ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gausslemma2dlem0i GIF version

Theorem gausslemma2dlem0i 15101
Description: Auxiliary lemma 9 for gausslemma2d 15113. (Contributed by AV, 14-Jul-2021.)
Hypotheses
Ref Expression
gausslemma2dlem0.p (𝜑𝑃 ∈ (ℙ ∖ {2}))
gausslemma2dlem0.m 𝑀 = (⌊‘(𝑃 / 4))
gausslemma2dlem0.h 𝐻 = ((𝑃 − 1) / 2)
gausslemma2dlem0.n 𝑁 = (𝐻𝑀)
Assertion
Ref Expression
gausslemma2dlem0i (𝜑 → (((2 /L 𝑃) mod 𝑃) = ((-1↑𝑁) mod 𝑃) → (2 /L 𝑃) = (-1↑𝑁)))

Proof of Theorem gausslemma2dlem0i
StepHypRef Expression
1 2z 9331 . . . 4 2 ∈ ℤ
2 gausslemma2dlem0.p . . . . 5 (𝜑𝑃 ∈ (ℙ ∖ {2}))
3 id 19 . . . . . . 7 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ (ℙ ∖ {2}))
43gausslemma2dlem0a 15093 . . . . . 6 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℕ)
54nnzd 9424 . . . . 5 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℤ)
62, 5syl 14 . . . 4 (𝜑𝑃 ∈ ℤ)
7 lgscl1 15067 . . . 4 ((2 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (2 /L 𝑃) ∈ {-1, 0, 1})
81, 6, 7sylancr 414 . . 3 (𝜑 → (2 /L 𝑃) ∈ {-1, 0, 1})
9 eltpg 3659 . . . 4 ((2 /L 𝑃) ∈ {-1, 0, 1} → ((2 /L 𝑃) ∈ {-1, 0, 1} ↔ ((2 /L 𝑃) = -1 ∨ (2 /L 𝑃) = 0 ∨ (2 /L 𝑃) = 1)))
108, 9syl 14 . . 3 (𝜑 → ((2 /L 𝑃) ∈ {-1, 0, 1} ↔ ((2 /L 𝑃) = -1 ∨ (2 /L 𝑃) = 0 ∨ (2 /L 𝑃) = 1)))
118, 10mpbid 147 . 2 (𝜑 → ((2 /L 𝑃) = -1 ∨ (2 /L 𝑃) = 0 ∨ (2 /L 𝑃) = 1))
12 gausslemma2dlem0.m . . . . . . . . 9 𝑀 = (⌊‘(𝑃 / 4))
13 gausslemma2dlem0.h . . . . . . . . 9 𝐻 = ((𝑃 − 1) / 2)
14 gausslemma2dlem0.n . . . . . . . . 9 𝑁 = (𝐻𝑀)
152, 12, 13, 14gausslemma2dlem0h 15100 . . . . . . . 8 (𝜑𝑁 ∈ ℕ0)
1615nn0zd 9423 . . . . . . 7 (𝜑𝑁 ∈ ℤ)
17 m1expcl2 10606 . . . . . . 7 (𝑁 ∈ ℤ → (-1↑𝑁) ∈ {-1, 1})
1816, 17syl 14 . . . . . 6 (𝜑 → (-1↑𝑁) ∈ {-1, 1})
19 elprg 3634 . . . . . . 7 ((-1↑𝑁) ∈ {-1, 1} → ((-1↑𝑁) ∈ {-1, 1} ↔ ((-1↑𝑁) = -1 ∨ (-1↑𝑁) = 1)))
2018, 19syl 14 . . . . . 6 (𝜑 → ((-1↑𝑁) ∈ {-1, 1} ↔ ((-1↑𝑁) = -1 ∨ (-1↑𝑁) = 1)))
2118, 20mpbid 147 . . . . 5 (𝜑 → ((-1↑𝑁) = -1 ∨ (-1↑𝑁) = 1))
22 eqcom 2191 . . . . . . . 8 ((-1↑𝑁) = -1 ↔ -1 = (-1↑𝑁))
