Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemk50 Structured version   Visualization version   GIF version

Theorem cdlemk50 40362
Description: Part of proof of Lemma K of [Crawley] p. 118. Line 6, p. 120. 𝐺, 𝐼 stand for g, h. 𝑋 represents tau. TODO: Combine into cdlemk52 40364? (Contributed by NM, 23-Jul-2013.)
Hypotheses
Ref Expression
cdlemk5.b 𝐵 = (Base‘𝐾)
cdlemk5.l = (le‘𝐾)
cdlemk5.j = (join‘𝐾)
cdlemk5.m = (meet‘𝐾)
cdlemk5.a 𝐴 = (Atoms‘𝐾)
cdlemk5.h 𝐻 = (LHyp‘𝐾)
cdlemk5.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemk5.r 𝑅 = ((trL‘𝐾)‘𝑊)
cdlemk5.z 𝑍 = ((𝑃 (𝑅𝑏)) ((𝑁𝑃) (𝑅‘(𝑏𝐹))))
cdlemk5.y 𝑌 = ((𝑃 (𝑅𝑔)) (𝑍 (𝑅‘(𝑔𝑏))))
cdlemk5.x 𝑋 = (𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝑔)) → (𝑧𝑃) = 𝑌))
Assertion
Ref Expression
cdlemk50 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵))) → ((𝐺 / 𝑔𝑋𝐼 / 𝑔𝑋)‘𝑃) (((𝐺 / 𝑔𝑋𝑃) (𝑅𝐼 / 𝑔𝑋)) ((𝐼 / 𝑔𝑋𝑃) (𝑅𝐺 / 𝑔𝑋))))
Distinct variable groups:   ,𝑔   ,𝑔   𝐵,𝑔   𝑃,𝑔   𝑅,𝑔   𝑇,𝑔   𝑔,𝑍   𝑔,𝑏,𝐺,𝑧   ,𝑏,𝑧   ,𝑏   𝑧,𝑔,   ,𝑏,𝑧   𝐴,𝑏,𝑔,𝑧   𝐵,𝑏,𝑧   𝐹,𝑏,𝑔,𝑧   𝑧,𝐺   𝐻,𝑏,𝑔,𝑧   𝐾,𝑏,𝑔,𝑧   𝑁,𝑏,𝑔,𝑧   𝑃,𝑏,𝑧   𝑅,𝑏,𝑧   𝑇,𝑏,𝑧   𝑊,𝑏,𝑔,𝑧   𝑧,𝑌   𝐺,𝑏   𝐼,𝑏,𝑔,𝑧
Allowed substitution hints:   𝑋(𝑧,𝑔,𝑏)   𝑌(𝑔,𝑏)   𝑍(𝑧,𝑏)

Proof of Theorem cdlemk50
StepHypRef Expression
1 cdlemk5.b . . 3 𝐵 = (Base‘𝐾)
2 cdlemk5.l . . 3 = (le‘𝐾)
3 cdlemk5.j . . 3 = (join‘𝐾)
4 cdlemk5.m . . 3 = (meet‘𝐾)
5 cdlemk5.a . . 3 𝐴 = (Atoms‘𝐾)
6 cdlemk5.h . . 3 𝐻 = (LHyp‘𝐾)
7 cdlemk5.t . . 3 𝑇 = ((LTrn‘𝐾)‘𝑊)
8 cdlemk5.r . . 3 𝑅 = ((trL‘𝐾)‘𝑊)
9 cdlemk5.z . . 3 𝑍 = ((𝑃 (𝑅𝑏)) ((𝑁𝑃) (𝑅‘(𝑏𝐹))))
10 cdlemk5.y . . 3 𝑌 = ((𝑃 (𝑅𝑔)) (𝑍 (𝑅‘(𝑔𝑏))))
11 cdlemk5.x . . 3 𝑋 = (𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝑔)) → (𝑧𝑃) = 𝑌))
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11cdlemk49 40361 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵))) → ((𝐺 / 𝑔𝑋𝐼 / 𝑔𝑋)‘𝑃) ((𝐺 / 𝑔𝑋𝑃) (𝑅𝐼 / 𝑔𝑋)))
131, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11cdlemk48 40360 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵))) → ((𝐺 / 𝑔𝑋𝐼 / 𝑔𝑋)‘𝑃) ((𝐼 / 𝑔𝑋𝑃) (𝑅𝐺 / 𝑔𝑋)))
14 simp11l 1282 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵))) → 𝐾 ∈ HL)
1514hllatd 38773 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵))) → 𝐾 ∈ Lat)
16 simp11 1201 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
17 simp12 1202 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵))) → (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)))
18 simp13 1203 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵))) → (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)))
19 simp21 1204 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵))) → 𝑁𝑇)
