ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uspgr2wlkeqi GIF version

Theorem uspgr2wlkeqi 16078
Description: Conditions for two walks within the same simple pseudograph to be identical. It is sufficient that the vertices (in the same order) are identical. (Contributed by AV, 6-May-2021.)
Assertion
Ref Expression
uspgr2wlkeqi ((𝐺 ∈ USPGraph ∧ (𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺)) ∧ (2nd𝐴) = (2nd𝐵)) → 𝐴 = 𝐵)

Proof of Theorem uspgr2wlkeqi
StepHypRef Expression
1 wlkcprim 16061 . . . . 5 (𝐴 ∈ (Walks‘𝐺) → (1st𝐴)(Walks‘𝐺)(2nd𝐴))
2 wlkcprim 16061 . . . . 5 (𝐵 ∈ (Walks‘𝐺) → (1st𝐵)(Walks‘𝐺)(2nd𝐵))
3 wlkcl 16044 . . . . . 6 ((1st𝐴)(Walks‘𝐺)(2nd𝐴) → (♯‘(1st𝐴)) ∈ ℕ0)
4 fveq2 5627 . . . . . . . . . . . 12 ((2nd𝐴) = (2nd𝐵) → (♯‘(2nd𝐴)) = (♯‘(2nd𝐵)))
54oveq1d 6016 . . . . . . . . . . 11 ((2nd𝐴) = (2nd𝐵) → ((♯‘(2nd𝐴)) − 1) = ((♯‘(2nd𝐵)) − 1))
65eqcomd 2235 . . . . . . . . . 10 ((2nd𝐴) = (2nd𝐵) → ((♯‘(2nd𝐵)) − 1) = ((♯‘(2nd𝐴)) − 1))
76adantl 277 . . . . . . . . 9 ((((1st𝐴)(Walks‘𝐺)(2nd𝐴) ∧ (1st𝐵)(Walks‘𝐺)(2nd𝐵)) ∧ (2nd𝐴) = (2nd𝐵)) → ((♯‘(2nd𝐵)) − 1) = ((♯‘(2nd𝐴)) − 1))
8 wlklenvm1 16052 . . . . . . . . . . 11 ((1st𝐵)(Walks‘𝐺)(2nd𝐵) → (♯‘(1st𝐵)) = ((♯‘(2nd𝐵)) − 1))
9 wlklenvm1 16052 . . . . . . . . . . 11 ((1st𝐴)(Walks‘𝐺)(2nd𝐴) → (♯‘(1st𝐴)) = ((♯‘(2nd𝐴)) − 1))
108, 9eqeqan12rd 2246 . . . . . . . . . 10 (((1st𝐴)(Walks‘𝐺)(2nd𝐴) ∧ (1st𝐵)(Walks‘𝐺)(2nd𝐵)) → ((♯‘(1st𝐵)) = (♯‘(1st𝐴)) ↔ ((♯‘(2nd𝐵)) − 1) = ((♯‘(2nd𝐴)) − 1)))
1110adantr 276 . . . . . . . . 9 ((((1st𝐴)(Walks‘𝐺)(2nd𝐴) ∧ (1st𝐵)(Walks‘𝐺)(2nd𝐵)) ∧ (2nd𝐴) = (2nd𝐵)) → ((♯‘(1st𝐵)) = (♯‘(1st𝐴)) ↔ ((♯‘(2nd𝐵)) − 1) = ((♯‘(2nd𝐴)) − 1)))
127, 11mpbird 167 . . . . . . . 8 ((((1st𝐴)(Walks‘𝐺)(2nd𝐴) ∧ (1st𝐵)(Walks‘𝐺)(2nd𝐵)) ∧ (2nd𝐴) = (2nd𝐵)) → (♯‘(1st𝐵)) = (♯‘(1st𝐴)))
1312anim2i 342 . . . . . . 7 (((♯‘(1st𝐴)) ∈ ℕ0 ∧ (((1st𝐴)(Walks‘𝐺)(2nd𝐴) ∧ (1st𝐵)(Walks‘𝐺)(2nd𝐵)) ∧ (2nd𝐴) = (2nd𝐵))) → ((♯‘(1st𝐴)) ∈ ℕ0 ∧ (♯‘(1st𝐵)) = (♯‘(1st𝐴))))
1413exp44 373 . . . . . 6 ((♯‘(1st𝐴)) ∈ ℕ0 → ((1st𝐴)(Walks‘𝐺)(2nd𝐴) → ((1st𝐵)(Walks‘𝐺)(2nd𝐵) → ((2nd𝐴) = (2nd𝐵) → ((♯‘(1st𝐴)) ∈ ℕ0 ∧ (♯‘(1st𝐵)) = (♯‘(1st𝐴)))))))