2322biimpi 120 . . . . . . 7 ((-1↑𝑁) = -1 → -1 = (-1↑𝑁))
24232a1d 23 . . . . . 6 ((-1↑𝑁) = -1 → (𝜑 → ((-1 mod 𝑃) = ((-1↑𝑁) mod 𝑃) → -1 = (-1↑𝑁))))
252gausslemma2dlem0a 15093 . . . . . . . . . . 11 (𝜑𝑃 ∈ ℕ)
26 nnq 9684 . . . . . . . . . . 11 (𝑃 ∈ ℕ → 𝑃 ∈ ℚ)
2725, 26syl 14 . . . . . . . . . 10 (𝜑𝑃 ∈ ℚ)
282eldifad 3160 . . . . . . . . . . 11 (𝜑𝑃 ∈ ℙ)
29 prmgt1 12244 . . . . . . . . . . 11 (𝑃 ∈ ℙ → 1 < 𝑃)
3028, 29syl 14 . . . . . . . . . 10 (𝜑 → 1 < 𝑃)
31 q1mod 10413 . . . . . . . . . 10 ((𝑃 ∈ ℚ ∧ 1 < 𝑃) → (1 mod 𝑃) = 1)
3227, 30, 31syl2anc 411 . . . . . . . . 9 (𝜑 → (1 mod 𝑃) = 1)
3332eqeq2d 2201 . . . . . . . 8 (𝜑 → ((-1 mod 𝑃) = (1 mod 𝑃) ↔ (-1 mod 𝑃) = 1))
34 oddprmge3 12247 . . . . . . . . 9 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ (ℤ‘3))
35 m1modge3gt1 10428 . . . . . . . . . 10 (𝑃 ∈ (ℤ‘3) → 1 < (-1 mod 𝑃))
36 breq2 4029 . . . . . . . . . . 11 ((-1 mod 𝑃) = 1 → (1 < (-1 mod 𝑃) ↔ 1 < 1))
37 1re 8004 . . . . . . . . . . . . 13 1 ∈ ℝ
3837ltnri 8098 . . . . . . . . . . . 12 ¬ 1 < 1
3938pm2.21i 647 . . . . . . . . . . 11 (1 < 1 → -1 = 1)
4036, 39biimtrdi 163 . . . . . . . . . 10 ((-1 mod 𝑃) = 1 → (1 < (-1 mod 𝑃) → -1 = 1))
4135, 40syl5com 29 . . . . . . . . 9 (𝑃 ∈ (ℤ‘3) → ((-1 mod 𝑃) = 1 → -1 = 1))
422, 34, 413syl 17 . . . . . . . 8 (𝜑 → ((-1 mod 𝑃) = 1 → -1 = 1))
4333, 42sylbid 150 . . . . . . 7 (𝜑 → ((-1 mod 𝑃) = (1 mod 𝑃) → -1 = 1))
44 oveq1 5913 . . . . . . . . 9 ((-1↑𝑁) = 1 → ((-1↑𝑁) mod 𝑃) = (1 mod 𝑃))
4544eqeq2d 2201 . . . . . . . 8 ((-1↑𝑁) = 1 → ((-1 mod 𝑃) = ((-1↑𝑁) mod 𝑃) ↔ (-1 mod 𝑃) = (1 mod 𝑃)))
46 eqeq2 2199 . . . . . . . 8 ((-1↑𝑁) = 1 → (-1 = (-1↑𝑁) ↔ -1 = 1))
4745, 46imbi12d 234 . . . . . . 7 ((-1↑𝑁) = 1 → (((-1 mod 𝑃) = ((-1↑𝑁) mod 𝑃) → -1 = (-1↑𝑁)) ↔ ((-1 mod 𝑃) = (1 mod 𝑃) → -1 = 1)))
4843, 47imbitrrid 156 . . . . . 6 ((-1↑𝑁) = 1 → (𝜑 → ((-1 mod 𝑃) = ((-1↑𝑁) mod 𝑃) → -1 = (-1↑𝑁))))
4924, 48jaoi 717 . . . . 5 (((-1↑𝑁) = -1 ∨ (-1↑𝑁) = 1) → (𝜑 → ((-1 mod 𝑃) = ((-1↑𝑁) mod 𝑃) → -1 = (-1↑𝑁))))
5021, 49mpcom 36 . . . 4 (𝜑 → ((-1 mod 𝑃) = ((-1↑𝑁) mod 𝑃) → -1 = (-1↑𝑁)))
