ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gausslemma2dlem0i GIF version

Theorem gausslemma2dlem0i 15406
Description: Auxiliary lemma 9 for gausslemma2d 15418. (Contributed by AV, 14-Jul-2021.)
Hypotheses
Ref Expression
gausslemma2dlem0.p (𝜑𝑃 ∈ (ℙ ∖ {2}))
gausslemma2dlem0.m 𝑀 = (⌊‘(𝑃 / 4))
gausslemma2dlem0.h 𝐻 = ((𝑃 − 1) / 2)
gausslemma2dlem0.n 𝑁 = (𝐻𝑀)
Assertion
Ref Expression
gausslemma2dlem0i (𝜑 → (((2 /L 𝑃) mod 𝑃) = ((-1↑𝑁) mod 𝑃) → (2 /L 𝑃) = (-1↑𝑁)))

Proof of Theorem gausslemma2dlem0i
StepHypRef Expression
1 2z 9373 . . . 4 2 ∈ ℤ
2 gausslemma2dlem0.p . . . . 5 (𝜑𝑃 ∈ (ℙ ∖ {2}))
3 id 19 . . . . . . 7 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ (ℙ ∖ {2}))
43gausslemma2dlem0a 15398 . . . . . 6 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℕ)
54nnzd 9466 . . . . 5 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℤ)
62, 5syl 14 . . . 4 (𝜑𝑃 ∈ ℤ)
7 lgscl1 15372 . . . 4 ((2 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (2 /L 𝑃) ∈ {-1, 0, 1})
81, 6, 7sylancr 414 . . 3 (𝜑 → (2 /L 𝑃) ∈ {-1, 0, 1})
9 eltpg 3668 . . . 4 ((2 /L 𝑃) ∈ {-1, 0, 1} → ((2 /L 𝑃) ∈ {-1, 0, 1} ↔ ((2 /L 𝑃) = -1 ∨ (2 /L 𝑃) = 0 ∨ (2 /L 𝑃) = 1)))
108, 9syl 14 . . 3 (𝜑 → ((2 /L 𝑃) ∈ {-1, 0, 1} ↔ ((2 /L 𝑃) = -1 ∨ (2 /L 𝑃) = 0 ∨ (2 /L 𝑃) = 1)))
118, 10mpbid 147 . 2 (𝜑 → ((2 /L 𝑃) = -1 ∨ (2 /L 𝑃) = 0 ∨ (2 /L 𝑃) = 1))
12 gausslemma2dlem0.m . . . . . . . . 9 𝑀 = (⌊‘(𝑃 / 4))
13 gausslemma2dlem0.h . . . . . . . . 9 𝐻 = ((𝑃 − 1) / 2)
14 gausslemma2dlem0.n . . . . . . . . 9 𝑁 = (𝐻𝑀)
152, 12, 13, 14gausslemma2dlem0h 15405 . . . . . . . 8 (𝜑𝑁 ∈ ℕ0)
1615nn0zd 9465 . . . . . . 7 (𝜑𝑁 ∈ ℤ)
17 m1expcl2 10672 . . . . . . 7 (𝑁 ∈ ℤ → (-1↑𝑁) ∈ {-1, 1})
1816, 17syl 14 . . . . . 6 (𝜑 → (-1↑𝑁) ∈ {-1, 1})
19 elprg 3643 . . . . . . 7 ((-1↑𝑁) ∈ {-1, 1} → ((-1↑𝑁) ∈ {-1, 1} ↔ ((-1↑𝑁) = -1 ∨ (-1↑𝑁) = 1)))
2018, 19syl 14 . . . . . 6 (𝜑 → ((-1↑𝑁) ∈ {-1, 1} ↔ ((-1↑𝑁) = -1 ∨ (-1↑𝑁) = 1)))