20 simp22 1205 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵))) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
21 simp23 1206 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵))) → (𝑅𝐹) = (𝑅𝑁))
221, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11cdlemk35s 40347 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) → 𝐺 / 𝑔𝑋𝑇)
2316, 17, 18, 19, 20, 21, 22syl132anc 1386 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵))) → 𝐺 / 𝑔𝑋𝑇)
24 simp3 1136 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵))) → (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵)))
251, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11cdlemk35s 40347 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵)) ∧ 𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) → 𝐼 / 𝑔𝑋𝑇)
2616, 17, 24, 19, 20, 21, 25syl132anc 1386 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵))) → 𝐼 / 𝑔𝑋𝑇)
276, 7ltrnco 40129 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺 / 𝑔𝑋𝑇𝐼 / 𝑔𝑋𝑇) → (𝐺 / 𝑔𝑋𝐼 / 𝑔𝑋) ∈ 𝑇)
2816, 23, 26, 27syl3anc 1369 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵))) → (𝐺 / 𝑔𝑋𝐼 / 𝑔𝑋) ∈ 𝑇)
29 simp22l 1290 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵))) → 𝑃𝐴)
302, 5, 6, 7ltrnat 39550 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐺 / 𝑔𝑋𝐼 / 𝑔𝑋) ∈ 𝑇𝑃𝐴) → ((𝐺 / 𝑔𝑋𝐼 / 𝑔𝑋)‘𝑃) ∈ 𝐴)
3116, 28, 29, 30syl3anc 1369 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵))) → ((𝐺 / 𝑔𝑋𝐼 / 𝑔𝑋)‘𝑃) ∈ 𝐴)
321, 5atbase 38698 . . . 4 (((𝐺 / 𝑔𝑋𝐼 / 𝑔𝑋)‘𝑃) ∈ 𝐴 → ((𝐺 / 𝑔𝑋𝐼 / 𝑔𝑋)‘𝑃) ∈ 𝐵)
3331, 32syl 17 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵))) → ((𝐺 / 𝑔𝑋𝐼 / 𝑔𝑋)‘𝑃) ∈ 𝐵)
342, 5, 6, 7ltrnat 39550 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺 / 𝑔𝑋𝑇𝑃𝐴) → (𝐺 / 𝑔𝑋𝑃) ∈ 𝐴)
3516, 23, 29, 34syl3anc 1369 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵))) → (𝐺 / 𝑔𝑋𝑃) ∈ 𝐴)
361, 5atbase 38698 . . . . 5 ((𝐺 / 𝑔𝑋𝑃) ∈ 𝐴 → (𝐺 / 𝑔𝑋𝑃) ∈ 𝐵)
3735, 36syl 17 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵))) → (𝐺 / 𝑔𝑋𝑃) ∈ 𝐵)
381, 6, 7, 8trlcl 39574 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐼 / 𝑔𝑋𝑇) → (𝑅𝐼 / 𝑔𝑋) ∈ 𝐵)
3916, 26, 38syl2anc 583 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵))) → (𝑅𝐼 / 𝑔𝑋) ∈ 𝐵)
401, 3latjcl 18422 . . . 4 ((𝐾 ∈ Lat ∧ (𝐺 / 𝑔𝑋𝑃) ∈ 𝐵 ∧ (𝑅𝐼 / 𝑔𝑋) ∈ 𝐵) → ((𝐺 / 𝑔𝑋𝑃) (𝑅𝐼 / 𝑔𝑋)) ∈ 𝐵)
4115, 37, 39, 40syl3anc 1369 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵))) → ((𝐺 / 𝑔𝑋𝑃) (𝑅𝐼 / 𝑔𝑋)) ∈ 𝐵)
422, 5, 6, 7ltrnat 39550 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐼 / 𝑔𝑋𝑇𝑃𝐴) → (𝐼 / 𝑔𝑋𝑃) ∈ 𝐴)