51 oveq1 5913 . . . . . 6 ((2 /L 𝑃) = -1 → ((2 /L 𝑃) mod 𝑃) = (-1 mod 𝑃))
5251eqeq1d 2198 . . . . 5 ((2 /L 𝑃) = -1 → (((2 /L 𝑃) mod 𝑃) = ((-1↑𝑁) mod 𝑃) ↔ (-1 mod 𝑃) = ((-1↑𝑁) mod 𝑃)))
53 eqeq1 2196 . . . . 5 ((2 /L 𝑃) = -1 → ((2 /L 𝑃) = (-1↑𝑁) ↔ -1 = (-1↑𝑁)))
5452, 53imbi12d 234 . . . 4 ((2 /L 𝑃) = -1 → ((((2 /L 𝑃) mod 𝑃) = ((-1↑𝑁) mod 𝑃) → (2 /L 𝑃) = (-1↑𝑁)) ↔ ((-1 mod 𝑃) = ((-1↑𝑁) mod 𝑃) → -1 = (-1↑𝑁))))
5550, 54imbitrrid 156 . . 3 ((2 /L 𝑃) = -1 → (𝜑 → (((2 /L 𝑃) mod 𝑃) = ((-1↑𝑁) mod 𝑃) → (2 /L 𝑃) = (-1↑𝑁))))
5625nngt0d 9012 . . . . . . 7 (𝜑 → 0 < 𝑃)
57 q0mod 10412 . . . . . . 7 ((𝑃 ∈ ℚ ∧ 0 < 𝑃) → (0 mod 𝑃) = 0)
5827, 56, 57syl2anc 411 . . . . . 6 (𝜑 → (0 mod 𝑃) = 0)
5958eqeq1d 2198 . . . . 5 (𝜑 → ((0 mod 𝑃) = ((-1↑𝑁) mod 𝑃) ↔ 0 = ((-1↑𝑁) mod 𝑃)))
60 oveq1 5913 . . . . . . . . . . 11 ((-1↑𝑁) = -1 → ((-1↑𝑁) mod 𝑃) = (-1 mod 𝑃))
6160eqeq2d 2201 . . . . . . . . . 10 ((-1↑𝑁) = -1 → (0 = ((-1↑𝑁) mod 𝑃) ↔ 0 = (-1 mod 𝑃)))
6261adantr 276 . . . . . . . . 9 (((-1↑𝑁) = -1 ∧ 𝜑) → (0 = ((-1↑𝑁) mod 𝑃) ↔ 0 = (-1 mod 𝑃)))
63 1z 9329 . . . . . . . . . . . . . 14 1 ∈ ℤ
64 zq 9677 . . . . . . . . . . . . . 14 (1 ∈ ℤ → 1 ∈ ℚ)
6563, 64ax-mp 5 . . . . . . . . . . . . 13 1 ∈ ℚ
66 negqmod0 10388 . . . . . . . . . . . . 13 ((1 ∈ ℚ ∧ 𝑃 ∈ ℚ ∧ 0 < 𝑃) → ((1 mod 𝑃) = 0 ↔ (-1 mod 𝑃) = 0))
6765, 27, 56, 66mp3an2i 1353 . . . . . . . . . . . 12 (𝜑 → ((1 mod 𝑃) = 0 ↔ (-1 mod 𝑃) = 0))
68 eqcom 2191 . . . . . . . . . . . 12 ((-1 mod 𝑃) = 0 ↔ 0 = (-1 mod 𝑃))
6967, 68bitrdi 196 . . . . . . . . . . 11 (𝜑 → ((1 mod 𝑃) = 0 ↔ 0 = (-1 mod 𝑃)))
7032eqeq1d 2198 . . . . . . . . . . . 12 (𝜑 → ((1 mod 𝑃) = 0 ↔ 1 = 0))
71 1ne0 9036 . . . . . . . . . . . . 13 1 ≠ 0
72 eqneqall 2370 . . . . . . . . . . . . 13 (1 = 0 → (1 ≠ 0 → 0 = (-1↑𝑁)))
7371, 72mpi 15 . . . . . . . . . . . 12 (1 = 0 → 0 = (-1↑𝑁))
7470, 73biimtrdi 163 . . . . . . . . . . 11 (𝜑 → ((1 mod 𝑃) = 0 → 0 = (-1↑𝑁)))
7569, 74sylbird 170 . . . . . . . . . 10 (𝜑 → (0 = (-1 mod 𝑃) → 0 = (-1↑𝑁)))
7675adantl 277 . . . . . . . . 9 (((-1↑𝑁) = -1 ∧ 𝜑) → (0 = (-1 mod 𝑃) → 0 = (-1↑𝑁)))
