| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > wlklenvm1 | GIF version | ||
| Description: The number of edges of a walk is the number of its vertices minus 1. (Contributed by Alexander van der Vekens, 1-Jul-2018.) (Revised by AV, 2-Jan-2021.) |
| Ref | Expression |
|---|---|
| wlklenvm1 | ⊢ (𝐹(Walks‘𝐺)𝑃 → (♯‘𝐹) = ((♯‘𝑃) − 1)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wlklenvp1 16049 | . 2 ⊢ (𝐹(Walks‘𝐺)𝑃 → (♯‘𝑃) = ((♯‘𝐹) + 1)) | |
| 2 | oveq1 6008 | . . . 4 ⊢ ((♯‘𝑃) = ((♯‘𝐹) + 1) → ((♯‘𝑃) − 1) = (((♯‘𝐹) + 1) − 1)) | |
| 3 | wlkcl 16044 | . . . . . 6 ⊢ (𝐹(Walks‘𝐺)𝑃 → (♯‘𝐹) ∈ ℕ0) | |
| 4 | 3 | nn0cnd 9424 | . . . . 5 ⊢ (𝐹(Walks‘𝐺)𝑃 → (♯‘𝐹) ∈ ℂ) |
| 5 | pncan1 8523 | . . . . 5 ⊢ ((♯‘𝐹) ∈ ℂ → (((♯‘𝐹) + 1) − 1) = (♯‘𝐹)) | |
| 6 | 4, 5 | syl 14 | . . . 4 ⊢ (𝐹(Walks‘𝐺)𝑃 → (((♯‘𝐹) + 1) − 1) = (♯‘𝐹)) |
| 7 | 2, 6 | sylan9eqr 2284 | . . 3 ⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ (♯‘𝑃) = ((♯‘𝐹) + 1)) → ((♯‘𝑃) − 1) = (♯‘𝐹)) |
| 8 | 7 | eqcomd 2235 | . 2 ⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ (♯‘𝑃) = ((♯‘𝐹) + 1)) → (♯‘𝐹) = ((♯‘𝑃) − 1)) |
| 9 | 1, 8 | mpdan 421 | 1 ⊢ (𝐹(Walks‘𝐺)𝑃 → (♯‘𝐹) = ((♯‘𝑃) − 1)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 ∈ wcel 2200 class class class wbr 4083 ‘cfv 5318 (class class class)co 6001 ℂcc 7997 1c1 8000 + caddc 8002 − cmin 8317 ♯chash 10997 Walkscwlks 16030 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 ax-cnex 8090 ax-resscn 8091 ax-1cn 8092 ax-1re 8093 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-addcom 8099 ax-mulcom 8100 ax-addass 8101 ax-mulass 8102 ax-distr 8103 ax-i2m1 8104 ax-0lt1 8105 ax-1rid 8106 ax-0id 8107 ax-rnegex 8108 ax-cnre 8110 ax-pre-ltirr 8111 ax-pre-ltwlin 8112 ax-pre-lttrn 8113 ax-pre-apti 8114 ax-pre-ltadd 8115 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-ifp 984 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-iord 4457 df-on 4459 df-ilim 4460 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-riota 5954 df-ov 6004 df-oprab 6005 df-mpo 6006 df-1st 6286 df-2nd 6287 df-recs 6451 df-frec 6537 df-1o 6562 df-er 6680 df-map 6797 df-en 6888 df-dom 6889 df-fin 6890 df-pnf 8183 df-mnf 8184 df-xr 8185 df-ltxr 8186 df-le 8187 df-sub 8319 df-neg 8320 df-inn 9111 df-2 9169 df-3 9170 df-4 9171 df-5 9172 df-6 9173 df-7 9174 df-8 9175 df-9 9176 df-n0 9370 df-z 9447 df-dec 9579 df-uz 9723 df-fz 10205 df-fzo 10339 df-ihash 10998 df-word 11072 df-ndx 13035 df-slot 13036 df-base 13038 df-edgf 15806 df-vtx 15815 df-iedg 15816 df-wlks 16031 |
| This theorem is referenced by: uspgr2wlkeqi 16078 |
| Copyright terms: Public domain | W3C validator |