Proof of Theorem cdlemk50
Step | Hyp | Ref
| Expression |
1 | | cdlemk5.b |
. . 3
⊢ 𝐵 = (Base‘𝐾) |
2 | | cdlemk5.l |
. . 3
⊢ ≤ =
(le‘𝐾) |
3 | | cdlemk5.j |
. . 3
⊢ ∨ =
(join‘𝐾) |
4 | | cdlemk5.m |
. . 3
⊢ ∧ =
(meet‘𝐾) |
5 | | cdlemk5.a |
. . 3
⊢ 𝐴 = (Atoms‘𝐾) |
6 | | cdlemk5.h |
. . 3
⊢ 𝐻 = (LHyp‘𝐾) |
7 | | cdlemk5.t |
. . 3
⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
8 | | cdlemk5.r |
. . 3
⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
9 | | cdlemk5.z |
. . 3
⊢ 𝑍 = ((𝑃 ∨ (𝑅‘𝑏)) ∧ ((𝑁‘𝑃) ∨ (𝑅‘(𝑏 ∘ ◡𝐹)))) |
10 | | cdlemk5.y |
. . 3
⊢ 𝑌 = ((𝑃 ∨ (𝑅‘𝑔)) ∧ (𝑍 ∨ (𝑅‘(𝑔 ∘ ◡𝑏)))) |
11 | | cdlemk5.x |
. . 3
⊢ 𝑋 = (℩𝑧 ∈ 𝑇 ∀𝑏 ∈ 𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝑔)) → (𝑧‘𝑃) = 𝑌)) |
12 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11 | cdlemk49 38892 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵))) → ((⦋𝐺 / 𝑔⦌𝑋 ∘ ⦋𝐼 / 𝑔⦌𝑋)‘𝑃) ≤ ((⦋𝐺 / 𝑔⦌𝑋‘𝑃) ∨ (𝑅‘⦋𝐼 / 𝑔⦌𝑋))) |
13 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11 | cdlemk48 38891 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵))) → ((⦋𝐺 / 𝑔⦌𝑋 ∘ ⦋𝐼 / 𝑔⦌𝑋)‘𝑃) ≤ ((⦋𝐼 / 𝑔⦌𝑋‘𝑃) ∨ (𝑅‘⦋𝐺 / 𝑔⦌𝑋))) |
14 | | simp11l 1282 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵))) → 𝐾 ∈ HL) |
15 | 14 | hllatd 37305 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵))) → 𝐾 ∈ Lat) |
16 | | simp11 1201 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
17 | | simp12 1202 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵))) → (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵))) |
18 | | simp13 1203 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵))) → (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵))) |
19 | | simp21 1204 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵))) → 𝑁 ∈ 𝑇) |
20 | | simp22 1205 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵))) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) |
21 | | simp23 1206 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵))) → (𝑅‘𝐹) = (𝑅‘𝑁)) |
