 . . . . . . 7 (𝑁 ∈ ℤ → (-1↑𝑁) ∈ {-1, 1})
1816, 17syl 14 . . . . . 6 (𝜑 → (-1↑𝑁) ∈ {-1, 1})
19 elprg 3666 . . . . . . 7 ((-1↑𝑁) ∈ {-1, 1} → ((-1↑𝑁) ∈ {-1, 1} ↔ ((-1↑𝑁) = -1 ∨ (-1↑𝑁) = 1)))
2018, 19syl 14 . . . . . 6 (𝜑 → ((-1↑𝑁) ∈ {-1, 1} ↔ ((-1↑𝑁) = -1 ∨ (-1↑𝑁) = 1)))
2118, 20mpbid 147 . . . . 5 (𝜑 → ((-1↑𝑁) = -1 ∨ (-1↑𝑁) = 1))
22 eqcom 2211 . . . . . . . 8 ((-1↑𝑁) = -1 ↔ -1 = (-1↑𝑁))
2322biimpi 120 . . . . . . 7 ((-1↑𝑁) = -1 → -1 = (-1↑𝑁))
24232a1d 23 . . . . . 6 ((-1↑𝑁) = -1 → (𝜑 → ((-1 mod 𝑃) = ((-1↑𝑁) mod 𝑃) → -1 = (-1↑𝑁))))
252gausslemma2dlem0a 15693 . . . . . . . . . . 11 (𝜑𝑃 ∈ ℕ)
26 nnq 9796 . . . . . . . . . . 11 (𝑃 ∈ ℕ → 𝑃 ∈ ℚ)
2725, 26syl 14 . . . . . . . . . 10 (𝜑𝑃 ∈ ℚ)
282eldifad 3188 . . . . . . . . . . 11 (𝜑𝑃 ∈ ℙ)
29 prmgt1 12620 . . . . . . . . . . 11 (𝑃 ∈ ℙ → 1 < 𝑃)
3028, 29syl 14 . . . . . . . . . 10 (𝜑 → 1 < 𝑃)
31 q1mod 10545 . . . . . . . . . 10 ((𝑃 ∈ ℚ ∧ 1 < 𝑃) → (1 mod 𝑃) = 1)
3227, 30, 31syl2anc 411 . . . . . . . . 9 (𝜑 → (1 mod 𝑃) = 1)
3332eqeq2d 2221 . . . . . . . 8 (𝜑 → ((-1 mod 𝑃) = (1 mod 𝑃) ↔ (-1 mod 𝑃) = 1))
34 oddprmge3 12623 . . . . . . . . 9 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ (ℤ‘3))
35 m1modge3gt1 10560 . . . . . . . . . 10 (𝑃 ∈ (ℤ‘3) → 1 < (-1 mod 𝑃))
36 breq2 4066 . . . . . . . . . . 11 ((-1 mod 𝑃) = 1 → (1 < (-1 mod 𝑃) ↔ 1 < 1))
37 1re 8113 . . . . . . . . . . . . 13 1 ∈ ℝ
3837ltnri 8207 . . . . . . . . . . . 12 ¬ 1 < 1
3938pm2.21i 649 . . . . . . . . . . 11 (1 < 1 → -1 = 1)
4036, 39biimtrdi 163 . . . . . . . . . 10 ((-1 mod 𝑃) = 1 → (1 < (-1 mod 𝑃) → -1 = 1))
4135, 40syl5com 29 . . . . . . . . 9 (𝑃 ∈ (ℤ‘3) → ((-1 mod 𝑃) = 1 → -1 = 1))
422, 34, 413syl 17 . . . . . . . 8 (𝜑 → ((-1 mod 𝑃) = 1 → -1 = 1))
4333, 42sylbid 150 . . . . . . 7 (𝜑 → ((-1 mod 𝑃) = (1 mod 𝑃) → -1 = 1))
44 oveq1 5981 . . . . . . . . 9 ((-1↑𝑁) = 1 → ((-1↑𝑁) mod 𝑃) = (1 mod 𝑃))
4544eqeq2d 2221 . . . . . . . 8 ((-1↑𝑁) = 1 → ((-1 mod 𝑃) = ((-1↑𝑁) mod 𝑃) ↔ (-1 mod 𝑃) = (1 mod 𝑃)))
46 eqeq2 2219 . . . . . . . 8 ((-1↑𝑁) = 1 → (-1 = (-1↑𝑁) ↔ -1 = 1))
