MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2teven Structured version   Visualization version   GIF version

Theorem 2teven 16172
Description: A number which is twice an integer is even. (Contributed by AV, 16-Jul-2021.)
Assertion
Ref Expression
2teven ((𝐴 ∈ ℤ ∧ 𝐵 = (2 · 𝐴)) → 2 ∥ 𝐵)

Proof of Theorem 2teven
StepHypRef Expression
1 2z 12466 . . . 4 2 ∈ ℤ
2 dvdsmul1 16095 . . . 4 ((2 ∈ ℤ ∧ 𝐴 ∈ ℤ) → 2 ∥ (2 · 𝐴))
31, 2mpan 689 . . 3 (𝐴 ∈ ℤ → 2 ∥ (2 · 𝐴))
43adantr 482 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 = (2 · 𝐴)) → 2 ∥ (2 · 𝐴))
5 breq2 5108 . . 3 (𝐵 = (2 · 𝐴) → (2 ∥ 𝐵 ↔ 2 ∥ (2 · 𝐴)))
65adantl 483 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 = (2 · 𝐴)) → (2 ∥ 𝐵 ↔ 2 ∥ (2 · 𝐴)))
74, 6mpbird 257 1 ((𝐴 ∈ ℤ ∧ 𝐵 = (2 · 𝐴)) → 2 ∥ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1542  wcel 2107   class class class wbr 5104  (class class class)co 7350   · cmul 10990  2c2 12142  cz 12433  cdvds 16071
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2709  ax-sep 5255  ax-nul 5262  ax-pow 5319  ax-pr 5383  ax-un 7663  ax-resscn 11042  ax-1cn 11043  ax-icn 11044  ax-addcl 11045  ax-addrcl 11046  ax-mulcl 11047  ax-mulrcl 11048  ax-mulcom 11049  ax-addass 11050  ax-mulass 11051  ax-distr 11052  ax-i2m1 11053  ax-1ne0 11054  ax-1rid 11055  ax-rnegex 11056  ax-rrecex 11057  ax-cnre 11058  ax-pre-lttri 11059  ax-pre-lttrn 11060  ax-pre-ltadd 11061
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3064  df-rex 3073  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3739  df-csb 3855  df-dif 3912  df-un 3914  df-in 3916  df-ss 3926  df-pss 3928  df-nul 4282  df-if 4486  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4865  df-iun 4955  df-br 5105  df-opab 5167  df-mpt 5188  df-tr 5222  df-id 5529  df-eprel 5535  df-po 5543  df-so 5544  df-fr 5586  df-we 5588  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6250  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6444  df-fun 6494  df-fn 6495  df-f 6496  df-f1 6497  df-fo 6498  df-f1o 6499  df-fv 6500  df-riota 7306  df-ov 7353  df-oprab 7354  df-mpo 7355  df-om 7794  df-2nd 7913  df-frecs 8180  df-wrecs 8211  df-recs 8285  df-rdg 8324  df-er 8582  df-en 8818  df-dom 8819  df-sdom 8820  df-pnf 11125  df-mnf 11126  df-ltxr 11128  df-sub 11321  df-neg 11322  df-nn 12088  df-2 12150  df-n0 12348  df-z 12434  df-dvds 16072
This theorem is referenced by:  smndex2dlinvh  18662  finsumvtxdgeven  28286  limsup10exlem  43723
  Copyright terms: Public domain W3C validator