4316, 26, 29, 42syl3anc 1369 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵))) → (𝐼 / 𝑔𝑋𝑃) ∈ 𝐴)
441, 5atbase 38698 . . . . 5 ((𝐼 / 𝑔𝑋𝑃) ∈ 𝐴 → (𝐼 / 𝑔𝑋𝑃) ∈ 𝐵)
4543, 44syl 17 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵))) → (𝐼 / 𝑔𝑋𝑃) ∈ 𝐵)
461, 6, 7, 8trlcl 39574 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺 / 𝑔𝑋𝑇) → (𝑅𝐺 / 𝑔𝑋) ∈ 𝐵)
4716, 23, 46syl2anc 583 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵))) → (𝑅𝐺 / 𝑔𝑋) ∈ 𝐵)
481, 3latjcl 18422 . . . 4 ((𝐾 ∈ Lat ∧ (𝐼 / 𝑔𝑋𝑃) ∈ 𝐵 ∧ (𝑅𝐺 / 𝑔𝑋) ∈ 𝐵) → ((𝐼 / 𝑔𝑋𝑃) (𝑅𝐺 / 𝑔𝑋)) ∈ 𝐵)
4915, 45, 47, 48syl3anc 1369 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵))) → ((𝐼 / 𝑔𝑋𝑃) (𝑅𝐺 / 𝑔𝑋)) ∈ 𝐵)
501, 2, 4latlem12 18449 . . 3 ((𝐾 ∈ Lat ∧ (((𝐺 / 𝑔𝑋𝐼 / 𝑔𝑋)‘𝑃) ∈ 𝐵 ∧ ((𝐺 / 𝑔𝑋𝑃) (𝑅𝐼 / 𝑔𝑋)) ∈ 𝐵 ∧ ((𝐼 / 𝑔𝑋𝑃) (𝑅𝐺 / 𝑔𝑋)) ∈ 𝐵)) → ((((𝐺 / 𝑔𝑋𝐼 / 𝑔𝑋)‘𝑃) ((𝐺 / 𝑔𝑋𝑃) (𝑅𝐼 / 𝑔𝑋)) ∧ ((𝐺 / 𝑔𝑋𝐼 / 𝑔𝑋)‘𝑃) ((𝐼 / 𝑔𝑋𝑃) (𝑅𝐺 / 𝑔𝑋))) ↔ ((𝐺 / 𝑔𝑋𝐼 / 𝑔𝑋)‘𝑃) (((𝐺 / 𝑔𝑋𝑃) (𝑅𝐼 / 𝑔𝑋)) ((𝐼 / 𝑔𝑋𝑃) (𝑅𝐺 / 𝑔𝑋)))))
5115, 33, 41, 49, 50syl13anc 1370 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵))) → ((((𝐺 / 𝑔𝑋𝐼 / 𝑔𝑋)‘𝑃) ((𝐺 / 𝑔𝑋𝑃) (𝑅𝐼 / 𝑔𝑋)) ∧ ((𝐺 / 𝑔𝑋𝐼 / 𝑔𝑋)‘𝑃) ((𝐼 / 𝑔𝑋𝑃) (𝑅𝐺 / 𝑔𝑋))) ↔ ((𝐺 / 𝑔𝑋𝐼 / 𝑔𝑋)‘𝑃) (((𝐺 / 𝑔𝑋𝑃) (𝑅𝐼 / 𝑔𝑋)) ((𝐼 / 𝑔𝑋𝑃) (𝑅𝐺 / 𝑔𝑋)))))
5212, 13, 51mpbi2and 711 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵))) → ((𝐺 / 𝑔𝑋𝐼 / 𝑔𝑋)‘𝑃) (((𝐺 / 𝑔𝑋𝑃) (𝑅𝐼 / 𝑔𝑋)) ((𝐼 / 𝑔𝑋𝑃) (𝑅𝐺 / 𝑔𝑋))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085   = wceq 1534  wcel 2099  wne 2935  wral 3056  csb 3889   class class class wbr 5142   I cid 5569  ccnv 5671  cres 5674  ccom 5676  cfv 6542  crio 7369  (class class class)co 7414  Basecbs 17171  lecple 17231  joincjn 18294  meetcmee 18295  Latclat 18414  Atomscatm 38672  HLchlt 38759  LHypclh 39394  LTrncltrn 39511  trLctrl 39568
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-riotaBAD 38362
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-iin 4994  df-br 5143  df-opab 5205  df-mpt 5226  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-1st 7987  df-2nd 7988  df-undef 8272  df-map 8838  df-proset 18278  df-poset 18296  df-plt 18313  df-lub 18329  df-glb 18330  df-join 18331  df-meet 18332  df-p0 18408  df-p1 18409  df-lat 18415  df-clat 18482  df-oposet 38585  df-ol 38587  df-oml 38588  df-covers 38675  df-ats 38676  df-atl 38707  df-cvlat 38731  df-hlat 38760  df-llines 38908  df-lplanes 38909  df-lvols 38910  df-lines 38911  df-psubsp 38913  df-pmap 38914  df-padd 39206  df-lhyp 39398  df-laut 39399  df-ldil 39514  df-ltrn 39515  df-trl 39569
This theorem is referenced by:  cdlemk52  40364
  Copyright terms: Public domain W3C validator