Proof of Theorem pfxccat3a
| Step | Hyp | Ref
| Expression |
| 1 | | elfznn0 10271 |
. . . . . 6
⊢ (𝑁 ∈ (0...(𝐿 + 𝑀)) → 𝑁 ∈
ℕ0) |
| 2 | 1 | adantl 277 |
. . . . 5
⊢ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (0...(𝐿 + 𝑀))) → 𝑁 ∈
ℕ0) |
| 3 | 2 | nn0zd 9528 |
. . . 4
⊢ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (0...(𝐿 + 𝑀))) → 𝑁 ∈ ℤ) |
| 4 | | swrdccatin2.l |
. . . . . . . 8
⊢ 𝐿 = (♯‘𝐴) |
| 5 | | lencl 11035 |
. . . . . . . 8
⊢ (𝐴 ∈ Word 𝑉 → (♯‘𝐴) ∈
ℕ0) |
| 6 | 4, 5 | eqeltrid 2294 |
. . . . . . 7
⊢ (𝐴 ∈ Word 𝑉 → 𝐿 ∈
ℕ0) |
| 7 | 6 | adantr 276 |
. . . . . 6
⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) → 𝐿 ∈
ℕ0) |
| 8 | 7 | adantr 276 |
. . . . 5
⊢ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (0...(𝐿 + 𝑀))) → 𝐿 ∈
ℕ0) |
| 9 | 8 | nn0zd 9528 |
. . . 4
⊢ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (0...(𝐿 + 𝑀))) → 𝐿 ∈ ℤ) |
| 10 | | zdcle 9484 |
. . . 4
⊢ ((𝑁 ∈ ℤ ∧ 𝐿 ∈ ℤ) →
DECID 𝑁 ≤
𝐿) |
| 11 | 3, 9, 10 | syl2anc 411 |
. . 3
⊢ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (0...(𝐿 + 𝑀))) → DECID 𝑁 ≤ 𝐿) |
| 12 | | exmiddc 838 |
. . . 4
⊢
(DECID 𝑁 ≤ 𝐿 → (𝑁 ≤ 𝐿 ∨ ¬ 𝑁 ≤ 𝐿)) |
| 13 | | simprl 529 |
. . . . . . . . 9
⊢ ((𝑁 ≤ 𝐿 ∧ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (0...(𝐿 + 𝑀)))) → (𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉)) |
| 14 | 2 | adantl 277 |
. . . . . . . . . 10
⊢ ((𝑁 ≤ 𝐿 ∧ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (0...(𝐿 + 𝑀)))) → 𝑁 ∈
ℕ0) |
| 15 | 8 | adantl 277 |
. . . . . . . . . 10
⊢ ((𝑁 ≤ 𝐿 ∧ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (0...(𝐿 + 𝑀)))) → 𝐿 ∈
ℕ0) |
| 16 | | simpl 109 |
. . . . . . . . . 10
⊢ ((𝑁 ≤ 𝐿 ∧ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (0...(𝐿 + 𝑀)))) → 𝑁 ≤ 𝐿) |
| 17 | | elfz2nn0 10269 |
. . . . . . . . . 10
⊢ (𝑁 ∈ (0...𝐿) ↔ (𝑁 ∈ ℕ0 ∧ 𝐿 ∈ ℕ0
∧ 𝑁 ≤ 𝐿)) |
| 18 | 14, 15, 16, 17 | syl3anbrc 1184 |
. . . . . . . . 9
⊢ ((𝑁 ≤ 𝐿 ∧ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (0...(𝐿 + 𝑀)))) → 𝑁 ∈ (0...𝐿)) |
| 19 | | df-3an 983 |
. . . . . . . . 9
⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝑁 ∈ (0...𝐿)) ↔ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (0...𝐿))) |
| 20 | 13, 18, 19 | sylanbrc 417 |
. . . . . . . 8
