ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pfxccat3a GIF version

Theorem pfxccat3a 11265
Description: A prefix of a concatenation is either a prefix of the first concatenated word or a concatenation of the first word with a prefix of the second word. (Contributed by Alexander van der Vekens, 31-Mar-2018.) (Revised by AV, 10-May-2020.)
Hypotheses
Ref Expression
swrdccatin2.l 𝐿 = (♯‘𝐴)
pfxccatpfx2.m 𝑀 = (♯‘𝐵)
Assertion
Ref Expression
pfxccat3a ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (𝑁 ∈ (0...(𝐿 + 𝑀)) → ((𝐴 ++ 𝐵) prefix 𝑁) = if(𝑁𝐿, (𝐴 prefix 𝑁), (𝐴 ++ (𝐵 prefix (𝑁𝐿))))))

Proof of Theorem pfxccat3a
StepHypRef Expression
1 elfznn0 10306 . . . . . 6 (𝑁 ∈ (0...(𝐿 + 𝑀)) → 𝑁 ∈ ℕ0)
21adantl 277 . . . . 5 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (0...(𝐿 + 𝑀))) → 𝑁 ∈ ℕ0)
32nn0zd 9563 . . . 4 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (0...(𝐿 + 𝑀))) → 𝑁 ∈ ℤ)
4 swrdccatin2.l . . . . . . . 8 𝐿 = (♯‘𝐴)
5 lencl 11070 . . . . . . . 8 (𝐴 ∈ Word 𝑉 → (♯‘𝐴) ∈ ℕ0)
64, 5eqeltrid 2316 . . . . . . 7 (𝐴 ∈ Word 𝑉𝐿 ∈ ℕ0)
76adantr 276 . . . . . 6 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → 𝐿 ∈ ℕ0)
87adantr 276 . . . . 5 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (0...(𝐿 + 𝑀))) → 𝐿 ∈ ℕ0)
98nn0zd 9563 . . . 4 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (0...(𝐿 + 𝑀))) → 𝐿 ∈ ℤ)
10 zdcle 9519 . . . 4 ((𝑁 ∈ ℤ ∧ 𝐿 ∈ ℤ) → DECID 𝑁𝐿)
113, 9, 10syl2anc 411 . . 3 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (0...(𝐿 + 𝑀))) → DECID 𝑁𝐿)
12 exmiddc 841 . . . 4 (DECID 𝑁𝐿 → (𝑁𝐿 ∨ ¬ 𝑁𝐿))
13 simprl 529 . . . . . . . . 9 ((𝑁𝐿 ∧ ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (0...(𝐿 + 𝑀)))) → (𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉))
142adantl 277 . . . . . . . . . 10 ((𝑁𝐿 ∧ ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (0...(𝐿 + 𝑀)))) → 𝑁 ∈ ℕ0)
158adantl 277 . . . . . . . . . 10 ((𝑁𝐿 ∧ ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (0...(𝐿 + 𝑀)))) → 𝐿 ∈ ℕ0)
16 simpl 109 . . . . . . . . . 10 ((𝑁𝐿 ∧ ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (0...(𝐿 + 𝑀)))) → 𝑁𝐿)
17 elfz2nn0 10304 . . . . . . . . . 10 (𝑁 ∈ (0...𝐿) ↔ (𝑁 ∈ ℕ0𝐿 ∈ ℕ0𝑁𝐿))
1814, 15, 16, 17syl3anbrc 1205 . . . . . . . . 9 ((𝑁𝐿 ∧ ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (0...(𝐿 + 𝑀)))) → 𝑁 ∈ (0...𝐿))
