| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pfxccatpfx1 | GIF version | ||
| Description: A prefix of a concatenation being a prefix of the first concatenated word. (Contributed by AV, 10-May-2020.) |
| Ref | Expression |
|---|---|
| swrdccatin2.l | ⊢ 𝐿 = (♯‘𝐴) |
| Ref | Expression |
|---|---|
| pfxccatpfx1 | ⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝑁 ∈ (0...𝐿)) → ((𝐴 ++ 𝐵) prefix 𝑁) = (𝐴 prefix 𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simpa 997 | . . 3 ⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝑁 ∈ (0...𝐿)) → (𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉)) | |
| 2 | elfznn0 10271 | . . . . . 6 ⊢ (𝑁 ∈ (0...𝐿) → 𝑁 ∈ ℕ0) | |
| 3 | 0elfz 10275 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → 0 ∈ (0...𝑁)) | |
| 4 | 2, 3 | syl 14 | . . . . 5 ⊢ (𝑁 ∈ (0...𝐿) → 0 ∈ (0...𝑁)) |
| 5 | swrdccatin2.l | . . . . . . . 8 ⊢ 𝐿 = (♯‘𝐴) | |
| 6 | 5 | oveq2i 5978 | . . . . . . 7 ⊢ (0...𝐿) = (0...(♯‘𝐴)) |
| 7 | 6 | eleq2i 2274 | . . . . . 6 ⊢ (𝑁 ∈ (0...𝐿) ↔ 𝑁 ∈ (0...(♯‘𝐴))) |
| 8 | 7 | biimpi 120 | . . . . 5 ⊢ (𝑁 ∈ (0...𝐿) → 𝑁 ∈ (0...(♯‘𝐴))) |
| 9 | 4, 8 | jca 306 | . . . 4 ⊢ (𝑁 ∈ (0...𝐿) → (0 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝐴)))) |
| 10 | 9 | 3ad2ant3 1023 | . . 3 ⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝑁 ∈ (0...𝐿)) → (0 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝐴)))) |
| 11 | swrdccatin1 11216 | . . 3 ⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) → ((0 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝐴))) → ((𝐴 ++ 𝐵) substr 〈0, 𝑁〉) = (𝐴 substr 〈0, 𝑁〉))) | |
| 12 | 1, 10, 11 | sylc 62 | . 2 ⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝑁 ∈ (0...𝐿)) → ((𝐴 ++ 𝐵) substr 〈0, 𝑁〉) = (𝐴 substr 〈0, 𝑁〉)) |
| 13 | ccatcl 11087 | . . . . 5 ⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) → (𝐴 ++ 𝐵) ∈ Word 𝑉) | |
| 14 | 13 | 3adant3 1020 | . . . 4 ⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝑁 ∈ (0...𝐿)) → (𝐴 ++ 𝐵) ∈ Word 𝑉) |
| 15 | 2 | 3ad2ant3 1023 | . . . 4 ⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝑁 ∈ (0...𝐿)) → 𝑁 ∈ ℕ0) |
| 16 | 14, 15 | jca 306 | . . 3 ⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝑁 ∈ (0...𝐿)) → ((𝐴 ++ 𝐵) ∈ Word 𝑉 ∧ 𝑁 ∈ ℕ0)) |
| 17 | pfxval 11165 | . . 3 ⊢ (((𝐴 ++ 𝐵) ∈ Word 𝑉 ∧ 𝑁 ∈ ℕ0) → ((𝐴 ++ 𝐵) prefix 𝑁) = ((𝐴 ++ 𝐵) substr 〈0, 𝑁〉)) | |
| 18 | 16, 17 | syl 14 | . 2 ⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝑁 ∈ (0...𝐿)) → ((𝐴 ++ 𝐵) prefix 𝑁) = ((𝐴 ++ 𝐵) substr 〈0, 𝑁〉)) |
| 19 | pfxval 11165 | . . . 4 ⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝐴 prefix 𝑁) = (𝐴 substr 〈0, 𝑁〉)) | |
| 20 | 2, 19 | sylan2 286 | . . 3 ⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝑁 ∈ (0...𝐿)) → (𝐴 prefix 𝑁) = (𝐴 substr 〈0, 𝑁〉)) |
| 21 | 20 | 3adant2 1019 | . 2 ⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝑁 ∈ (0...𝐿)) → (𝐴 prefix 𝑁) = (𝐴 substr 〈0, 𝑁〉)) |
| 22 | 12, 18, 21 | 3eqtr4d 2250 | 1 ⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝑁 ∈ (0...𝐿)) → ((𝐴 ++ 𝐵) prefix 𝑁) = (𝐴 prefix 𝑁)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 981 = wceq 1373 ∈ wcel 2178 〈cop 3646 ‘cfv 5290 (class class class)co 5967 0cc0 7960 ℕ0cn0 9330 ...cfz 10165 ♯chash 10957 Word cword 11031 ++ cconcat 11084 substr csubstr 11136 prefix cpfx 11163 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-iinf 4654 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-addcom 8060 ax-addass 8062 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-0id 8068 ax-rnegex 8069 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-apti 8075 ax-pre-ltadd 8076 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-if 3580 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-id 4358 df-iord 4431 df-on 4433 df-ilim 4434 df-suc 4436 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-recs 6414 df-frec 6500 df-1o 6525 df-er 6643 df-en 6851 df-dom 6852 df-fin 6853 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-inn 9072 df-n0 9331 df-z 9408 df-uz 9684 df-fz 10166 df-fzo 10300 df-ihash 10958 df-word 11032 df-concat 11085 df-substr 11137 df-pfx 11164 |
| This theorem is referenced by: pfxccat3a 11229 pfxccatid 11232 |
| Copyright terms: Public domain | W3C validator |