7762, 76sylbid 150 . . . . . . . 8 (((-1↑𝑁) = -1 ∧ 𝜑) → (0 = ((-1↑𝑁) mod 𝑃) → 0 = (-1↑𝑁)))
7877ex 115 . . . . . . 7 ((-1↑𝑁) = -1 → (𝜑 → (0 = ((-1↑𝑁) mod 𝑃) → 0 = (-1↑𝑁))))
7944eqeq2d 2201 . . . . . . . . . 10 ((-1↑𝑁) = 1 → (0 = ((-1↑𝑁) mod 𝑃) ↔ 0 = (1 mod 𝑃)))
8079adantr 276 . . . . . . . . 9 (((-1↑𝑁) = 1 ∧ 𝜑) → (0 = ((-1↑𝑁) mod 𝑃) ↔ 0 = (1 mod 𝑃)))
81 eqcom 2191 . . . . . . . . . . . 12 (0 = (1 mod 𝑃) ↔ (1 mod 𝑃) = 0)
8281, 70bitrid 192 . . . . . . . . . . 11 (𝜑 → (0 = (1 mod 𝑃) ↔ 1 = 0))
8382, 73biimtrdi 163 . . . . . . . . . 10 (𝜑 → (0 = (1 mod 𝑃) → 0 = (-1↑𝑁)))
8483adantl 277 . . . . . . . . 9 (((-1↑𝑁) = 1 ∧ 𝜑) → (0 = (1 mod 𝑃) → 0 = (-1↑𝑁)))
8580, 84sylbid 150 . . . . . . . 8 (((-1↑𝑁) = 1 ∧ 𝜑) → (0 = ((-1↑𝑁) mod 𝑃) → 0 = (-1↑𝑁)))
8685ex 115 . . . . . . 7 ((-1↑𝑁) = 1 → (𝜑 → (0 = ((-1↑𝑁) mod 𝑃) → 0 = (-1↑𝑁))))
8778, 86jaoi 717 . . . . . 6 (((-1↑𝑁) = -1 ∨ (-1↑𝑁) = 1) → (𝜑 → (0 = ((-1↑𝑁) mod 𝑃) → 0 = (-1↑𝑁))))
8821, 87mpcom 36 . . . . 5 (𝜑 → (0 = ((-1↑𝑁) mod 𝑃) → 0 = (-1↑𝑁)))
8959, 88sylbid 150 . . . 4 (𝜑 → ((0 mod 𝑃) = ((-1↑𝑁) mod 𝑃) → 0 = (-1↑𝑁)))
90 oveq1 5913 . . . . . 6 ((2 /L 𝑃) = 0 → ((2 /L 𝑃) mod 𝑃) = (0 mod 𝑃))
9190eqeq1d 2198 . . . . 5 ((2 /L 𝑃) = 0 → (((2 /L 𝑃) mod 𝑃) = ((-1↑𝑁) mod 𝑃) ↔ (0 mod 𝑃) = ((-1↑𝑁) mod 𝑃)))
92 eqeq1 2196 . . . . 5 ((2 /L 𝑃) = 0 → ((2 /L 𝑃) = (-1↑𝑁) ↔ 0 = (-1↑𝑁)))
9391, 92imbi12d 234 . . . 4 ((2 /L 𝑃) = 0 → ((((2 /L 𝑃) mod 𝑃) = ((-1↑𝑁) mod 𝑃) → (2 /L 𝑃) = (-1↑𝑁)) ↔ ((0 mod 𝑃) = ((-1↑𝑁) mod 𝑃) → 0 = (-1↑𝑁))))
9489, 93imbitrrid 156 . . 3 ((2 /L 𝑃) = 0 → (𝜑 → (((2 /L 𝑃) mod 𝑃) = ((-1↑𝑁) mod 𝑃) → (2 /L 𝑃) = (-1↑𝑁))))
9532eqeq1d 2198 . . . . 5 (𝜑 → ((1 mod 𝑃) = ((-1↑𝑁) mod 𝑃) ↔ 1 = ((-1↑𝑁) mod 𝑃)))
96 eqcom 2191 . . . . . . . . 9 (1 = (-1 mod 𝑃) ↔ (-1 mod 𝑃) = 1)
97 eqcom 2191 . . . . . . . . 9 (1 = -1 ↔ -1 = 1)
9842, 96, 973imtr4g 205 . . . . . . . 8 (𝜑 → (1 = (-1 mod 𝑃) → 1 = -1))
9960eqeq2d 2201 . . . . . . . . 9 ((-1↑𝑁) = -1 → (1 = ((-1↑𝑁) mod 𝑃) ↔ 1 = (-1 mod 𝑃)))
100 eqeq2 2199 . . . . . . . . 9 ((-1↑𝑁) = -1 → (1 = (-1↑𝑁) ↔ 1 = -1))