4745, 46imbi12d 234 . . . . . . 7 ((-1↑𝑁) = 1 → (((-1 mod 𝑃) = ((-1↑𝑁) mod 𝑃) → -1 = (-1↑𝑁)) ↔ ((-1 mod 𝑃) = (1 mod 𝑃) → -1 = 1)))
4843, 47imbitrrid 156 . . . . . 6 ((-1↑𝑁) = 1 → (𝜑 → ((-1 mod 𝑃) = ((-1↑𝑁) mod 𝑃) → -1 = (-1↑𝑁))))
4924, 48jaoi 720 . . . . 5 (((-1↑𝑁) = -1 ∨ (-1↑𝑁) = 1) → (𝜑 → ((-1 mod 𝑃) = ((-1↑𝑁) mod 𝑃) → -1 = (-1↑𝑁))))
5021, 49mpcom 36 . . . 4 (𝜑 → ((-1 mod 𝑃) = ((-1↑𝑁) mod 𝑃) → -1 = (-1↑𝑁)))
51 oveq1 5981 . . . . . 6 ((2 /L 𝑃) = -1 → ((2 /L 𝑃) mod 𝑃) = (-1 mod 𝑃))
5251eqeq1d 2218 . . . . 5 ((2 /L 𝑃) = -1 → (((2 /L 𝑃) mod 𝑃) = ((-1↑𝑁) mod 𝑃) ↔ (-1 mod 𝑃) = ((-1↑𝑁) mod 𝑃)))
53 eqeq1 2216 . . . . 5 ((2 /L 𝑃) = -1 → ((2 /L 𝑃) = (-1↑𝑁) ↔ -1 = (-1↑𝑁)))
5452, 53imbi12d 234 . . . 4 ((2 /L 𝑃) = -1 → ((((2 /L 𝑃) mod 𝑃) = ((-1↑𝑁) mod 𝑃) → (2 /L 𝑃) = (-1↑𝑁)) ↔ ((-1 mod 𝑃) = ((-1↑𝑁) mod 𝑃) → -1 = (-1↑𝑁))))
5550, 54imbitrrid 156 . . 3 ((2 /L 𝑃) = -1 → (𝜑 → (((2 /L 𝑃) mod 𝑃) = ((-1↑𝑁) mod 𝑃) → (2 /L 𝑃) = (-1↑𝑁))))
5625nngt0d 9122 . . . . . . 7 (𝜑 → 0 < 𝑃)
57 q0mod 10544 . . . . . . 7 ((𝑃 ∈ ℚ ∧ 0 < 𝑃) → (0 mod 𝑃) = 0)
5827, 56, 57syl2anc 411 . . . . . 6 (𝜑 → (0 mod 𝑃) = 0)
5958eqeq1d 2218 . . . . 5 (𝜑 → ((0 mod 𝑃) = ((-1↑𝑁) mod 𝑃) ↔ 0 = ((-1↑𝑁) mod 𝑃)))
60 oveq1 5981 . . . . . . . . . . 11 ((-1↑𝑁) = -1 → ((-1↑𝑁) mod 𝑃) = (-1 mod 𝑃))
6160eqeq2d 2221 . . . . . . . . . 10 ((-1↑𝑁) = -1 → (0 = ((-1↑𝑁) mod 𝑃) ↔ 0 = (-1 mod 𝑃)))
6261adantr 276 . . . . . . . . 9 (((-1↑𝑁) = -1 ∧ 𝜑) → (0 = ((-1↑𝑁) mod 𝑃) ↔ 0 = (-1 mod 𝑃)))
63 1z 9440 . . . . . . . . . . . . . 14 1 ∈ ℤ
64 zq 9789 . . . . . . . . . . . . . 14 (1 ∈ ℤ → 1 ∈ ℚ)
6563, 64ax-mp 5 . . . . . . . . . . . . 13 1 ∈ ℚ
66 negqmod0 10520 . . . . . . . . . . . . 13 ((1 ∈ ℚ ∧ 𝑃 ∈ ℚ ∧ 0 < 𝑃) → ((1 mod 𝑃) = 0 ↔ (-1 mod 𝑃) = 0))
6765, 27, 56, 66mp3an2i 1357 . . . . . . . . . . . 12 (𝜑 → ((1 mod 𝑃) = 0 ↔ (-1 mod 𝑃) = 0))
68 eqcom 2211 . . . . . . . . . . . 12 ((-1 mod 𝑃) = 0 ↔ 0 = (-1 mod 𝑃))
6967, 68bitrdi 196 . . . . . . . . . . 11 (𝜑 → ((1 mod 𝑃) = 0 ↔ 0 = (-1 mod 𝑃)))
7032eqeq1d 2218 . . . . . . . . . . . 12 (𝜑 → ((1 mod 𝑃) = 0 ↔ 1 = 0))
71 1ne0 9146 . . . . . . . . . . . . 13 1 ≠ 0
