![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sqoddm1div8z | Structured version Visualization version GIF version |
Description: A squared odd number minus 1 divided by 8 is an integer. (Contributed by AV, 19-Jul-2021.) |
Ref | Expression |
---|---|
sqoddm1div8z | ⊢ ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → (((𝑁↑2) − 1) / 8) ∈ ℤ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | odd2np1 16343 | . . 3 ⊢ (𝑁 ∈ ℤ → (¬ 2 ∥ 𝑁 ↔ ∃𝑘 ∈ ℤ ((2 · 𝑘) + 1) = 𝑁)) | |
2 | 1 | biimpa 475 | . 2 ⊢ ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → ∃𝑘 ∈ ℤ ((2 · 𝑘) + 1) = 𝑁) |
3 | eqcom 2733 | . . . 4 ⊢ (((2 · 𝑘) + 1) = 𝑁 ↔ 𝑁 = ((2 · 𝑘) + 1)) | |
4 | sqoddm1div8 14260 | . . . . . . 7 ⊢ ((𝑘 ∈ ℤ ∧ 𝑁 = ((2 · 𝑘) + 1)) → (((𝑁↑2) − 1) / 8) = ((𝑘 · (𝑘 + 1)) / 2)) | |
5 | 4 | adantll 712 | . . . . . 6 ⊢ ((((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑘 ∈ ℤ) ∧ 𝑁 = ((2 · 𝑘) + 1)) → (((𝑁↑2) − 1) / 8) = ((𝑘 · (𝑘 + 1)) / 2)) |
6 | mulsucdiv2z 16355 | . . . . . . 7 ⊢ (𝑘 ∈ ℤ → ((𝑘 · (𝑘 + 1)) / 2) ∈ ℤ) | |
7 | 6 | ad2antlr 725 | . . . . . 6 ⊢ ((((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑘 ∈ ℤ) ∧ 𝑁 = ((2 · 𝑘) + 1)) → ((𝑘 · (𝑘 + 1)) / 2) ∈ ℤ) |
8 | 5, 7 | eqeltrd 2826 | . . . . 5 ⊢ ((((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑘 ∈ ℤ) ∧ 𝑁 = ((2 · 𝑘) + 1)) → (((𝑁↑2) − 1) / 8) ∈ ℤ) |
9 | 8 | ex 411 | . . . 4 ⊢ (((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑘 ∈ ℤ) → (𝑁 = ((2 · 𝑘) + 1) → (((𝑁↑2) − 1) / 8) ∈ ℤ)) |
10 | 3, 9 | biimtrid 241 | . . 3 ⊢ (((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑘 ∈ ℤ) → (((2 · 𝑘) + 1) = 𝑁 → (((𝑁↑2) − 1) / 8) ∈ ℤ)) |
11 | 10 | rexlimdva 3145 | . 2 ⊢ ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → (∃𝑘 ∈ ℤ ((2 · 𝑘) + 1) = 𝑁 → (((𝑁↑2) − 1) / 8) ∈ ℤ)) |
12 | 2, 11 | mpd 15 | 1 ⊢ ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → (((𝑁↑2) − 1) / 8) ∈ ℤ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 394 = wceq 1534 ∈ wcel 2099 ∃wrex 3060 class class class wbr 5153 (class class class)co 7424 1c1 11159 + caddc 11161 · cmul 11163 − cmin 11494 / cdiv 11921 2c2 12319 8c8 12325 ℤcz 12610 ↑cexp 14081 ∥ cdvds 16256 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11214 ax-resscn 11215 ax-1cn 11216 ax-icn 11217 ax-addcl 11218 ax-addrcl 11219 ax-mulcl 11220 ax-mulrcl 11221 ax-mulcom 11222 ax-addass 11223 ax-mulass 11224 ax-distr 11225 ax-i2m1 11226 ax-1ne0 11227 ax-1rid 11228 ax-rnegex 11229 ax-rrecex 11230 ax-cnre 11231 ax-pre-lttri 11232 ax-pre-lttrn 11233 ax-pre-ltadd 11234 ax-pre-mulgt0 11235 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-iun 5003 df-br 5154 df-opab 5216 df-mpt 5237 df-tr 5271 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6312 df-ord 6379 df-on 6380 df-lim 6381 df-suc 6382 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-fv 6562 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-om 7877 df-2nd 8004 df-frecs 8296 df-wrecs 8327 df-recs 8401 df-rdg 8440 df-er 8734 df-en 8975 df-dom 8976 df-sdom 8977 df-pnf 11300 df-mnf 11301 df-xr 11302 df-ltxr 11303 df-le 11304 df-sub 11496 df-neg 11497 df-div 11922 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-n0 12525 df-z 12611 df-uz 12875 df-seq 14022 df-exp 14082 df-dvds 16257 |
This theorem is referenced by: 2lgsoddprm 27445 |
Copyright terms: Public domain | W3C validator |