19 df-3an 1004 . . . . . . . . 9 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝑁 ∈ (0...𝐿)) ↔ ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (0...𝐿)))
2013, 18, 19sylanbrc 417 . . . . . . . 8 ((𝑁𝐿 ∧ ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (0...(𝐿 + 𝑀)))) → (𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝑁 ∈ (0...𝐿)))
214pfxccatpfx1 11263 . . . . . . . 8 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝑁 ∈ (0...𝐿)) → ((𝐴 ++ 𝐵) prefix 𝑁) = (𝐴 prefix 𝑁))
2220, 21syl 14 . . . . . . 7 ((𝑁𝐿 ∧ ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (0...(𝐿 + 𝑀)))) → ((𝐴 ++ 𝐵) prefix 𝑁) = (𝐴 prefix 𝑁))
23 iftrue 3607 . . . . . . . 8 (𝑁𝐿 → if(𝑁𝐿, (𝐴 prefix 𝑁), (𝐴 ++ (𝐵 prefix (𝑁𝐿)))) = (𝐴 prefix 𝑁))
2423adantr 276 . . . . . . 7 ((𝑁𝐿 ∧ ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (0...(𝐿 + 𝑀)))) → if(𝑁𝐿, (𝐴 prefix 𝑁), (𝐴 ++ (𝐵 prefix (𝑁𝐿)))) = (𝐴 prefix 𝑁))
2522, 24eqtr4d 2265 . . . . . 6 ((𝑁𝐿 ∧ ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (0...(𝐿 + 𝑀)))) → ((𝐴 ++ 𝐵) prefix 𝑁) = if(𝑁𝐿, (𝐴 prefix 𝑁), (𝐴 ++ (𝐵 prefix (𝑁𝐿)))))
2625ex 115 . . . . 5 (𝑁𝐿 → (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (0...(𝐿 + 𝑀))) → ((𝐴 ++ 𝐵) prefix 𝑁) = if(𝑁𝐿, (𝐴 prefix 𝑁), (𝐴 ++ (𝐵 prefix (𝑁𝐿))))))
27 simprl 529 . . . . . . . . 9 ((¬ 𝑁𝐿 ∧ ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (0...(𝐿 + 𝑀)))) → (𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉))
28 elfz2nn0 10304 . . . . . . . . . . . 12 (𝑁 ∈ (0...(𝐿 + 𝑀)) ↔ (𝑁 ∈ ℕ0 ∧ (𝐿 + 𝑀) ∈ ℕ0𝑁 ≤ (𝐿 + 𝑀)))
294eleq1i 2295 . . . . . . . . . . . . . . 15 (𝐿 ∈ ℕ0 ↔ (♯‘𝐴) ∈ ℕ0)
30 nn0ltp1le 9505 . . . . . . . . . . . . . . . . . . 19 ((𝐿 ∈ ℕ0𝑁 ∈ ℕ0) → (𝐿 < 𝑁 ↔ (𝐿 + 1) ≤ 𝑁))
31 nn0z 9462 . . . . . . . . . . . . . . . . . . . 20 (𝐿 ∈ ℕ0𝐿 ∈ ℤ)
32 nn0z 9462 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
33 zltnle 9488 . . . . . . . . . . . . . . . . . . . 20 ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐿 < 𝑁 ↔ ¬ 𝑁𝐿))
3431, 32, 33syl2an 289 . . . . . . . . . . . . . . . . . . 19 ((𝐿 ∈ ℕ0𝑁 ∈ ℕ0) → (𝐿 < 𝑁 ↔ ¬ 𝑁𝐿))
3530, 34bitr3d 190 . . . . . . . . . . . . . . . . . 18 ((𝐿 ∈ ℕ0𝑁 ∈ ℕ0) → ((𝐿 + 1) ≤ 𝑁 ↔ ¬ 𝑁𝐿))
