Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sqoddm1div8z | Structured version Visualization version GIF version |
Description: A squared odd number minus 1 divided by 8 is an integer. (Contributed by AV, 19-Jul-2021.) |
Ref | Expression |
---|---|
sqoddm1div8z | ⊢ ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → (((𝑁↑2) − 1) / 8) ∈ ℤ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | odd2np1 16050 | . . 3 ⊢ (𝑁 ∈ ℤ → (¬ 2 ∥ 𝑁 ↔ ∃𝑘 ∈ ℤ ((2 · 𝑘) + 1) = 𝑁)) | |
2 | 1 | biimpa 477 | . 2 ⊢ ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → ∃𝑘 ∈ ℤ ((2 · 𝑘) + 1) = 𝑁) |
3 | eqcom 2745 | . . . 4 ⊢ (((2 · 𝑘) + 1) = 𝑁 ↔ 𝑁 = ((2 · 𝑘) + 1)) | |
4 | sqoddm1div8 13958 | . . . . . . 7 ⊢ ((𝑘 ∈ ℤ ∧ 𝑁 = ((2 · 𝑘) + 1)) → (((𝑁↑2) − 1) / 8) = ((𝑘 · (𝑘 + 1)) / 2)) | |
5 | 4 | adantll 711 | . . . . . 6 ⊢ ((((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑘 ∈ ℤ) ∧ 𝑁 = ((2 · 𝑘) + 1)) → (((𝑁↑2) − 1) / 8) = ((𝑘 · (𝑘 + 1)) / 2)) |
6 | mulsucdiv2z 16062 | . . . . . . 7 ⊢ (𝑘 ∈ ℤ → ((𝑘 · (𝑘 + 1)) / 2) ∈ ℤ) | |
7 | 6 | ad2antlr 724 | . . . . . 6 ⊢ ((((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑘 ∈ ℤ) ∧ 𝑁 = ((2 · 𝑘) + 1)) → ((𝑘 · (𝑘 + 1)) / 2) ∈ ℤ) |
8 | 5, 7 | eqeltrd 2839 | . . . . 5 ⊢ ((((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑘 ∈ ℤ) ∧ 𝑁 = ((2 · 𝑘) + 1)) → (((𝑁↑2) − 1) / 8) ∈ ℤ) |
9 | 8 | ex 413 | . . . 4 ⊢ (((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑘 ∈ ℤ) → (𝑁 = ((2 · 𝑘) + 1) → (((𝑁↑2) − 1) / 8) ∈ ℤ)) |
10 | 3, 9 | syl5bi 241 | . . 3 ⊢ (((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑘 ∈ ℤ) → (((2 · 𝑘) + 1) = 𝑁 → (((𝑁↑2) − 1) / 8) ∈ ℤ)) |
11 | 10 | rexlimdva 3213 | . 2 ⊢ ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → (∃𝑘 ∈ ℤ ((2 · 𝑘) + 1) = 𝑁 → (((𝑁↑2) − 1) / 8) ∈ ℤ)) |
12 | 2, 11 | mpd 15 | 1 ⊢ ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → (((𝑁↑2) − 1) / 8) ∈ ℤ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∃wrex 3065 class class class wbr 5074 (class class class)co 7275 1c1 10872 + caddc 10874 · cmul 10876 − cmin 11205 / cdiv 11632 2c2 12028 8c8 12034 ℤcz 12319 ↑cexp 13782 ∥ cdvds 15963 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-n0 12234 df-z 12320 df-uz 12583 df-seq 13722 df-exp 13783 df-dvds 15964 |
This theorem is referenced by: 2lgsoddprm 26564 |
Copyright terms: Public domain | W3C validator |