2118, 20mpbid 147 . . . . 5 (𝜑 → ((-1↑𝑁) = -1 ∨ (-1↑𝑁) = 1))
22 eqcom 2198 . . . . . . . 8 ((-1↑𝑁) = -1 ↔ -1 = (-1↑𝑁))
2322biimpi 120 . . . . . . 7 ((-1↑𝑁) = -1 → -1 = (-1↑𝑁))
24232a1d 23 . . . . . 6 ((-1↑𝑁) = -1 → (𝜑 → ((-1 mod 𝑃) = ((-1↑𝑁) mod 𝑃) → -1 = (-1↑𝑁))))
252gausslemma2dlem0a 15398 . . . . . . . . . . 11 (𝜑𝑃 ∈ ℕ)
26 nnq 9726 . . . . . . . . . . 11 (𝑃 ∈ ℕ → 𝑃 ∈ ℚ)
2725, 26syl 14 . . . . . . . . . 10 (𝜑𝑃 ∈ ℚ)
282eldifad 3168 . . . . . . . . . . 11 (𝜑𝑃 ∈ ℙ)
29 prmgt1 12327 . . . . . . . . . . 11 (𝑃 ∈ ℙ → 1 < 𝑃)
3028, 29syl 14 . . . . . . . . . 10 (𝜑 → 1 < 𝑃)
31 q1mod 10467 . . . . . . . . . 10 ((𝑃 ∈ ℚ ∧ 1 < 𝑃) → (1 mod 𝑃) = 1)
3227, 30, 31syl2anc 411 . . . . . . . . 9 (𝜑 → (1 mod 𝑃) = 1)
3332eqeq2d 2208 . . . . . . . 8 (𝜑 → ((-1 mod 𝑃) = (1 mod 𝑃) ↔ (-1 mod 𝑃) = 1))
34 oddprmge3 12330 . . . . . . . . 9 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ (ℤ‘3))
35 m1modge3gt1 10482 . . . . . . . . . 10 (𝑃 ∈ (ℤ‘3) → 1 < (-1 mod 𝑃))
36 breq2 4038 . . . . . . . . . . 11 ((-1 mod 𝑃) = 1 → (1 < (-1 mod 𝑃) ↔ 1 < 1))
37 1re 8044 . . . . . . . . . . . . 13 1 ∈ ℝ
3837ltnri 8138 . . . . . . . . . . . 12 ¬ 1 < 1
3938pm2.21i 647 . . . . . . . . . . 11 (1 < 1 → -1 = 1)
4036, 39biimtrdi 163 . . . . . . . . . 10 ((-1 mod 𝑃) = 1 → (1 < (-1 mod 𝑃) → -1 = 1))
4135, 40syl5com 29 . . . . . . . . 9 (𝑃 ∈ (ℤ‘3) → ((-1 mod 𝑃) = 1 → -1 = 1))
422, 34, 413syl 17 . . . . . . . 8 (𝜑 → ((-1 mod 𝑃) = 1 → -1 = 1))
4333, 42sylbid 150 . . . . . . 7 (𝜑 → ((-1 mod 𝑃) = (1 mod 𝑃) → -1 = 1))
44 oveq1 5932 . . . . . . . . 9 ((-1↑𝑁) = 1 → ((-1↑𝑁) mod 𝑃) = (1 mod 𝑃))
4544eqeq2d 2208 . . . . . . . 8 ((-1↑𝑁) = 1 → ((-1 mod 𝑃) = ((-1↑𝑁) mod 𝑃) ↔ (-1 mod 𝑃) = (1 mod 𝑃)))
46 eqeq2 2206 . . . . . . . 8 ((-1↑𝑁) = 1 → (-1 = (-1↑𝑁) ↔ -1 = 1))
4745, 46imbi12d 234 . . . . . . 7 ((-1↑𝑁) = 1 → (((-1 mod 𝑃) = ((-1↑𝑁) mod 𝑃) → -1 = (-1↑𝑁)) ↔ ((-1 mod 𝑃) = (1 mod 𝑃) → -1 = 1)))
4843, 47imbitrrid 156 . . . . . 6 ((-1↑𝑁) = 1 → (𝜑 → ((-1 mod 𝑃) = ((-1↑𝑁) mod 𝑃) → -1 = (-1↑𝑁))))
4924, 48jaoi 717 . . . . 5 (((-1↑𝑁) = -1 ∨ (-1↑𝑁) = 1) → (𝜑 → ((-1 mod 𝑃) = ((-1↑𝑁) mod 𝑃) → -1 = (-1↑𝑁))))
5021, 49mpcom 36 . . . 4 (𝜑 → ((-1 mod 𝑃) = ((-1↑𝑁) mod 𝑃) → -1 = (-1↑𝑁)))
51 oveq1 5932 . . . . . 6 ((2 /L 𝑃) = -1 → ((2 /L 𝑃) mod 𝑃) = (-1 mod 𝑃))
5251eqeq1d 2205 . . . . 5 ((2 /L 𝑃) = -1 → (((2 /L 𝑃) mod 𝑃) = ((-1↑𝑁) mod 𝑃) ↔ (-1 mod 𝑃) = ((-1↑𝑁) mod 𝑃)))
53 eqeq1 2203 . . . . 5 ((2 /L 𝑃) = -1 → ((2 /L 𝑃) = (-1↑𝑁) ↔ -1 = (-1↑𝑁)))
5452, 53imbi12d 234 . . . 4 ((2 /L 𝑃) = -1 → ((((2 /L 𝑃) mod 𝑃) = ((-1↑𝑁) mod 𝑃) → (2 /L 𝑃) = (-1↑𝑁)) ↔ ((-1 mod 𝑃) = ((-1↑𝑁) mod 𝑃) → -1 = (-1↑𝑁))))
5550, 54imbitrrid 156 . . 3 ((2 /L 𝑃) = -1 → (𝜑 → (((2 /L 𝑃) mod 𝑃) = ((-1↑𝑁) mod 𝑃) → (2 /L 𝑃) = (-1↑𝑁))))
5625nngt0d 9053 . . . . . . 7 (𝜑 → 0 < 𝑃)
57 q0mod 10466 . . . . . . 7 ((𝑃 ∈ ℚ ∧ 0 < 𝑃) → (0 mod 𝑃) = 0)
5827, 56, 57syl2anc 411 . . . . . 6 (𝜑 → (0 mod 𝑃) = 0)
5958eqeq1d 2205 . . . . 5 (𝜑 → ((0 mod 𝑃) = ((-1↑𝑁) mod 𝑃) ↔ 0 = ((-1↑𝑁) mod 𝑃)))
60 oveq1 5932 . . . . . . . . . . 11 ((-1↑𝑁) = -1 → ((-1↑𝑁) mod 𝑃) = (-1 mod 𝑃))
6160eqeq2d 2208 . . . . . . . . . 10 ((-1↑𝑁) = -1 → (0 = ((-1↑𝑁) mod 𝑃) ↔ 0 = (-1 mod 𝑃)))
6261adantr 276 . . . . . . . . 9 (((-1↑𝑁) = -1 ∧ 𝜑) → (0 = ((-1↑𝑁) mod 𝑃) ↔ 0 = (-1 mod 𝑃)))
63 1z 9371 . . . . . . . . . . . . . 14 1 ∈ ℤ
64 zq 9719 . . . . . . . . . . . . . 14 (1 ∈ ℤ → 1 ∈ ℚ)
6563, 64ax-mp 5 . . . . . . . . . . . . 13 1 ∈ ℚ
66 negqmod0 10442 . . . . . . . . . . . . 13 ((1 ∈ ℚ ∧ 𝑃 ∈ ℚ ∧ 0 < 𝑃) → ((1 mod 𝑃) = 0 ↔ (-1 mod 𝑃) = 0))
6765, 27, 56, 66mp3an2i 1353 . . . . . . . . . . . 12 (𝜑 → ((1 mod 𝑃) = 0 ↔ (-1 mod 𝑃) = 0))
68 eqcom 2198 . . . . . . . . . . . 12 ((-1 mod 𝑃) = 0 ↔ 0 = (-1 mod 𝑃))
6967, 68bitrdi 196 . . . . . . . . . . 11 (𝜑 → ((1 mod 𝑃) = 0 ↔ 0 = (-1 mod 𝑃)))
7032eqeq1d 2205 . . . . . . . . . . . 12 (𝜑 → ((1 mod 𝑃) = 0 ↔ 1 = 0))
71 1ne0 9077 . . . . . . . . . . . . 13 1 ≠ 0
72 eqneqall 2377 . . . . . . . . . . . . 13 (1 = 0 → (1 ≠ 0 → 0 = (-1↑𝑁)))