10199, 100imbi12d 234 . . . . . . . 8 ((-1↑𝑁) = -1 → ((1 = ((-1↑𝑁) mod 𝑃) → 1 = (-1↑𝑁)) ↔ (1 = (-1 mod 𝑃) → 1 = -1)))
10298, 101imbitrrid 156 . . . . . . 7 ((-1↑𝑁) = -1 → (𝜑 → (1 = ((-1↑𝑁) mod 𝑃) → 1 = (-1↑𝑁))))
103 eqcom 2191 . . . . . . . . 9 ((-1↑𝑁) = 1 ↔ 1 = (-1↑𝑁))
104103biimpi 120 . . . . . . . 8 ((-1↑𝑁) = 1 → 1 = (-1↑𝑁))
1051042a1d 23 . . . . . . 7 ((-1↑𝑁) = 1 → (𝜑 → (1 = ((-1↑𝑁) mod 𝑃) → 1 = (-1↑𝑁))))
106102, 105jaoi 717 . . . . . 6 (((-1↑𝑁) = -1 ∨ (-1↑𝑁) = 1) → (𝜑 → (1 = ((-1↑𝑁) mod 𝑃) → 1 = (-1↑𝑁))))
10721, 106mpcom 36 . . . . 5 (𝜑 → (1 = ((-1↑𝑁) mod 𝑃) → 1 = (-1↑𝑁)))
10895, 107sylbid 150 . . . 4 (𝜑 → ((1 mod 𝑃) = ((-1↑𝑁) mod 𝑃) → 1 = (-1↑𝑁)))
109 oveq1 5913 . . . . . 6 ((2 /L 𝑃) = 1 → ((2 /L 𝑃) mod 𝑃) = (1 mod 𝑃))
110109eqeq1d 2198 . . . . 5 ((2 /L 𝑃) = 1 → (((2 /L 𝑃) mod 𝑃) = ((-1↑𝑁) mod 𝑃) ↔ (1 mod 𝑃) = ((-1↑𝑁) mod 𝑃)))
111 eqeq1 2196 . . . . 5 ((2 /L 𝑃) = 1 → ((2 /L 𝑃) = (-1↑𝑁) ↔ 1 = (-1↑𝑁)))
112110, 111imbi12d 234 . . . 4 ((2 /L 𝑃) = 1 → ((((2 /L 𝑃) mod 𝑃) = ((-1↑𝑁) mod 𝑃) → (2 /L 𝑃) = (-1↑𝑁)) ↔ ((1 mod 𝑃) = ((-1↑𝑁) mod 𝑃) → 1 = (-1↑𝑁))))
113108, 112imbitrrid 156 . . 3 ((2 /L 𝑃) = 1 → (𝜑 → (((2 /L 𝑃) mod 𝑃) = ((-1↑𝑁) mod 𝑃) → (2 /L 𝑃) = (-1↑𝑁))))
11455, 94, 1133jaoi 1314 . 2 (((2 /L 𝑃) = -1 ∨ (2 /L 𝑃) = 0 ∨ (2 /L 𝑃) = 1) → (𝜑 → (((2 /L 𝑃) mod 𝑃) = ((-1↑𝑁) mod 𝑃) → (2 /L 𝑃) = (-1↑𝑁))))
11511, 114mpcom 36 1 (𝜑 → (((2 /L 𝑃) mod 𝑃) = ((-1↑𝑁) mod 𝑃) → (2 /L 𝑃) = (-1↑𝑁)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 709  w3o 979   = wceq 1364  wcel 2160  wne 2360  cdif 3146  {csn 3614  {cpr 3615  {ctp 3616   class class class wbr 4025  cfv 5242  (class class class)co 5906  0cc0 7858  1c1 7859   < clt 8040  cmin 8176  -cneg 8177   / cdiv 8677  cn 8968  2c2 9019  3c3 9020  4c4 9021  cz 9303  cuz 9578  cq 9670  cfl 10323   mod cmo 10379  cexp 10583  cprime 12219   /L clgs 15041