⊢ ((𝑁 ≤ 𝐿 ∧ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (0...(𝐿 + 𝑀)))) → (𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝑁 ∈ (0...𝐿))) |
| 21 | 4 | pfxccatpfx1 11227 |
. . . . . . . 8
⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝑁 ∈ (0...𝐿)) → ((𝐴 ++ 𝐵) prefix 𝑁) = (𝐴 prefix 𝑁)) |
| 22 | 20, 21 | syl 14 |
. . . . . . 7
⊢ ((𝑁 ≤ 𝐿 ∧ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (0...(𝐿 + 𝑀)))) → ((𝐴 ++ 𝐵) prefix 𝑁) = (𝐴 prefix 𝑁)) |
| 23 | | iftrue 3584 |
. . . . . . . 8
⊢ (𝑁 ≤ 𝐿 → if(𝑁 ≤ 𝐿, (𝐴 prefix 𝑁), (𝐴 ++ (𝐵 prefix (𝑁 − 𝐿)))) = (𝐴 prefix 𝑁)) |
| 24 | 23 | adantr 276 |
. . . . . . 7
⊢ ((𝑁 ≤ 𝐿 ∧ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (0...(𝐿 + 𝑀)))) → if(𝑁 ≤ 𝐿, (𝐴 prefix 𝑁), (𝐴 ++ (𝐵 prefix (𝑁 − 𝐿)))) = (𝐴 prefix 𝑁)) |
| 25 | 22, 24 | eqtr4d 2243 |
. . . . . 6
⊢ ((𝑁 ≤ 𝐿 ∧ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (0...(𝐿 + 𝑀)))) → ((𝐴 ++ 𝐵) prefix 𝑁) = if(𝑁 ≤ 𝐿, (𝐴 prefix 𝑁), (𝐴 ++ (𝐵 prefix (𝑁 − 𝐿))))) |
| 26 | 25 | ex 115 |
. . . . 5
⊢ (𝑁 ≤ 𝐿 → (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (0...(𝐿 + 𝑀))) → ((𝐴 ++ 𝐵) prefix 𝑁) = if(𝑁 ≤ 𝐿, (𝐴 prefix 𝑁), (𝐴 ++ (𝐵 prefix (𝑁 − 𝐿)))))) |
| 27 | | simprl 529 |
. . . . . . . . 9
⊢ ((¬
𝑁 ≤ 𝐿 ∧ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (0...(𝐿 + 𝑀)))) → (𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉)) |
| 28 | | elfz2nn0 10269 |
. . . . . . . . . . . 12
⊢ (𝑁 ∈ (0...(𝐿 + 𝑀)) ↔ (𝑁 ∈ ℕ0 ∧ (𝐿 + 𝑀) ∈ ℕ0 ∧ 𝑁 ≤ (𝐿 + 𝑀))) |
| 29 | 4 | eleq1i 2273 |
. . . . . . . . . . . . . . 15
⊢ (𝐿 ∈ ℕ0
↔ (♯‘𝐴)
∈ ℕ0) |
| 30 | | nn0ltp1le 9470 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐿 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → (𝐿 < 𝑁 ↔ (𝐿 + 1) ≤ 𝑁)) |
| 31 | | nn0z 9427 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝐿 ∈ ℕ0
→ 𝐿 ∈
ℤ) |
| 32 | | nn0z 9427 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑁 ∈ ℕ0
→ 𝑁 ∈
ℤ) |
| 33 | | zltnle 9453 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐿 < 𝑁 ↔ ¬ 𝑁 ≤ 𝐿)) |
| 34 | 31, 32, 33 | syl2an 289 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐿 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → (𝐿 < 𝑁 ↔ ¬ 𝑁 ≤ 𝐿)) |