72 eqneqall 2390 . . . . . . . . . . . . 13 (1 = 0 → (1 ≠ 0 → 0 = (-1↑𝑁)))
7371, 72mpi 15 . . . . . . . . . . . 12 (1 = 0 → 0 = (-1↑𝑁))
7470, 73biimtrdi 163 . . . . . . . . . . 11 (𝜑 → ((1 mod 𝑃) = 0 → 0 = (-1↑𝑁)))
7569, 74sylbird 170 . . . . . . . . . 10 (𝜑 → (0 = (-1 mod 𝑃) → 0 = (-1↑𝑁)))
7675adantl 277 . . . . . . . . 9 (((-1↑𝑁) = -1 ∧ 𝜑) → (0 = (-1 mod 𝑃) → 0 = (-1↑𝑁)))
7762, 76sylbid 150 . . . . . . . 8 (((-1↑𝑁) = -1 ∧ 𝜑) → (0 = ((-1↑𝑁) mod 𝑃) → 0 = (-1↑𝑁)))
7877ex 115 . . . . . . 7 ((-1↑𝑁) = -1 → (𝜑 → (0 = ((-1↑𝑁) mod 𝑃) → 0 = (-1↑𝑁))))
7944eqeq2d 2221 . . . . . . . . . 10 ((-1↑𝑁) = 1 → (0 = ((-1↑𝑁) mod 𝑃) ↔ 0 = (1 mod 𝑃)))
8079adantr 276 . . . . . . . . 9 (((-1↑𝑁) = 1 ∧ 𝜑) → (0 = ((-1↑𝑁) mod 𝑃) ↔ 0 = (1 mod 𝑃)))
81 eqcom 2211 . . . . . . . . . . . 12 (0 = (1 mod 𝑃) ↔ (1 mod 𝑃) = 0)
8281, 70bitrid 192 . . . . . . . . . . 11 (𝜑 → (0 = (1 mod 𝑃) ↔ 1 = 0))
8382, 73biimtrdi 163 . . . . . . . . . 10 (𝜑 → (0 = (1 mod 𝑃) → 0 = (-1↑𝑁)))
8483adantl 277 . . . . . . . . 9 (((-1↑𝑁) = 1 ∧ 𝜑) → (0 = (1 mod 𝑃) → 0 = (-1↑𝑁)))
8580, 84sylbid 150 . . . . . . . 8 (((-1↑𝑁) = 1 ∧ 𝜑) → (0 = ((-1↑𝑁) mod 𝑃) → 0 = (-1↑𝑁)))
8685ex 115 . . . . . . 7 ((-1↑𝑁) = 1 → (𝜑 → (0 = ((-1↑𝑁) mod 𝑃) → 0 = (-1↑𝑁))))
8778, 86jaoi 720 . . . . . 6 (((-1↑𝑁) = -1 ∨ (-1↑𝑁) = 1) → (𝜑 → (0 = ((-1↑𝑁) mod 𝑃) → 0 = (-1↑𝑁))))
8821, 87mpcom 36 . . . . 5 (𝜑 → (0 = ((-1↑𝑁) mod 𝑃) → 0 = (-1↑𝑁)))
8959, 88sylbid 150 . . . 4 (𝜑 → ((0 mod 𝑃) = ((-1↑𝑁) mod 𝑃) → 0 = (-1↑𝑁)))
90 oveq1 5981 . . . . . 6 ((2 /L 𝑃) = 0 → ((2 /L 𝑃) mod 𝑃) = (0 mod 𝑃))
9190eqeq1d 2218 . . . . 5 ((2 /L 𝑃) = 0 → (((2 /L 𝑃) mod 𝑃) = ((-1↑𝑁) mod 𝑃) ↔ (0 mod 𝑃) = ((-1↑𝑁) mod 𝑃)))
92 eqeq1 2216 . . . . 5 ((2 /L 𝑃) = 0 → ((2 /L 𝑃) = (-1↑𝑁) ↔ 0 = (-1↑𝑁)))
9391, 92imbi12d 234 . . . 4 ((2 /L 𝑃) = 0 → ((((2 /L 𝑃) mod 𝑃) = ((-1↑𝑁) mod 𝑃) → (2 /L 𝑃) = (-1↑𝑁)) ↔ ((0 mod 𝑃) = ((-1↑𝑁) mod 𝑃) → 0 = (-1↑𝑁))))
9489, 93imbitrrid 156 . . 3 ((2 /L 𝑃) = 0 → (𝜑 → (((2 /L 𝑃) mod 𝑃) = ((-1↑𝑁) mod 𝑃) → (2 /L 𝑃) = (-1↑𝑁))))
9532eqeq1d 2218 . . . . 5 (𝜑 → ((1 mod 𝑃) = ((-1↑𝑁) mod 𝑃) ↔ 1 = ((-1↑𝑁) mod 𝑃)))