36353ad2antr1 1186 . . . . . . . . . . . . . . . . 17 ((𝐿 ∈ ℕ0 ∧ (𝑁 ∈ ℕ0 ∧ (𝐿 + 𝑀) ∈ ℕ0𝑁 ≤ (𝐿 + 𝑀))) → ((𝐿 + 1) ≤ 𝑁 ↔ ¬ 𝑁𝐿))
37 simpr3 1029 . . . . . . . . . . . . . . . . . . . 20 ((𝐿 ∈ ℕ0 ∧ (𝑁 ∈ ℕ0 ∧ (𝐿 + 𝑀) ∈ ℕ0𝑁 ≤ (𝐿 + 𝑀))) → 𝑁 ≤ (𝐿 + 𝑀))
3837anim1ci 341 . . . . . . . . . . . . . . . . . . 19 (((𝐿 ∈ ℕ0 ∧ (𝑁 ∈ ℕ0 ∧ (𝐿 + 𝑀) ∈ ℕ0𝑁 ≤ (𝐿 + 𝑀))) ∧ (𝐿 + 1) ≤ 𝑁) → ((𝐿 + 1) ≤ 𝑁𝑁 ≤ (𝐿 + 𝑀)))
39323ad2ant1 1042 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑁 ∈ ℕ0 ∧ (𝐿 + 𝑀) ∈ ℕ0𝑁 ≤ (𝐿 + 𝑀)) → 𝑁 ∈ ℤ)
4039adantl 277 . . . . . . . . . . . . . . . . . . . . 21 ((𝐿 ∈ ℕ0 ∧ (𝑁 ∈ ℕ0 ∧ (𝐿 + 𝑀) ∈ ℕ0𝑁 ≤ (𝐿 + 𝑀))) → 𝑁 ∈ ℤ)
4140adantr 276 . . . . . . . . . . . . . . . . . . . 20 (((𝐿 ∈ ℕ0 ∧ (𝑁 ∈ ℕ0 ∧ (𝐿 + 𝑀) ∈ ℕ0𝑁 ≤ (𝐿 + 𝑀))) ∧ (𝐿 + 1) ≤ 𝑁) → 𝑁 ∈ ℤ)
42 peano2nn0 9405 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐿 ∈ ℕ0 → (𝐿 + 1) ∈ ℕ0)
4342nn0zd 9563 . . . . . . . . . . . . . . . . . . . . . 22 (𝐿 ∈ ℕ0 → (𝐿 + 1) ∈ ℤ)
4443adantr 276 . . . . . . . . . . . . . . . . . . . . 21 ((𝐿 ∈ ℕ0 ∧ (𝑁 ∈ ℕ0 ∧ (𝐿 + 𝑀) ∈ ℕ0𝑁 ≤ (𝐿 + 𝑀))) → (𝐿 + 1) ∈ ℤ)
4544adantr 276 . . . . . . . . . . . . . . . . . . . 20 (((𝐿 ∈ ℕ0 ∧ (𝑁 ∈ ℕ0 ∧ (𝐿 + 𝑀) ∈ ℕ0𝑁 ≤ (𝐿 + 𝑀))) ∧ (𝐿 + 1) ≤ 𝑁) → (𝐿 + 1) ∈ ℤ)
46 nn0z 9462 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐿 + 𝑀) ∈ ℕ0 → (𝐿 + 𝑀) ∈ ℤ)
47463ad2ant2 1043 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑁 ∈ ℕ0 ∧ (𝐿 + 𝑀) ∈ ℕ0𝑁 ≤ (𝐿 + 𝑀)) → (𝐿 + 𝑀) ∈ ℤ)
4847adantl 277 . . . . . . . . . . . . . . . . . . . . 21 ((𝐿 ∈ ℕ0 ∧ (𝑁 ∈ ℕ0 ∧ (𝐿 + 𝑀) ∈ ℕ0𝑁 ≤ (𝐿 + 𝑀))) → (𝐿 + 𝑀) ∈ ℤ)
4948adantr 276 . . . . . . . . . . . . . . . . . . . 20 (((𝐿 ∈ ℕ0 ∧ (𝑁 ∈ ℕ0 ∧ (𝐿 + 𝑀) ∈ ℕ0𝑁 ≤ (𝐿 + 𝑀))) ∧ (𝐿 + 1) ≤ 𝑁) → (𝐿 + 𝑀) ∈ ℤ)
50 elfz 10206 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ ℤ ∧ (𝐿 + 1) ∈ ℤ ∧ (𝐿 + 𝑀) ∈ ℤ) → (𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀)) ↔ ((𝐿 + 1) ≤ 𝑁𝑁 ≤ (𝐿 + 𝑀))))
5141, 45, 49, 50syl3anc 1271 . . . . . . . . . . . . . . . . . . 19 (((𝐿 ∈ ℕ0 ∧ (𝑁 ∈ ℕ0 ∧ (𝐿 + 𝑀) ∈ ℕ0𝑁 ≤ (𝐿 + 𝑀))) ∧ (𝐿 + 1) ≤ 𝑁) → (𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀)) ↔ ((𝐿 + 1) ≤ 𝑁𝑁 ≤ (𝐿 + 𝑀))))
5238, 51mpbird 167 . . . . . . . . . . . . . . . . . 18 (((𝐿 ∈ ℕ0 ∧ (𝑁 ∈ ℕ0 ∧ (𝐿 + 𝑀) ∈ ℕ0𝑁 ≤ (𝐿 + 𝑀))) ∧ (𝐿 + 1) ≤ 𝑁) → 𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀)))