153, 14mpcom 36 . . . . 5 ((1st𝐴)(Walks‘𝐺)(2nd𝐴) → ((1st𝐵)(Walks‘𝐺)(2nd𝐵) → ((2nd𝐴) = (2nd𝐵) → ((♯‘(1st𝐴)) ∈ ℕ0 ∧ (♯‘(1st𝐵)) = (♯‘(1st𝐴))))))
161, 2, 15syl2im 38 . . . 4 (𝐴 ∈ (Walks‘𝐺) → (𝐵 ∈ (Walks‘𝐺) → ((2nd𝐴) = (2nd𝐵) → ((♯‘(1st𝐴)) ∈ ℕ0 ∧ (♯‘(1st𝐵)) = (♯‘(1st𝐴))))))
1716imp31 256 . . 3 (((𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺)) ∧ (2nd𝐴) = (2nd𝐵)) → ((♯‘(1st𝐴)) ∈ ℕ0 ∧ (♯‘(1st𝐵)) = (♯‘(1st𝐴))))
18173adant1 1039 . 2 ((𝐺 ∈ USPGraph ∧ (𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺)) ∧ (2nd𝐴) = (2nd𝐵)) → ((♯‘(1st𝐴)) ∈ ℕ0 ∧ (♯‘(1st𝐵)) = (♯‘(1st𝐴))))
19 simpl 109 . . . . . . 7 ((𝐺 ∈ USPGraph ∧ (𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺))) → 𝐺 ∈ USPGraph)
20 simpl 109 . . . . . . 7 (((♯‘(1st𝐴)) ∈ ℕ0 ∧ (♯‘(1st𝐵)) = (♯‘(1st𝐴))) → (♯‘(1st𝐴)) ∈ ℕ0)
2119, 20anim12i 338 . . . . . 6 (((𝐺 ∈ USPGraph ∧ (𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺))) ∧ ((♯‘(1st𝐴)) ∈ ℕ0 ∧ (♯‘(1st𝐵)) = (♯‘(1st𝐴)))) → (𝐺 ∈ USPGraph ∧ (♯‘(1st𝐴)) ∈ ℕ0))
22 simpl 109 . . . . . . . 8 ((𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺)) → 𝐴 ∈ (Walks‘𝐺))
2322adantl 277 . . . . . . 7 ((𝐺 ∈ USPGraph ∧ (𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺))) → 𝐴 ∈ (Walks‘𝐺))
24 eqidd 2230 . . . . . . 7 (((♯‘(1st𝐴)) ∈ ℕ0 ∧ (♯‘(1st𝐵)) = (♯‘(1st𝐴))) → (♯‘(1st𝐴)) = (♯‘(1st𝐴)))
2523, 24anim12i 338 . . . . . 6 (((𝐺 ∈ USPGraph ∧ (𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺))) ∧ ((♯‘(1st𝐴)) ∈ ℕ0 ∧ (♯‘(1st𝐵)) = (♯‘(1st𝐴)))) → (𝐴 ∈ (Walks‘𝐺) ∧ (♯‘(1st𝐴)) = (♯‘(1st𝐴))))
26 simpr 110 . . . . . . . 8 ((𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺)) → 𝐵 ∈ (Walks‘𝐺))
2726adantl 277 . . . . . . 7 ((𝐺 ∈ USPGraph ∧ (𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺))) → 𝐵 ∈ (Walks‘𝐺))
28 simpr 110 . . . . . . 7 (((♯‘(1st𝐴)) ∈ ℕ0 ∧ (♯‘(1st𝐵)) = (♯‘(1st𝐴))) → (♯‘(1st𝐵)) = (♯‘(1st𝐴)))
2927, 28anim12i 338 . . . . . 6 (((𝐺 ∈ USPGraph ∧ (𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺))) ∧ ((♯‘(1st𝐴)) ∈ ℕ0 ∧ (♯‘(1st𝐵)) = (♯‘(1st𝐴)))) → (𝐵 ∈ (Walks‘𝐺) ∧ (♯‘(1st𝐵)) = (♯‘(1st𝐴))))
30 uspgr2wlkeq2 16077 . . . . . 6 (((𝐺 ∈ USPGraph ∧ (♯‘(1st𝐴)) ∈ ℕ0) ∧ (𝐴 ∈ (Walks‘𝐺) ∧ (♯‘(1st𝐴)) = (♯‘(1st𝐴))) ∧ (𝐵 ∈ (Walks‘𝐺) ∧ (♯‘(1st𝐵)) = (♯‘(1st𝐴)))) → ((2nd𝐴) = (2nd𝐵) → 𝐴 = 𝐵))
