ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0abscl GIF version

Theorem nn0abscl 11252
Description: The absolute value of an integer is a nonnegative integer. (Contributed by NM, 27-Feb-2005.)
Assertion
Ref Expression
nn0abscl (𝐴 ∈ ℤ → (abs‘𝐴) ∈ ℕ0)

Proof of Theorem nn0abscl
StepHypRef Expression
1 zre 9332 . . . 4 (𝐴 ∈ ℤ → 𝐴 ∈ ℝ)
2 absnid 11240 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 0) → (abs‘𝐴) = -𝐴)
31, 2sylan 283 . . 3 ((𝐴 ∈ ℤ ∧ 𝐴 ≤ 0) → (abs‘𝐴) = -𝐴)
4 simpl 109 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐴 ≤ 0) → 𝐴 ∈ ℤ)
54znegcld 9452 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐴 ≤ 0) → -𝐴 ∈ ℤ)
6 simpr 110 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐴 ≤ 0) → 𝐴 ≤ 0)
71adantr 276 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐴 ≤ 0) → 𝐴 ∈ ℝ)
87le0neg1d 8546 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐴 ≤ 0) → (𝐴 ≤ 0 ↔ 0 ≤ -𝐴))
96, 8mpbid 147 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐴 ≤ 0) → 0 ≤ -𝐴)
10 elnn0z 9341 . . . 4 (-𝐴 ∈ ℕ0 ↔ (-𝐴 ∈ ℤ ∧ 0 ≤ -𝐴))
115, 9, 10sylanbrc 417 . . 3 ((𝐴 ∈ ℤ ∧ 𝐴 ≤ 0) → -𝐴 ∈ ℕ0)
123, 11eqeltrd 2273 . 2 ((𝐴 ∈ ℤ ∧ 𝐴 ≤ 0) → (abs‘𝐴) ∈ ℕ0)
13 absid 11238 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (abs‘𝐴) = 𝐴)
141, 13sylan 283 . . 3 ((𝐴 ∈ ℤ ∧ 0 ≤ 𝐴) → (abs‘𝐴) = 𝐴)
15 elnn0z 9341 . . . 4 (𝐴 ∈ ℕ0 ↔ (𝐴 ∈ ℤ ∧ 0 ≤ 𝐴))
1615biimpri 133 . . 3 ((𝐴 ∈ ℤ ∧ 0 ≤ 𝐴) → 𝐴 ∈ ℕ0)
1714, 16eqeltrd 2273 . 2 ((𝐴 ∈ ℤ ∧ 0 ≤ 𝐴) → (abs‘𝐴) ∈ ℕ0)
18 0z 9339 . . 3 0 ∈ ℤ
19 zletric 9372 . . 3 ((𝐴 ∈ ℤ ∧ 0 ∈ ℤ) → (𝐴 ≤ 0 ∨ 0 ≤ 𝐴))
2018, 19mpan2 425 . 2 (𝐴 ∈ ℤ → (𝐴 ≤ 0 ∨ 0 ≤ 𝐴))
2112, 17, 20mpjaodan 799 1 (𝐴 ∈ ℤ → (abs‘𝐴) ∈ ℕ0)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wo 709   = wceq 1364  wcel 2167   class class class wbr 4034  cfv 5259  cr 7880  0cc0 7881  cle 8064  -cneg 8200  0cn0 9251  cz 9328  abscabs 11164
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7972  ax-resscn 7973  ax-1cn 7974  ax-1re 7975  ax-icn 7976  ax-addcl 7977  ax-addrcl 7978  ax-mulcl 7979  ax-mulrcl 7980  ax-addcom 7981  ax-mulcom 7982  ax-addass 7983  ax-mulass 7984  ax-distr 7985  ax-i2m1 7986  ax-0lt1 7987  ax-1rid 7988  ax-0id 7989  ax-rnegex 7990  ax-precex 7991  ax-cnre 7992  ax-pre-ltirr 7993  ax-pre-ltwlin 7994  ax-pre-lttrn 7995  ax-pre-apti 7996  ax-pre-ltadd 7997  ax-pre-mulgt0 7998  ax-pre-mulext 7999
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5878  df-ov 5926  df-oprab 5927  df-mpo 5928  df-1st 6199  df-2nd 6200  df-recs 6364  df-frec 6450  df-pnf 8065  df-mnf 8066  df-xr 8067  df-ltxr 8068  df-le 8069  df-sub 8201  df-neg 8202  df-reap 8604  df-ap 8611  df-div 8702  df-inn 8993  df-2 9051  df-n0 9252  df-z 9329  df-uz 9604  df-seqfrec 10542  df-exp 10633  df-cj 11009  df-re 11010  df-im 11011  df-rsqrt 11165  df-abs 11166
This theorem is referenced by:  zabscl  11253  absmulgcd  12194  lcmgcd  12256  lcmgcdeq  12261  mulgcddvds  12272  sqnprm  12314  zgcdsq  12379  4sqlem11  12580  lgsabs1  15290
  Copyright terms: Public domain W3C validator