96 eqcom 2211 . . . . . . . . 9 (1 = (-1 mod 𝑃) ↔ (-1 mod 𝑃) = 1)
97 eqcom 2211 . . . . . . . . 9 (1 = -1 ↔ -1 = 1)
9842, 96, 973imtr4g 205 . . . . . . . 8 (𝜑 → (1 = (-1 mod 𝑃) → 1 = -1))
9960eqeq2d 2221 . . . . . . . . 9 ((-1↑𝑁) = -1 → (1 = ((-1↑𝑁) mod 𝑃) ↔ 1 = (-1 mod 𝑃)))
100 eqeq2 2219 . . . . . . . . 9 ((-1↑𝑁) = -1 → (1 = (-1↑𝑁) ↔ 1 = -1))
10199, 100imbi12d 234 . . . . . . . 8 ((-1↑𝑁) = -1 → ((1 = ((-1↑𝑁) mod 𝑃) → 1 = (-1↑𝑁)) ↔ (1 = (-1 mod 𝑃) → 1 = -1)))
10298, 101imbitrrid 156 . . . . . . 7 ((-1↑𝑁) = -1 → (𝜑 → (1 = ((-1↑𝑁) mod 𝑃) → 1 = (-1↑𝑁))))
103 eqcom 2211 . . . . . . . . 9 ((-1↑𝑁) = 1 ↔ 1 = (-1↑𝑁))
104103biimpi 120 . . . . . . . 8 ((-1↑𝑁) = 1 → 1 = (-1↑𝑁))
1051042a1d 23 . . . . . . 7 ((-1↑𝑁) = 1 → (𝜑 → (1 = ((-1↑𝑁) mod 𝑃) → 1 = (-1↑𝑁))))
106102, 105jaoi 720 . . . . . 6 (((-1↑𝑁) = -1 ∨ (-1↑𝑁) = 1) → (𝜑 → (1 = ((-1↑𝑁) mod 𝑃) → 1 = (-1↑𝑁))))
10721, 106mpcom 36 . . . . 5 (𝜑 → (1 = ((-1↑𝑁) mod 𝑃) → 1 = (-1↑𝑁)))
10895, 107sylbid 150 . . . 4 (𝜑 → ((1 mod 𝑃) = ((-1↑𝑁) mod 𝑃) → 1 = (-1↑𝑁)))
109 oveq1 5981 . . . . . 6 ((2 /L 𝑃) = 1 → ((2 /L 𝑃) mod 𝑃) = (1 mod 𝑃))
110109eqeq1d 2218 . . . . 5 ((2 /L 𝑃) = 1 → (((2 /L 𝑃) mod 𝑃) = ((-1↑𝑁) mod 𝑃) ↔ (1 mod 𝑃) = ((-1↑𝑁) mod 𝑃)))
111 eqeq1 2216 . . . . 5 ((2 /L 𝑃) = 1 → ((2 /L 𝑃) = (-1↑𝑁) ↔ 1 = (-1↑𝑁)))
112110, 111imbi12d 234 . . . 4 ((2 /L 𝑃) = 1 → ((((2 /L 𝑃) mod 𝑃) = ((-1↑𝑁) mod 𝑃) → (2 /L 𝑃) = (-1↑𝑁)) ↔ ((1 mod 𝑃) = ((-1↑𝑁) mod 𝑃) → 1 = (-1↑𝑁))))
113108, 112imbitrrid 156 . . 3 ((2 /L 𝑃) = 1 → (𝜑 → (((2 /L 𝑃) mod 𝑃) = ((-1↑𝑁) mod 𝑃) → (2 /L 𝑃) = (-1↑𝑁))))
11455, 94, 1133jaoi 1318 . 2 (((2 /L 𝑃) = -1 ∨ (2 /L 𝑃) = 0 ∨ (2 /L 𝑃) = 1) → (𝜑 → (((2 /L 𝑃) mod 𝑃) = ((-1↑𝑁) mod 𝑃) → (2 /L 𝑃) = (-1↑𝑁))))
11511, 114mpcom 36 1 (𝜑 → (((2 /L 𝑃) mod 𝑃) = ((-1↑𝑁) mod 𝑃) → (2 /L 𝑃) = (-1↑𝑁)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 712  w3o 982   = wceq 1375  wcel 2180  wne 2380  cdif 3174  {csn 3646  {cpr 3647  {ctp 3648   class class class wbr 4062  cfv 5294  (class class class)co 5974  0cc0 7967  1c1 7968   < clt 8149  cmin 8285  -cneg 8286   / cdiv 8787  cn 9078  2c2 9129  3c3 9130  4c4 9131  cz 9414  cuz 9690  cq 9782  cfl 10455   mod cmo 10511  cexp 10727  cprime 12595   /L clgs 15641