3121, 25, 29, 30syl3anc 1271 . . . . 5 (((𝐺 ∈ USPGraph ∧ (𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺))) ∧ ((♯‘(1st𝐴)) ∈ ℕ0 ∧ (♯‘(1st𝐵)) = (♯‘(1st𝐴)))) → ((2nd𝐴) = (2nd𝐵) → 𝐴 = 𝐵))
3231ex 115 . . . 4 ((𝐺 ∈ USPGraph ∧ (𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺))) → (((♯‘(1st𝐴)) ∈ ℕ0 ∧ (♯‘(1st𝐵)) = (♯‘(1st𝐴))) → ((2nd𝐴) = (2nd𝐵) → 𝐴 = 𝐵)))
3332com23 78 . . 3 ((𝐺 ∈ USPGraph ∧ (𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺))) → ((2nd𝐴) = (2nd𝐵) → (((♯‘(1st𝐴)) ∈ ℕ0 ∧ (♯‘(1st𝐵)) = (♯‘(1st𝐴))) → 𝐴 = 𝐵)))
34333impia 1224 . 2 ((𝐺 ∈ USPGraph ∧ (𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺)) ∧ (2nd𝐴) = (2nd𝐵)) → (((♯‘(1st𝐴)) ∈ ℕ0 ∧ (♯‘(1st𝐵)) = (♯‘(1st𝐴))) → 𝐴 = 𝐵))
3518, 34mpd 13 1 ((𝐺 ∈ USPGraph ∧ (𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺)) ∧ (2nd𝐴) = (2nd𝐵)) → 𝐴 = 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 1002   = wceq 1395  wcel 2200   class class class wbr 4083  cfv 5318  (class class class)co 6001  1st c1st 6284  2nd c2nd 6285  1c1 8000  cmin 8317  0cn0 9369  chash 10997  USPGraphcuspgr 15951  Walkscwlks 16030
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-mulcom 8100  ax-addass 8101  ax-mulass 8102  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-1rid 8106  ax-0id 8107  ax-rnegex 8108  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115
This theorem depends on definitions:  df-bi 117  df-dc 840  df-ifp 984  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-recs 6451  df-frec 6537  df-1o 6562  df-2o 6563  df-er 6680  df-map 6797  df-en 6888  df-dom 6889  df-fin 6890  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-inn 9111  df-2 9169  df-3 9170  df-4 9171  df-5 9172  df-6 9173  df-7 9174  df-8 9175  df-9 9176  df-n0 9370  df-z 9447  df-dec 9579  df-uz 9723  df-fz 10205  df-fzo 10339  df-ihash 10998  df-word 11072  df-ndx 13035  df-slot 13036  df-base 13038  df-edgf 15806  df-vtx 15815  df-iedg 15816  df-edg 15859  df-uhgrm 15869  df-upgren 15893  df-uspgren 15953  df-wlks 16031
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator