ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pfxccatpfx1 GIF version

Theorem pfxccatpfx1 11227
Description: A prefix of a concatenation being a prefix of the first concatenated word. (Contributed by AV, 10-May-2020.)
Hypothesis
Ref Expression
swrdccatin2.l 𝐿 = (♯‘𝐴)
Assertion
Ref Expression
pfxccatpfx1 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝑁 ∈ (0...𝐿)) → ((𝐴 ++ 𝐵) prefix 𝑁) = (𝐴 prefix 𝑁))

Proof of Theorem pfxccatpfx1
StepHypRef Expression
1 3simpa 997 . . 3 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝑁 ∈ (0...𝐿)) → (𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉))
2 elfznn0 10271 . . . . . 6 (𝑁 ∈ (0...𝐿) → 𝑁 ∈ ℕ0)
3 0elfz 10275 . . . . . 6 (𝑁 ∈ ℕ0 → 0 ∈ (0...𝑁))
42, 3syl 14 . . . . 5 (𝑁 ∈ (0...𝐿) → 0 ∈ (0...𝑁))
5 swrdccatin2.l . . . . . . . 8 𝐿 = (♯‘𝐴)
65oveq2i 5978 . . . . . . 7 (0...𝐿) = (0...(♯‘𝐴))
76eleq2i 2274 . . . . . 6 (𝑁 ∈ (0...𝐿) ↔ 𝑁 ∈ (0...(♯‘𝐴)))
87biimpi 120 . . . . 5 (𝑁 ∈ (0...𝐿) → 𝑁 ∈ (0...(♯‘𝐴)))
94, 8jca 306 . . . 4 (𝑁 ∈ (0...𝐿) → (0 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝐴))))
1093ad2ant3 1023 . . 3 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝑁 ∈ (0...𝐿)) → (0 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝐴))))
11 swrdccatin1 11216 . . 3 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((0 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝐴))) → ((𝐴 ++ 𝐵) substr ⟨0, 𝑁⟩) = (𝐴 substr ⟨0, 𝑁⟩)))
121, 10, 11sylc 62 . 2 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝑁 ∈ (0...𝐿)) → ((𝐴 ++ 𝐵) substr ⟨0, 𝑁⟩) = (𝐴 substr ⟨0, 𝑁⟩))
13 ccatcl 11087 . . . . 5 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (𝐴 ++ 𝐵) ∈ Word 𝑉)
14133adant3 1020 . . . 4 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝑁 ∈ (0...𝐿)) → (𝐴 ++ 𝐵) ∈ Word 𝑉)
1523ad2ant3 1023 . . . 4 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝑁 ∈ (0...𝐿)) → 𝑁 ∈ ℕ0)
1614, 15jca 306 . . 3 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝑁 ∈ (0...𝐿)) → ((𝐴 ++ 𝐵) ∈ Word 𝑉𝑁 ∈ ℕ0))
17 pfxval 11165 . . 3 (((𝐴 ++ 𝐵) ∈ Word 𝑉𝑁 ∈ ℕ0) → ((𝐴 ++ 𝐵) prefix 𝑁) = ((𝐴 ++ 𝐵) substr ⟨0, 𝑁⟩))
1816, 17syl 14 . 2 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝑁 ∈ (0...𝐿)) → ((𝐴 ++ 𝐵) prefix 𝑁) = ((𝐴 ++ 𝐵) substr ⟨0, 𝑁⟩))
19 pfxval 11165 . . . 4 ((𝐴 ∈ Word 𝑉𝑁 ∈ ℕ0) → (𝐴 prefix 𝑁) = (𝐴 substr ⟨0, 𝑁⟩))
202, 19sylan2 286 . . 3 ((𝐴 ∈ Word 𝑉𝑁 ∈ (0...𝐿)) → (𝐴 prefix 𝑁) = (𝐴 substr ⟨0, 𝑁⟩))
21203adant2 1019 . 2 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝑁 ∈ (0...𝐿)) → (𝐴 prefix 𝑁) = (𝐴 substr ⟨0, 𝑁⟩))
2212, 18, 213eqtr4d 2250 1 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝑁 ∈ (0...𝐿)) → ((𝐴 ++ 𝐵) prefix 𝑁) = (𝐴 prefix 𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 981   = wceq 1373  wcel 2178  cop 3646  cfv 5290  (class class class)co 5967  0cc0 7960  0cn0 9330  ...cfz 10165  chash 10957  Word cword 11031   ++ cconcat 11084   substr csubstr 11136   prefix cpfx 11163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-0id 8068  ax-rnegex 8069  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-iord 4431  df-on 4433  df-ilim 4434  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-frec 6500  df-1o 6525  df-er 6643  df-en 6851  df-dom 6852  df-fin 6853  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-inn 9072  df-n0 9331  df-z 9408  df-uz 9684  df-fz 10166  df-fzo 10300  df-ihash 10958  df-word 11032  df-concat 11085  df-substr 11137  df-pfx 11164
This theorem is referenced by:  pfxccat3a  11229  pfxccatid  11232
  Copyright terms: Public domain W3C validator