5352ex 115 . . . . . . . . . . . . . . . . 17 ((𝐿 ∈ ℕ0 ∧ (𝑁 ∈ ℕ0 ∧ (𝐿 + 𝑀) ∈ ℕ0𝑁 ≤ (𝐿 + 𝑀))) → ((𝐿 + 1) ≤ 𝑁𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀))))
5436, 53sylbird 170 . . . . . . . . . . . . . . . 16 ((𝐿 ∈ ℕ0 ∧ (𝑁 ∈ ℕ0 ∧ (𝐿 + 𝑀) ∈ ℕ0𝑁 ≤ (𝐿 + 𝑀))) → (¬ 𝑁𝐿𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀))))
5554ex 115 . . . . . . . . . . . . . . 15 (𝐿 ∈ ℕ0 → ((𝑁 ∈ ℕ0 ∧ (𝐿 + 𝑀) ∈ ℕ0𝑁 ≤ (𝐿 + 𝑀)) → (¬ 𝑁𝐿𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀)))))
5629, 55sylbir 135 . . . . . . . . . . . . . 14 ((♯‘𝐴) ∈ ℕ0 → ((𝑁 ∈ ℕ0 ∧ (𝐿 + 𝑀) ∈ ℕ0𝑁 ≤ (𝐿 + 𝑀)) → (¬ 𝑁𝐿𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀)))))
575, 56syl 14 . . . . . . . . . . . . 13 (𝐴 ∈ Word 𝑉 → ((𝑁 ∈ ℕ0 ∧ (𝐿 + 𝑀) ∈ ℕ0𝑁 ≤ (𝐿 + 𝑀)) → (¬ 𝑁𝐿𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀)))))
5857adantr 276 . . . . . . . . . . . 12 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((𝑁 ∈ ℕ0 ∧ (𝐿 + 𝑀) ∈ ℕ0𝑁 ≤ (𝐿 + 𝑀)) → (¬ 𝑁𝐿𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀)))))
5928, 58biimtrid 152 . . . . . . . . . . 11 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (𝑁 ∈ (0...(𝐿 + 𝑀)) → (¬ 𝑁𝐿𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀)))))
6059imp 124 . . . . . . . . . 10 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (0...(𝐿 + 𝑀))) → (¬ 𝑁𝐿𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀))))
6160impcom 125 . . . . . . . . 9 ((¬ 𝑁𝐿 ∧ ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (0...(𝐿 + 𝑀)))) → 𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀)))
62 df-3an 1004 . . . . . . . . 9 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀))) ↔ ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀))))
6327, 61, 62sylanbrc 417 . . . . . . . 8 ((¬ 𝑁𝐿 ∧ ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (0...(𝐿 + 𝑀)))) → (𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀))))
64 pfxccatpfx2.m . . . . . . . . 9 𝑀 = (♯‘𝐵)
654, 64pfxccatpfx2 11264 . . . . . . . 8 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀))) → ((𝐴 ++ 𝐵) prefix 𝑁) = (𝐴 ++ (𝐵 prefix (𝑁𝐿))))
6663, 65syl 14 . . . . . . 7 ((¬ 𝑁𝐿 ∧ ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (0...(𝐿 + 𝑀)))) → ((𝐴 ++ 𝐵) prefix 𝑁) = (𝐴 ++ (𝐵 prefix (𝑁𝐿))))
67 iffalse 3610 . . . . . . . 8 𝑁𝐿 → if(𝑁𝐿, (𝐴 prefix 𝑁), (𝐴 ++ (𝐵 prefix (𝑁𝐿)))) = (𝐴 ++ (𝐵 prefix (𝑁𝐿))))
6867adantr 276 . . . . . . 7 ((¬ 𝑁𝐿 ∧ ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (0...(𝐿 + 𝑀)))) → if(𝑁𝐿, (𝐴 prefix 𝑁), (𝐴 ++ (𝐵 prefix (𝑁𝐿)))) = (𝐴 ++ (𝐵 prefix (𝑁𝐿))))
6966, 68eqtr4d 2265 . . . . . 6 ((¬ 𝑁𝐿 ∧ ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (0...(𝐿 + 𝑀)))) → ((𝐴 ++ 𝐵) prefix 𝑁) = if(𝑁𝐿, (𝐴 prefix 𝑁), (𝐴 ++ (𝐵 prefix (𝑁𝐿)))))
7069ex 115 . . . . 5 𝑁𝐿 → (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (0...(𝐿 + 𝑀))) → ((𝐴 ++ 𝐵) prefix 𝑁) = if(𝑁𝐿, (𝐴 prefix 𝑁), (𝐴 ++ (𝐵 prefix (𝑁𝐿))))))
7126, 70jaoi 721 . . . 4 ((𝑁𝐿 ∨ ¬ 𝑁𝐿) → (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (0...(𝐿 + 𝑀))) → ((𝐴 ++ 𝐵) prefix 𝑁) = if(𝑁𝐿, (𝐴 prefix 𝑁), (𝐴 ++ (𝐵 prefix (𝑁𝐿))))))
7212, 71syl 14 . . 3 (DECID 𝑁𝐿 → (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (0...(𝐿 + 𝑀))) → ((𝐴 ++ 𝐵) prefix 𝑁) = if(𝑁𝐿, (𝐴 prefix 𝑁), (𝐴 ++ (𝐵 prefix (𝑁𝐿))))))
7311, 72mpcom 36 . 2 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (0...(𝐿 + 𝑀))) → ((𝐴 ++ 𝐵) prefix 𝑁) = if(𝑁𝐿, (𝐴 prefix 𝑁), (𝐴 ++ (𝐵 prefix (𝑁𝐿)))))
7473ex 115 1 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (𝑁 ∈ (0...(𝐿 + 𝑀)) → ((𝐴 ++ 𝐵) prefix 𝑁) = if(𝑁𝐿, (𝐴 prefix 𝑁), (𝐴 ++ (𝐵 prefix (𝑁𝐿))))))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 713  DECID wdc 839  w3a 1002   = wceq 1395  wcel 2200  ifcif 3602   class class class wbr 4082  cfv 5317  (class class class)co 6000  0cc0 7995  1c1 7996   + caddc 7998   < clt 8177  cle 8178  cmin 8313  0cn0 9365  cz 9442  ...cfz 10200  chash 10992  Word cword 11066   ++ cconcat 11120   prefix cpfx 11199
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-addass 8097  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-0id 8103  ax-rnegex 8104  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-iord 4456  df-on 4458  df-ilim 4459  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-frec 6535  df-1o 6560  df-er 6678  df-en 6886  df-dom 6887  df-fin 6888  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-inn 9107  df-n0 9366  df-z 9443  df-uz 9719  df-fz 10201  df-fzo 10335  df-ihash 10993  df-word 11067  df-concat 11121  df-substr 11173  df-pfx 11200
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator