![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hashgval2 | Structured version Visualization version GIF version |
Description: A short expression for the 𝐺 function of hashgf1o 13960. (Contributed by Mario Carneiro, 24-Jan-2015.) |
Ref | Expression |
---|---|
hashgval2 | ⊢ (♯ ↾ ω) = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hashresfn 14323 | . . 3 ⊢ (♯ ↾ ω) Fn ω | |
2 | frfnom 8449 | . . 3 ⊢ (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) Fn ω | |
3 | eqfnfv 7034 | . . 3 ⊢ (((♯ ↾ ω) Fn ω ∧ (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) Fn ω) → ((♯ ↾ ω) = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ↔ ∀𝑦 ∈ ω ((♯ ↾ ω)‘𝑦) = ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘𝑦))) | |
4 | 1, 2, 3 | mp2an 691 | . 2 ⊢ ((♯ ↾ ω) = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ↔ ∀𝑦 ∈ ω ((♯ ↾ ω)‘𝑦) = ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘𝑦)) |
5 | fvres 6910 | . . 3 ⊢ (𝑦 ∈ ω → ((♯ ↾ ω)‘𝑦) = (♯‘𝑦)) | |
6 | nnfi 9183 | . . . 4 ⊢ (𝑦 ∈ ω → 𝑦 ∈ Fin) | |
7 | eqid 2727 | . . . . 5 ⊢ (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) | |
8 | 7 | hashgval 14316 | . . . 4 ⊢ (𝑦 ∈ Fin → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝑦)) = (♯‘𝑦)) |
9 | 6, 8 | syl 17 | . . 3 ⊢ (𝑦 ∈ ω → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝑦)) = (♯‘𝑦)) |
10 | cardnn 9978 | . . . 4 ⊢ (𝑦 ∈ ω → (card‘𝑦) = 𝑦) | |
11 | 10 | fveq2d 6895 | . . 3 ⊢ (𝑦 ∈ ω → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝑦)) = ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘𝑦)) |
12 | 5, 9, 11 | 3eqtr2d 2773 | . 2 ⊢ (𝑦 ∈ ω → ((♯ ↾ ω)‘𝑦) = ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘𝑦)) |
13 | 4, 12 | mprgbir 3063 | 1 ⊢ (♯ ↾ ω) = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1534 ∈ wcel 2099 ∀wral 3056 Vcvv 3469 ↦ cmpt 5225 ↾ cres 5674 Fn wfn 6537 ‘cfv 6542 (class class class)co 7414 ωcom 7864 reccrdg 8423 Fincfn 8955 cardccrd 9950 0cc0 11130 1c1 11131 + caddc 11133 ♯chash 14313 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11186 ax-resscn 11187 ax-1cn 11188 ax-icn 11189 ax-addcl 11190 ax-addrcl 11191 ax-mulcl 11192 ax-mulrcl 11193 ax-mulcom 11194 ax-addass 11195 ax-mulass 11196 ax-distr 11197 ax-i2m1 11198 ax-1ne0 11199 ax-1rid 11200 ax-rnegex 11201 ax-rrecex 11202 ax-cnre 11203 ax-pre-lttri 11204 ax-pre-lttrn 11205 ax-pre-ltadd 11206 ax-pre-mulgt0 11207 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7865 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8718 df-en 8956 df-dom 8957 df-sdom 8958 df-fin 8959 df-card 9954 df-pnf 11272 df-mnf 11273 df-xr 11274 df-ltxr 11275 df-le 11276 df-sub 11468 df-neg 11469 df-nn 12235 df-n0 12495 df-xnn0 12567 df-z 12581 df-uz 12845 df-hash 14314 |
This theorem is referenced by: ackbijnn 15798 ltbwe 21969 |
Copyright terms: Public domain | W3C validator |