![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nn0abscl | GIF version |
Description: The absolute value of an integer is a nonnegative integer. (Contributed by NM, 27-Feb-2005.) |
Ref | Expression |
---|---|
nn0abscl | ⊢ (𝐴 ∈ ℤ → (abs‘𝐴) ∈ ℕ0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zre 9327 | . . . 4 ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℝ) | |
2 | absnid 11223 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 0) → (abs‘𝐴) = -𝐴) | |
3 | 1, 2 | sylan 283 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐴 ≤ 0) → (abs‘𝐴) = -𝐴) |
4 | simpl 109 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝐴 ≤ 0) → 𝐴 ∈ ℤ) | |
5 | 4 | znegcld 9447 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐴 ≤ 0) → -𝐴 ∈ ℤ) |
6 | simpr 110 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝐴 ≤ 0) → 𝐴 ≤ 0) | |
7 | 1 | adantr 276 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 𝐴 ≤ 0) → 𝐴 ∈ ℝ) |
8 | 7 | le0neg1d 8541 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝐴 ≤ 0) → (𝐴 ≤ 0 ↔ 0 ≤ -𝐴)) |
9 | 6, 8 | mpbid 147 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐴 ≤ 0) → 0 ≤ -𝐴) |
10 | elnn0z 9336 | . . . 4 ⊢ (-𝐴 ∈ ℕ0 ↔ (-𝐴 ∈ ℤ ∧ 0 ≤ -𝐴)) | |
11 | 5, 9, 10 | sylanbrc 417 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐴 ≤ 0) → -𝐴 ∈ ℕ0) |
12 | 3, 11 | eqeltrd 2273 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐴 ≤ 0) → (abs‘𝐴) ∈ ℕ0) |
13 | absid 11221 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (abs‘𝐴) = 𝐴) | |
14 | 1, 13 | sylan 283 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 0 ≤ 𝐴) → (abs‘𝐴) = 𝐴) |
15 | elnn0z 9336 | . . . 4 ⊢ (𝐴 ∈ ℕ0 ↔ (𝐴 ∈ ℤ ∧ 0 ≤ 𝐴)) | |
16 | 15 | biimpri 133 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 0 ≤ 𝐴) → 𝐴 ∈ ℕ0) |
17 | 14, 16 | eqeltrd 2273 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 0 ≤ 𝐴) → (abs‘𝐴) ∈ ℕ0) |
18 | 0z 9334 | . . 3 ⊢ 0 ∈ ℤ | |
19 | zletric 9367 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 0 ∈ ℤ) → (𝐴 ≤ 0 ∨ 0 ≤ 𝐴)) | |
20 | 18, 19 | mpan2 425 | . 2 ⊢ (𝐴 ∈ ℤ → (𝐴 ≤ 0 ∨ 0 ≤ 𝐴)) |
21 | 12, 17, 20 | mpjaodan 799 | 1 ⊢ (𝐴 ∈ ℤ → (abs‘𝐴) ∈ ℕ0) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∨ wo 709 = wceq 1364 ∈ wcel 2167 class class class wbr 4033 ‘cfv 5258 ℝcr 7876 0cc0 7877 ≤ cle 8060 -cneg 8196 ℕ0cn0 9246 ℤcz 9323 abscabs 11147 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 ax-cnex 7968 ax-resscn 7969 ax-1cn 7970 ax-1re 7971 ax-icn 7972 ax-addcl 7973 ax-addrcl 7974 ax-mulcl 7975 ax-mulrcl 7976 ax-addcom 7977 ax-mulcom 7978 ax-addass 7979 ax-mulass 7980 ax-distr 7981 ax-i2m1 7982 ax-0lt1 7983 ax-1rid 7984 ax-0id 7985 ax-rnegex 7986 ax-precex 7987 ax-cnre 7988 ax-pre-ltirr 7989 ax-pre-ltwlin 7990 ax-pre-lttrn 7991 ax-pre-apti 7992 ax-pre-ltadd 7993 ax-pre-mulgt0 7994 ax-pre-mulext 7995 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-po 4331 df-iso 4332 df-iord 4401 df-on 4403 df-ilim 4404 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-frec 6449 df-pnf 8061 df-mnf 8062 df-xr 8063 df-ltxr 8064 df-le 8065 df-sub 8197 df-neg 8198 df-reap 8599 df-ap 8606 df-div 8697 df-inn 8988 df-2 9046 df-n0 9247 df-z 9324 df-uz 9599 df-seqfrec 10525 df-exp 10616 df-cj 10992 df-re 10993 df-im 10994 df-rsqrt 11148 df-abs 11149 |
This theorem is referenced by: zabscl 11236 absmulgcd 12160 lcmgcd 12222 lcmgcdeq 12227 mulgcddvds 12238 sqnprm 12280 zgcdsq 12345 4sqlem11 12546 lgsabs1 15247 |
Copyright terms: Public domain | W3C validator |