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4140  ax-sep 4143  ax-nul 4151  ax-pow 4199  ax-pr 4234  ax-un 4458  ax-setind 4561  ax-iinf 4612  ax-cnex 7949  ax-resscn 7950  ax-1cn 7951  ax-1re 7952  ax-icn 7953  ax-addcl 7954  ax-addrcl 7955  ax-mulcl 7956  ax-mulrcl 7957  ax-addcom 7958  ax-mulcom 7959  ax-addass 7960  ax-mulass 7961  ax-distr 7962  ax-i2m1 7963  ax-0lt1 7964  ax-1rid 7965  ax-0id 7966  ax-rnegex 7967  ax-precex 7968  ax-cnre 7969  ax-pre-ltirr 7970  ax-pre-ltwlin 7971  ax-pre-lttrn 7972  ax-pre-apti 7973  ax-pre-ltadd 7974  ax-pre-mulgt0 7975  ax-pre-mulext 7976  ax-arch 7977  ax-caucvg 7978
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-xor 1387  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2758  df-sbc 2982  df-csb 3077  df-dif 3151  df-un 3153  df-in 3155  df-ss 3162  df-nul 3443  df-if 3554  df-pw 3599  df-sn 3620  df-pr 3621  df-tp 3622  df-op 3623  df-uni 3832  df-int 3867  df-iun 3910  df-br 4026  df-opab 4087  df-mpt 4088  df-tr 4124  df-id 4318  df-po 4321  df-iso 4322  df-iord 4391  df-on 4393  df-ilim 4394  df-suc 4396  df-iom 4615  df-xp 4657  df-rel 4658  df-cnv 4659  df-co 4660  df-dm 4661  df-rn 4662  df-res 4663  df-ima 4664  df-iota 5203  df-fun 5244  df-fn 5245  df-f 5246  df-f1 5247  df-fo 5248  df-f1o 5249  df-fv 5250  df-isom 5251  df-riota 5861  df-ov 5909  df-oprab 5910  df-mpo 5911  df-1st 6180  df-2nd 6181  df-recs 6345  df-irdg 6410  df-frec 6431  df-1o 6456  df-2o 6457  df-oadd 6460  df-er 6574  df-en 6782  df-dom 6783  df-fin 6784  df-sup 7029  df-inf 7030  df-pnf 8042  df-mnf 8043  df-xr 8044  df-ltxr 8045  df-le 8046  df-sub 8178  df-neg 8179  df-reap 8580  df-ap 8587  df-div 8678  df-inn 8969  df-2 9027  df-3 9028  df-4 9029  df-5 9030  df-6 9031  df-7 9032  df-8 9033  df-n0 9227  df-z 9304  df-uz 9579  df-q 9671  df-rp 9706  df-fz 10061  df-fzo 10195  df-fl 10325  df-mod 10380  df-seqfrec 10505  df-exp 10584  df-ihash 10821  df-cj 10960  df-re 10961  df-im 10962  df-rsqrt 11116  df-abs 11117  df-clim 11396  df-proddc 11668  df-dvds 11905  df-gcd 12054  df-prm 12220  df-phi 12323  df-pc 12397  df-lgs 15042
This theorem is referenced by:  gausslemma2d  15113
  Copyright terms: Public domain W3C validator