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-nul 4189  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-iinf 4657  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-mulrcl 8066  ax-addcom 8067  ax-mulcom 8068  ax-addass 8069  ax-mulass 8070  ax-distr 8071  ax-i2m1 8072  ax-0lt1 8073  ax-1rid 8074  ax-0id 8075  ax-rnegex 8076  ax-precex 8077  ax-cnre 8078  ax-pre-ltirr 8079  ax-pre-ltwlin 8080  ax-pre-lttrn 8081  ax-pre-apti 8082  ax-pre-ltadd 8083  ax-pre-mulgt0 8084  ax-pre-mulext 8085  ax-arch 8086  ax-caucvg 8087
This theorem depends on definitions:  df-bi 117  df-stab 835  df-dc 839  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-xor 1398  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rmo 2496  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-if 3583  df-pw 3631  df-sn 3652  df-pr 3653  df-tp 3654  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-tr 4162  df-id 4361  df-po 4364  df-iso 4365  df-iord 4434  df-on 4436  df-ilim 4437  df-suc 4439  df-iom 4660  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-isom 5303  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-recs 6421  df-irdg 6486  df-frec 6507  df-1o 6532  df-2o 6533  df-oadd 6536  df-er 6650  df-en 6858  df-dom 6859  df-fin 6860  df-sup 7119  df-inf 7120  df-pnf 8151  df-mnf 8152  df-xr 8153  df-ltxr 8154  df-le 8155  df-sub 8287  df-neg 8288  df-reap 8690  df-ap 8697  df-div 8788  df-inn 9079  df-2 9137  df-3 9138  df-4 9139  df-5 9140  df-6 9141  df-7 9142  df-8 9143  df-n0 9338  df-z 9415  df-uz 9691  df-q 9783  df-rp 9818  df-fz 10173  df-fzo 10307  df-fl 10457  df-mod 10512  df-seqfrec 10637  df-exp 10728  df-ihash 10965  df-cj 11319  df-re 11320  df-im 11321  df-rsqrt 11475  df-abs 11476  df-clim 11756  df-proddc 12028  df-dvds 12265  df-gcd 12441  df-prm 12596  df-phi 12699  df-pc 12774  df-lgs 15642
This theorem is referenced by:  gausslemma2d  15713
  Copyright terms: Public domain W3C validator