7371, 72mpi 15 . . . . . . . . . . . 12 (1 = 0 → 0 = (-1↑𝑁))
7470, 73biimtrdi 163 . . . . . . . . . . 11 (𝜑 → ((1 mod 𝑃) = 0 → 0 = (-1↑𝑁)))
7569, 74sylbird 170 . . . . . . . . . 10 (𝜑 → (0 = (-1 mod 𝑃) → 0 = (-1↑𝑁)))
7675adantl 277 . . . . . . . . 9 (((-1↑𝑁) = -1 ∧ 𝜑) → (0 = (-1 mod 𝑃) → 0 = (-1↑𝑁)))
7762, 76sylbid 150 . . . . . . . 8 (((-1↑𝑁) = -1 ∧ 𝜑) → (0 = ((-1↑𝑁) mod 𝑃) → 0 = (-1↑𝑁)))
7877ex 115 . . . . . . 7 ((-1↑𝑁) = -1 → (𝜑 → (0 = ((-1↑𝑁) mod 𝑃) → 0 = (-1↑𝑁))))
7944eqeq2d 2208 . . . . . . . . . 10 ((-1↑𝑁) = 1 → (0 = ((-1↑𝑁) mod 𝑃) ↔ 0 = (1 mod 𝑃)))
8079adantr 276 . . . . . . . . 9 (((-1↑𝑁) = 1 ∧ 𝜑) → (0 = ((-1↑𝑁) mod 𝑃) ↔ 0 = (1 mod 𝑃)))
81 eqcom 2198 . . . . . . . . . . . 12 (0 = (1 mod 𝑃) ↔ (1 mod 𝑃) = 0)
8281, 70bitrid 192 . . . . . . . . . . 11 (𝜑 → (0 = (1 mod 𝑃) ↔ 1 = 0))
8382, 73biimtrdi 163 . . . . . . . . . 10 (𝜑 → (0 = (1 mod 𝑃) → 0 = (-1↑𝑁)))
8483adantl 277 . . . . . . . . 9 (((-1↑𝑁) = 1 ∧ 𝜑) → (0 = (1 mod 𝑃) → 0 = (-1↑𝑁)))
8580, 84sylbid 150 . . . . . . . 8 (((-1↑𝑁) = 1 ∧ 𝜑) → (0 = ((-1↑𝑁) mod 𝑃) → 0 = (-1↑𝑁)))
8685ex 115 . . . . . . 7 ((-1↑𝑁) = 1 → (𝜑 → (0 = ((-1↑𝑁) mod 𝑃) → 0 = (-1↑𝑁))))
8778, 86jaoi 717 . . . . . 6 (((-1↑𝑁) = -1 ∨ (-1↑𝑁) = 1) → (𝜑 → (0 = ((-1↑𝑁) mod 𝑃) → 0 = (-1↑𝑁))))
8821, 87mpcom 36 . . . . 5 (𝜑 → (0 = ((-1↑𝑁) mod 𝑃) → 0 = (-1↑𝑁)))
8959, 88sylbid 150 . . . 4 (𝜑 → ((0 mod 𝑃) = ((-1↑𝑁) mod 𝑃) → 0 = (-1↑𝑁)))
90 oveq1 5932 . . . . . 6 ((2 /L 𝑃) = 0 → ((2 /L 𝑃) mod 𝑃) = (0 mod 𝑃))
9190eqeq1d 2205 . . . . 5 ((2 /L 𝑃) = 0 → (((2 /L 𝑃) mod 𝑃) = ((-1↑𝑁) mod 𝑃) ↔ (0 mod 𝑃) = ((-1↑𝑁) mod 𝑃)))
92 eqeq1 2203 . . . . 5 ((2 /L 𝑃) = 0 → ((2 /L 𝑃) = (-1↑𝑁) ↔ 0 = (-1↑𝑁)))
9391, 92imbi12d 234 . . . 4 ((2 /L 𝑃) = 0 → ((((2 /L 𝑃) mod 𝑃) = ((-1↑𝑁) mod 𝑃) → (2 /L 𝑃) = (-1↑𝑁)) ↔ ((0 mod 𝑃) = ((-1↑𝑁) mod 𝑃) → 0 = (-1↑𝑁))))
9489, 93imbitrrid 156 . . 3 ((2 /L 𝑃) = 0 → (𝜑 → (((2 /L 𝑃) mod 𝑃) = ((-1↑𝑁) mod 𝑃) → (2 /L 𝑃) = (-1↑𝑁))))
9532eqeq1d 2205 . . . . 5 (𝜑 → ((1 mod 𝑃) = ((-1↑𝑁) mod 𝑃) ↔ 1 = ((-1↑𝑁) mod 𝑃)))
96 eqcom 2198 . . . . . . . . 9 (1 = (-1 mod 𝑃) ↔ (-1 mod 𝑃) = 1)
97 eqcom 2198 . . . . . . . . 9 (1 = -1 ↔ -1 = 1)
9842, 96, 973imtr4g 205 . . . . . . . 8 (𝜑 → (1 = (-1 mod 𝑃) → 1 = -1))
9960eqeq2d 2208 . . . . . . . . 9 ((-1↑𝑁) = -1 → (1 = ((-1↑𝑁) mod 𝑃) ↔ 1 = (-1 mod 𝑃)))
100 eqeq2 2206 . . . . . . . . 9 ((-1↑𝑁) = -1 → (1 = (-1↑𝑁) ↔ 1 = -1))
10199, 100imbi12d 234 . . . . . . . 8 ((-1↑𝑁) = -1 → ((1 = ((-1↑𝑁) mod 𝑃) → 1 = (-1↑𝑁)) ↔ (1 = (-1 mod 𝑃) → 1 = -1)))
10298, 101imbitrrid 156 . . . . . . 7 ((-1↑𝑁) = -1 → (𝜑 → (1 = ((-1↑𝑁) mod 𝑃) → 1 = (-1↑𝑁))))
103 eqcom 2198 . . . . . . . . 9 ((-1↑𝑁) = 1 ↔ 1 = (-1↑𝑁))
104103biimpi 120 . . . . . . . 8 ((-1↑𝑁) = 1 → 1 = (-1↑𝑁))
1051042a1d 23 . . . . . . 7 ((-1↑𝑁) = 1 → (𝜑 → (1 = ((-1↑𝑁) mod 𝑃) → 1 = (-1↑𝑁))))
106102, 105jaoi 717 . . . . . 6 (((-1↑𝑁) = -1 ∨ (-1↑𝑁) = 1) → (𝜑 → (1 = ((-1↑𝑁) mod 𝑃) → 1 = (-1↑𝑁))))
10721, 106mpcom 36 . . . . 5 (𝜑 → (1 = ((-1↑𝑁) mod 𝑃) → 1 = (-1↑𝑁)))
10895, 107sylbid 150 . . . 4 (𝜑 → ((1 mod 𝑃) = ((-1↑𝑁) mod 𝑃) → 1 = (-1↑𝑁)))
109 oveq1 5932 . . . . . 6 ((2 /L 𝑃) = 1 → ((2 /L 𝑃) mod 𝑃) = (1 mod 𝑃))
110109eqeq1d 2205 . . . . 5 ((2 /L 𝑃) = 1 → (((2 /L 𝑃) mod 𝑃) = ((-1↑𝑁) mod 𝑃) ↔ (1 mod 𝑃) = ((-1↑𝑁) mod 𝑃)))
111 eqeq1 2203 . . . . 5 ((2 /L 𝑃) = 1 → ((2 /L 𝑃) = (-1↑𝑁) ↔ 1 = (-1↑𝑁)))
112110, 111imbi12d 234 . . . 4 ((2 /L 𝑃) = 1 → ((((2 /L 𝑃) mod 𝑃) = ((-1↑𝑁) mod 𝑃) → (2 /L 𝑃) = (-1↑𝑁)) ↔ ((1 mod 𝑃) = ((-1↑𝑁) mod 𝑃) → 1 = (-1↑𝑁))))
113108, 112imbitrrid 156 . . 3 ((2 /L 𝑃) = 1 → (𝜑 → (((2 /L 𝑃) mod 𝑃) = ((-1↑𝑁) mod 𝑃) → (2 /L 𝑃) = (-1↑𝑁))))
11455, 94, 1133jaoi 1314 . 2 (((2 /L 𝑃) = -1 ∨ (2 /L 𝑃) = 0 ∨ (2 /L 𝑃) = 1) → (𝜑 → (((2 /L 𝑃) mod 𝑃) = ((-1↑𝑁) mod 𝑃) → (2 /L 𝑃) = (-1↑𝑁))))
11511, 114mpcom 36 1 (𝜑 → (((2 /L 𝑃) mod 𝑃) = ((-1↑𝑁) mod 𝑃) → (2 /L 𝑃) = (-1↑𝑁)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 709  w3o 979   = wceq 1364  wcel 2167  wne 2367  cdif 3154  {csn 3623  {cpr 3624  {ctp 3625   class class class wbr 4034  cfv 5259  (class class class)co 5925  0cc0 7898  1c1 7899   < clt 8080  cmin 8216  -cneg 8217   / cdiv 8718  cn 9009  2c2 9060  3c3 9061  4c4 9062  cz 9345  cuz 9620  cq 9712  cfl 10377   mod cmo 10433  cexp 10649  cprime 12302   /L clgs 15346
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7989  ax-resscn 7990  ax-1cn 7991  ax-1re 7992  ax-icn 7993  ax-addcl 7994  ax-addrcl 7995  ax-mulcl 7996  ax-mulrcl 7997  ax-addcom 7998  ax-mulcom 7999  ax-addass 8000  ax-mulass 8001  ax-distr 8002  ax-i2m1 8003  ax-0lt1 8004  ax-1rid 8005  ax-0id 8006  ax-rnegex 8007  ax-precex 8008  ax-cnre 8009  ax-pre-ltirr 8010  ax-pre-ltwlin 8011  ax-pre-lttrn 8012  ax-pre-apti 8013  ax-pre-ltadd 8014  ax-pre-mulgt0 8015  ax-pre-mulext 8016  ax-arch 8017  ax-caucvg 8018
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-xor 1387  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-tp 3631  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-isom 5268  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-irdg 6437  df-frec 6458  df-1o 6483  df-2o 6484  df-oadd 6487  df-er 6601  df-en 6809  df-dom 6810  df-fin 6811  df-sup 7059  df-inf 7060  df-pnf 8082  df-mnf 8083  df-xr 8084  df-ltxr 8085  df-le 8086  df-sub 8218  df-neg 8219  df-reap 8621  df-ap 8628  df-div 8719  df-inn 9010  df-2 9068  df-3 9069  df-4 9070  df-5 9071  df-6 9072  df-7 9073  df-8 9074  df-n0 9269  df-z 9346  df-uz 9621  df-q 9713  df-rp 9748  df-fz 10103  df-fzo 10237  df-fl 10379  df-mod 10434  df-seqfrec 10559  df-exp 10650  df-ihash 10887  df-cj 11026  df-re 11027  df-im 11028  df-rsqrt 11182  df-abs 11183  df-clim 11463  df-proddc 11735  df-dvds 11972  df-gcd 12148  df-prm 12303  df-phi 12406  df-pc 12481  df-lgs 15347
This theorem is referenced by:  gausslemma2d  15418
  Copyright terms: Public domain W3C validator