| 35 | 30, 34 | bitr3d 190 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐿 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → ((𝐿 + 1) ≤ 𝑁 ↔ ¬ 𝑁 ≤ 𝐿)) |
| 36 | 35 | 3ad2antr1 1165 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐿 ∈ ℕ0
∧ (𝑁 ∈
ℕ0 ∧ (𝐿 + 𝑀) ∈ ℕ0 ∧ 𝑁 ≤ (𝐿 + 𝑀))) → ((𝐿 + 1) ≤ 𝑁 ↔ ¬ 𝑁 ≤ 𝐿)) |
| 37 | | simpr3 1008 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐿 ∈ ℕ0
∧ (𝑁 ∈
ℕ0 ∧ (𝐿 + 𝑀) ∈ ℕ0 ∧ 𝑁 ≤ (𝐿 + 𝑀))) → 𝑁 ≤ (𝐿 + 𝑀)) |
| 38 | 37 | anim1ci 341 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐿 ∈ ℕ0
∧ (𝑁 ∈
ℕ0 ∧ (𝐿 + 𝑀) ∈ ℕ0 ∧ 𝑁 ≤ (𝐿 + 𝑀))) ∧ (𝐿 + 1) ≤ 𝑁) → ((𝐿 + 1) ≤ 𝑁 ∧ 𝑁 ≤ (𝐿 + 𝑀))) |
| 39 | 32 | 3ad2ant1 1021 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑁 ∈ ℕ0
∧ (𝐿 + 𝑀) ∈ ℕ0
∧ 𝑁 ≤ (𝐿 + 𝑀)) → 𝑁 ∈ ℤ) |
| 40 | 39 | adantl 277 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐿 ∈ ℕ0
∧ (𝑁 ∈
ℕ0 ∧ (𝐿 + 𝑀) ∈ ℕ0 ∧ 𝑁 ≤ (𝐿 + 𝑀))) → 𝑁 ∈ ℤ) |
| 41 | 40 | adantr 276 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐿 ∈ ℕ0
∧ (𝑁 ∈
ℕ0 ∧ (𝐿 + 𝑀) ∈ ℕ0 ∧ 𝑁 ≤ (𝐿 + 𝑀))) ∧ (𝐿 + 1) ≤ 𝑁) → 𝑁 ∈ ℤ) |
| 42 | | peano2nn0 9370 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝐿 ∈ ℕ0
→ (𝐿 + 1) ∈
ℕ0) |
| 43 | 42 | nn0zd 9528 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝐿 ∈ ℕ0
→ (𝐿 + 1) ∈
ℤ) |
| 44 | 43 | adantr 276 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐿 ∈ ℕ0
∧ (𝑁 ∈
ℕ0 ∧ (𝐿 + 𝑀) ∈ ℕ0 ∧ 𝑁 ≤ (𝐿 + 𝑀))) → (𝐿 + 1) ∈ ℤ) |
| 45 | 44 | adantr 276 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐿 ∈ ℕ0
∧ (𝑁 ∈
ℕ0 ∧ (𝐿 + 𝑀) ∈ ℕ0 ∧ 𝑁 ≤ (𝐿 + 𝑀))) ∧ (𝐿 + 1) ≤ 𝑁) → (𝐿 + 1) ∈ ℤ) |
| 46 | | nn0z 9427 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝐿 + 𝑀) ∈ ℕ0 → (𝐿 + 𝑀) ∈ ℤ) |
| 47 | 46 | 3ad2ant2 1022 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑁 ∈ ℕ0
∧ (𝐿 + 𝑀) ∈ ℕ0
∧ 𝑁 ≤ (𝐿 + 𝑀)) → (𝐿 + 𝑀) ∈ ℤ) |
| 48 | 47 | adantl 277 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐿 ∈ ℕ0
∧ (𝑁 ∈
ℕ0 ∧ (𝐿 + 𝑀) ∈ ℕ0 ∧ 𝑁 ≤ (𝐿 + 𝑀))) → (𝐿 + 𝑀) ∈ ℤ) |
| 49 | 48 | adantr 276 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐿 ∈ ℕ0
∧ (𝑁 ∈
ℕ0 ∧ (𝐿 + 𝑀) ∈ ℕ0 ∧ 𝑁 ≤ (𝐿 + 𝑀))) ∧ (𝐿 + 1) ≤ 𝑁) → (𝐿 + 𝑀) ∈ ℤ) |
| 50 | | elfz 10171 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑁 ∈ ℤ ∧ (𝐿 + 1) ∈ ℤ ∧
(𝐿 + 𝑀) ∈ ℤ) → (𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀)) ↔ ((𝐿 + 1) ≤ 𝑁 ∧ 𝑁 ≤ (𝐿 + 𝑀)))) |
