![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > finsumvtxdgeven | Structured version Visualization version GIF version |
Description: The sum of the degrees of all vertices of a finite pseudograph of finite size is even. See equation (2) in section I.1 in [Bollobas] p. 4, where it is also called the handshaking lemma. (Contributed by AV, 22-Dec-2021.) |
Ref | Expression |
---|---|
finsumvtxdgeven.v | ⊢ 𝑉 = (Vtx‘𝐺) |
finsumvtxdgeven.i | ⊢ 𝐼 = (iEdg‘𝐺) |
finsumvtxdgeven.d | ⊢ 𝐷 = (VtxDeg‘𝐺) |
Ref | Expression |
---|---|
finsumvtxdgeven | ⊢ ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → 2 ∥ Σ𝑣 ∈ 𝑉 (𝐷‘𝑣)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hashcl 13532 | . . . . 5 ⊢ (𝐼 ∈ Fin → (♯‘𝐼) ∈ ℕ0) | |
2 | 1 | 3ad2ant3 1115 | . . . 4 ⊢ ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → (♯‘𝐼) ∈ ℕ0) |
3 | 2 | nn0zd 11898 | . . 3 ⊢ ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → (♯‘𝐼) ∈ ℤ) |
4 | eqidd 2779 | . . 3 ⊢ ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → (2 · (♯‘𝐼)) = (2 · (♯‘𝐼))) | |
5 | 2teven 15564 | . . 3 ⊢ (((♯‘𝐼) ∈ ℤ ∧ (2 · (♯‘𝐼)) = (2 · (♯‘𝐼))) → 2 ∥ (2 · (♯‘𝐼))) | |
6 | 3, 4, 5 | syl2anc 576 | . 2 ⊢ ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → 2 ∥ (2 · (♯‘𝐼))) |
7 | finsumvtxdgeven.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
8 | finsumvtxdgeven.i | . . 3 ⊢ 𝐼 = (iEdg‘𝐺) | |
9 | finsumvtxdgeven.d | . . 3 ⊢ 𝐷 = (VtxDeg‘𝐺) | |
10 | 7, 8, 9 | finsumvtxdg2size 27035 | . 2 ⊢ ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → Σ𝑣 ∈ 𝑉 (𝐷‘𝑣) = (2 · (♯‘𝐼))) |
11 | 6, 10 | breqtrrd 4957 | 1 ⊢ ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → 2 ∥ Σ𝑣 ∈ 𝑉 (𝐷‘𝑣)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1068 = wceq 1507 ∈ wcel 2050 class class class wbr 4929 ‘cfv 6188 (class class class)co 6976 Fincfn 8306 · cmul 10340 2c2 11495 ℕ0cn0 11707 ℤcz 11793 ♯chash 13505 Σcsu 14903 ∥ cdvds 15467 Vtxcvtx 26484 iEdgciedg 26485 UPGraphcupgr 26568 VtxDegcvtxdg 26950 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2750 ax-rep 5049 ax-sep 5060 ax-nul 5067 ax-pow 5119 ax-pr 5186 ax-un 7279 ax-inf2 8898 ax-cnex 10391 ax-resscn 10392 ax-1cn 10393 ax-icn 10394 ax-addcl 10395 ax-addrcl 10396 ax-mulcl 10397 ax-mulrcl 10398 ax-mulcom 10399 ax-addass 10400 ax-mulass 10401 ax-distr 10402 ax-i2m1 10403 ax-1ne0 10404 ax-1rid 10405 ax-rnegex 10406 ax-rrecex 10407 ax-cnre 10408 ax-pre-lttri 10409 ax-pre-lttrn 10410 ax-pre-ltadd 10411 ax-pre-mulgt0 10412 ax-pre-sup 10413 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-fal 1520 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2759 df-cleq 2771 df-clel 2846 df-nfc 2918 df-ne 2968 df-nel 3074 df-ral 3093 df-rex 3094 df-reu 3095 df-rmo 3096 df-rab 3097 df-v 3417 df-sbc 3682 df-csb 3787 df-dif 3832 df-un 3834 df-in 3836 df-ss 3843 df-pss 3845 df-nul 4179 df-if 4351 df-pw 4424 df-sn 4442 df-pr 4444 df-tp 4446 df-op 4448 df-uni 4713 df-int 4750 df-iun 4794 df-disj 4898 df-br 4930 df-opab 4992 df-mpt 5009 df-tr 5031 df-id 5312 df-eprel 5317 df-po 5326 df-so 5327 df-fr 5366 df-se 5367 df-we 5368 df-xp 5413 df-rel 5414 df-cnv 5415 df-co 5416 df-dm 5417 df-rn 5418 df-res 5419 df-ima 5420 df-pred 5986 df-ord 6032 df-on 6033 df-lim 6034 df-suc 6035 df-iota 6152 df-fun 6190 df-fn 6191 df-f 6192 df-f1 6193 df-fo 6194 df-f1o 6195 df-fv 6196 df-isom 6197 df-riota 6937 df-ov 6979 df-oprab 6980 df-mpo 6981 df-om 7397 df-1st 7501 df-2nd 7502 df-wrecs 7750 df-recs 7812 df-rdg 7850 df-1o 7905 df-2o 7906 df-oadd 7909 df-er 8089 df-en 8307 df-dom 8308 df-sdom 8309 df-fin 8310 df-sup 8701 df-oi 8769 df-dju 9124 df-card 9162 df-pnf 10476 df-mnf 10477 df-xr 10478 df-ltxr 10479 df-le 10480 df-sub 10672 df-neg 10673 df-div 11099 df-nn 11440 df-2 11503 df-3 11504 df-n0 11708 df-xnn0 11780 df-z 11794 df-uz 12059 df-rp 12205 df-xadd 12325 df-fz 12709 df-fzo 12850 df-seq 13185 df-exp 13245 df-hash 13506 df-cj 14319 df-re 14320 df-im 14321 df-sqrt 14455 df-abs 14456 df-clim 14706 df-sum 14904 df-dvds 15468 df-vtx 26486 df-iedg 26487 df-edg 26536 df-uhgr 26546 df-upgr 26570 df-vtxdg 26951 |
This theorem is referenced by: vtxdgoddnumeven 27038 |
Copyright terms: Public domain | W3C validator |