| 51 | 41, 45, 49, 50 | syl3anc 1250 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐿 ∈ ℕ0
∧ (𝑁 ∈
ℕ0 ∧ (𝐿 + 𝑀) ∈ ℕ0 ∧ 𝑁 ≤ (𝐿 + 𝑀))) ∧ (𝐿 + 1) ≤ 𝑁) → (𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀)) ↔ ((𝐿 + 1) ≤ 𝑁 ∧ 𝑁 ≤ (𝐿 + 𝑀)))) |
| 52 | 38, 51 | mpbird 167 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐿 ∈ ℕ0
∧ (𝑁 ∈
ℕ0 ∧ (𝐿 + 𝑀) ∈ ℕ0 ∧ 𝑁 ≤ (𝐿 + 𝑀))) ∧ (𝐿 + 1) ≤ 𝑁) → 𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀))) |
| 53 | 52 | ex 115 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐿 ∈ ℕ0
∧ (𝑁 ∈
ℕ0 ∧ (𝐿 + 𝑀) ∈ ℕ0 ∧ 𝑁 ≤ (𝐿 + 𝑀))) → ((𝐿 + 1) ≤ 𝑁 → 𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀)))) |
| 54 | 36, 53 | sylbird 170 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐿 ∈ ℕ0
∧ (𝑁 ∈
ℕ0 ∧ (𝐿 + 𝑀) ∈ ℕ0 ∧ 𝑁 ≤ (𝐿 + 𝑀))) → (¬ 𝑁 ≤ 𝐿 → 𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀)))) |
| 55 | 54 | ex 115 |
. . . . . . . . . . . . . . 15
⊢ (𝐿 ∈ ℕ0
→ ((𝑁 ∈
ℕ0 ∧ (𝐿 + 𝑀) ∈ ℕ0 ∧ 𝑁 ≤ (𝐿 + 𝑀)) → (¬ 𝑁 ≤ 𝐿 → 𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀))))) |
| 56 | 29, 55 | sylbir 135 |
. . . . . . . . . . . . . 14
⊢
((♯‘𝐴)
∈ ℕ0 → ((𝑁 ∈ ℕ0 ∧ (𝐿 + 𝑀) ∈ ℕ0 ∧ 𝑁 ≤ (𝐿 + 𝑀)) → (¬ 𝑁 ≤ 𝐿 → 𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀))))) |
| 57 | 5, 56 | syl 14 |
. . . . . . . . . . . . 13
⊢ (𝐴 ∈ Word 𝑉 → ((𝑁 ∈ ℕ0 ∧ (𝐿 + 𝑀) ∈ ℕ0 ∧ 𝑁 ≤ (𝐿 + 𝑀)) → (¬ 𝑁 ≤ 𝐿 → 𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀))))) |
| 58 | 57 | adantr 276 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) → ((𝑁 ∈ ℕ0 ∧ (𝐿 + 𝑀) ∈ ℕ0 ∧ 𝑁 ≤ (𝐿 + 𝑀)) → (¬ 𝑁 ≤ 𝐿 → 𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀))))) |
| 59 | 28, 58 | biimtrid 152 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) → (𝑁 ∈ (0...(𝐿 + 𝑀)) → (¬ 𝑁 ≤ 𝐿 → 𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀))))) |
| 60 | 59 | imp 124 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (0...(𝐿 + 𝑀))) → (¬ 𝑁 ≤ 𝐿 → 𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀)))) |
| 61 | 60 | impcom 125 |
. . . . . . . . 9
⊢ ((¬
𝑁 ≤ 𝐿 ∧ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (0...(𝐿 + 𝑀)))) → 𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀))) |
| 62 | | df-3an 983 |
. . . . . . . . 9
⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀))) ↔ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀)))) |
| 63 | 27, 61, 62 | sylanbrc 417 |
. . . . . . . 8
⊢ ((¬
𝑁 ≤ 𝐿 ∧ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (0...(𝐿 + 𝑀)))) → (𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀)))) |
| 64 | | pfxccatpfx2.m |
. . . . . . . . 9
⊢ 𝑀 = (♯‘𝐵) |
| 65 | 4, 64 | pfxccatpfx2 11228 |
. . . . . . . 8
⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀))) → ((𝐴 ++ 𝐵) prefix 𝑁) = (𝐴 ++ (𝐵 prefix (𝑁 − 𝐿)))) |
| 66 | 63, 65 | syl 14 |
. . . . . . 7
⊢ ((¬
𝑁 ≤ 𝐿 ∧ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (0...(𝐿 + 𝑀)))) → ((𝐴 ++ 𝐵) prefix 𝑁) = (𝐴 ++ (𝐵 prefix (𝑁 − 𝐿)))) |
| 67 | | iffalse 3587 |
. . . . . . . 8
⊢ (¬
𝑁 ≤ 𝐿 → if(𝑁 ≤ 𝐿, (𝐴 prefix 𝑁), (𝐴 ++ (𝐵 prefix (𝑁 − 𝐿)))) = (𝐴 ++ (𝐵 prefix (𝑁 − 𝐿)))) |
| 68 | 67 | adantr 276 |
. . . . . . 7
⊢ ((¬
𝑁 ≤ 𝐿 ∧ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (0...(𝐿 + 𝑀)))) → if(𝑁 ≤ 𝐿, (𝐴 prefix 𝑁), (𝐴 ++ (𝐵 prefix (𝑁 − 𝐿)))) = (𝐴 ++ (𝐵 prefix (𝑁 − 𝐿)))) |
| 69 | 66, 68 | eqtr4d 2243 |
. . . . . 6
⊢ ((¬
𝑁 ≤ 𝐿 ∧ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (0...(𝐿 + 𝑀)))) → ((𝐴 ++ 𝐵) prefix 𝑁) = if(𝑁 ≤ 𝐿, (𝐴 prefix 𝑁), (𝐴 ++ (𝐵 prefix (𝑁 − 𝐿))))) |
| 70 | 69 | ex 115 |
. . . . 5
⊢ (¬
𝑁 ≤ 𝐿 → (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (0...(𝐿 + 𝑀))) → ((𝐴 ++ 𝐵) prefix 𝑁) = if(𝑁 ≤ 𝐿, (𝐴 prefix 𝑁), (𝐴 ++ (𝐵 prefix (𝑁 − 𝐿)))))) |
| 71 | 26, 70 | jaoi 718 |
. . . 4
⊢ ((𝑁 ≤ 𝐿 ∨ ¬ 𝑁 ≤ 𝐿) → (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (0...(𝐿 + 𝑀))) → ((𝐴 ++ 𝐵) prefix 𝑁) = if(𝑁 ≤ 𝐿, (𝐴 prefix 𝑁), (𝐴 ++ (𝐵 prefix (𝑁 − 𝐿)))))) |
| 72 | 12, 71 | syl 14 |
. . 3
⊢
(DECID 𝑁 ≤ 𝐿 → (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (0...(𝐿 + 𝑀))) → ((𝐴 ++ 𝐵) prefix 𝑁) = if(𝑁 ≤ 𝐿, (𝐴 prefix 𝑁), (𝐴 ++ (𝐵 prefix (𝑁 − 𝐿)))))) |
| 73 | 11, 72 | mpcom 36 |
. 2
⊢ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (0...(𝐿 + 𝑀))) → ((𝐴 ++ 𝐵) prefix 𝑁) = if(𝑁 ≤ 𝐿, (𝐴 prefix 𝑁), (𝐴 ++ (𝐵 prefix (𝑁 − 𝐿))))) |
| 74 | 73 | ex 115 |
1
⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) → (𝑁 ∈ (0...(𝐿 + 𝑀)) → ((𝐴 ++ 𝐵) prefix 𝑁) = if(𝑁 ≤ 𝐿, (𝐴 prefix 𝑁), (𝐴 ++ (𝐵 prefix (𝑁 − 𝐿)))))) |