22 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11 | cdlemk35s 38878 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁))) → ⦋𝐺 / 𝑔⦌𝑋 ∈ 𝑇) |
23 | 16, 17, 18, 19, 20, 21, 22 | syl132anc 1386 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵))) → ⦋𝐺 / 𝑔⦌𝑋 ∈ 𝑇) |
24 | | simp3 1136 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵))) → (𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵))) |
25 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11 | cdlemk35s 38878 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵)) ∧ 𝑁 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁))) → ⦋𝐼 / 𝑔⦌𝑋 ∈ 𝑇) |
26 | 16, 17, 24, 19, 20, 21, 25 | syl132anc 1386 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵))) → ⦋𝐼 / 𝑔⦌𝑋 ∈ 𝑇) |
27 | 6, 7 | ltrnco 38660 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ⦋𝐺 / 𝑔⦌𝑋 ∈ 𝑇 ∧ ⦋𝐼 / 𝑔⦌𝑋 ∈ 𝑇) → (⦋𝐺 / 𝑔⦌𝑋 ∘ ⦋𝐼 / 𝑔⦌𝑋) ∈ 𝑇) |
28 | 16, 23, 26, 27 | syl3anc 1369 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵))) → (⦋𝐺 / 𝑔⦌𝑋 ∘ ⦋𝐼 / 𝑔⦌𝑋) ∈ 𝑇) |
29 | | simp22l 1290 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵))) → 𝑃 ∈ 𝐴) |
30 | 2, 5, 6, 7 | ltrnat 38081 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (⦋𝐺 / 𝑔⦌𝑋 ∘ ⦋𝐼 / 𝑔⦌𝑋) ∈ 𝑇 ∧ 𝑃 ∈ 𝐴) → ((⦋𝐺 / 𝑔⦌𝑋 ∘ ⦋𝐼 / 𝑔⦌𝑋)‘𝑃) ∈ 𝐴) |
31 | 16, 28, 29, 30 | syl3anc 1369 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵))) → ((⦋𝐺 / 𝑔⦌𝑋 ∘ ⦋𝐼 / 𝑔⦌𝑋)‘𝑃) ∈ 𝐴) |
32 | 1, 5 | atbase 37230 |
. . . 4
⊢
(((⦋𝐺
/ 𝑔⦌𝑋 ∘ ⦋𝐼 / 𝑔⦌𝑋)‘𝑃) ∈ 𝐴 → ((⦋𝐺 / 𝑔⦌𝑋 ∘ ⦋𝐼 / 𝑔⦌𝑋)‘𝑃) ∈ 𝐵) |
33 | 31, 32 | syl 17 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵))) → ((⦋𝐺 / 𝑔⦌𝑋 ∘ ⦋𝐼 / 𝑔⦌𝑋)‘𝑃) ∈ 𝐵) |
34 | 2, 5, 6, 7 | ltrnat 38081 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ⦋𝐺 / 𝑔⦌𝑋 ∈ 𝑇 ∧ 𝑃 ∈ 𝐴) → (⦋𝐺 / 𝑔⦌𝑋‘𝑃) ∈ 𝐴) |
35 | 16, 23, 29, 34 | syl3anc 1369 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵))) → (⦋𝐺 / 𝑔⦌𝑋‘𝑃) ∈ 𝐴) |
36 | 1, 5 | atbase 37230 |
. . . . 5
⊢
((⦋𝐺 /
𝑔⦌𝑋‘𝑃) ∈ 𝐴 → (⦋𝐺 / 𝑔⦌𝑋‘𝑃) ∈ 𝐵) |
37 | 35, 36 | syl 17 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵))) → (⦋𝐺 / 𝑔⦌𝑋‘𝑃) ∈ 𝐵) |
38 | 1, 6, 7, 8 | trlcl 38105 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ⦋𝐼 / 𝑔⦌𝑋 ∈ 𝑇) → (𝑅‘⦋𝐼 / 𝑔⦌𝑋) ∈ 𝐵) |
39 | 16, 26, 38 | syl2anc 583 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵))) → (𝑅‘⦋𝐼 / 𝑔⦌𝑋) ∈ 𝐵) |
40 | 1, 3 | latjcl 18072 |
. . . 4
⊢ ((𝐾 ∈ Lat ∧
(⦋𝐺 / 𝑔⦌𝑋‘𝑃) ∈ 𝐵 ∧ (𝑅‘⦋𝐼 / 𝑔⦌𝑋) ∈ 𝐵) → ((⦋𝐺 / 𝑔⦌𝑋‘𝑃) ∨ (𝑅‘⦋𝐼 / 𝑔⦌𝑋)) ∈ 𝐵) |
41 | 15, 37, 39, 40 | syl3anc 1369 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵))) → ((⦋𝐺 / 𝑔⦌𝑋‘𝑃) ∨ (𝑅‘⦋𝐼 / 𝑔⦌𝑋)) ∈ 𝐵) |
42 | 2, 5, 6, 7 | ltrnat 38081 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ⦋𝐼 / 𝑔⦌𝑋 ∈ 𝑇 ∧ 𝑃 ∈ 𝐴) → (⦋𝐼 / 𝑔⦌𝑋‘𝑃) ∈ 𝐴) |
43 | 16, 26, 29, 42 | syl3anc 1369 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵))) → (⦋𝐼 / 𝑔⦌𝑋‘𝑃) ∈ 𝐴) |
44 | 1, 5 | atbase 37230 |
. . . . 5
⊢
((⦋𝐼 /
𝑔⦌𝑋‘𝑃) ∈ 𝐴 → (⦋𝐼 / 𝑔⦌𝑋‘𝑃) ∈ 𝐵) |
45 | 43, 44 | syl 17 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵))) → (⦋𝐼 / 𝑔⦌𝑋‘𝑃) ∈ 𝐵) |
46 | 1, 6, 7, 8 | trlcl 38105 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ⦋𝐺 / 𝑔⦌𝑋 ∈ 𝑇) → (𝑅‘⦋𝐺 / 𝑔⦌𝑋) ∈ 𝐵) |
47 | 16, 23, 46 | syl2anc 583 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵))) → (𝑅‘⦋𝐺 / 𝑔⦌𝑋) ∈ 𝐵) |
48 | 1, 3 | latjcl 18072 |
. . . 4
⊢ ((𝐾 ∈ Lat ∧
(⦋𝐼 / 𝑔⦌𝑋‘𝑃) ∈ 𝐵 ∧ (𝑅‘⦋𝐺 / 𝑔⦌𝑋) ∈ 𝐵) → ((⦋𝐼 / 𝑔⦌𝑋‘𝑃) ∨ (𝑅‘⦋𝐺 / 𝑔⦌𝑋)) ∈ 𝐵) |
49 | 15, 45, 47, 48 | syl3anc 1369 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵))) → ((⦋𝐼 / 𝑔⦌𝑋‘𝑃) ∨ (𝑅‘⦋𝐺 / 𝑔⦌𝑋)) ∈ 𝐵) |
50 | 1, 2, 4 | latlem12 18099 |
. . 3
⊢ ((𝐾 ∈ Lat ∧
(((⦋𝐺 / 𝑔⦌𝑋 ∘ ⦋𝐼 / 𝑔⦌𝑋)‘𝑃) ∈ 𝐵 ∧ ((⦋𝐺 / 𝑔⦌𝑋‘𝑃) ∨ (𝑅‘⦋𝐼 / 𝑔⦌𝑋)) ∈ 𝐵 ∧ ((⦋𝐼 / 𝑔⦌𝑋‘𝑃) ∨ (𝑅‘⦋𝐺 / 𝑔⦌𝑋)) ∈ 𝐵)) → ((((⦋𝐺 / 𝑔⦌𝑋 ∘ ⦋𝐼 / 𝑔⦌𝑋)‘𝑃) ≤ ((⦋𝐺 / 𝑔⦌𝑋‘𝑃) ∨ (𝑅‘⦋𝐼 / 𝑔⦌𝑋)) ∧ ((⦋𝐺 / 𝑔⦌𝑋 ∘ ⦋𝐼 / 𝑔⦌𝑋)‘𝑃) ≤ ((⦋𝐼 / 𝑔⦌𝑋‘𝑃) ∨ (𝑅‘⦋𝐺 / 𝑔⦌𝑋))) ↔ ((⦋𝐺 / 𝑔⦌𝑋 ∘ ⦋𝐼 / 𝑔⦌𝑋)‘𝑃) ≤ (((⦋𝐺 / 𝑔⦌𝑋‘𝑃) ∨ (𝑅‘⦋𝐼 / 𝑔⦌𝑋)) ∧ ((⦋𝐼 / 𝑔⦌𝑋‘𝑃) ∨ (𝑅‘⦋𝐺 / 𝑔⦌𝑋))))) |
51 | 15, 33, 41, 49, 50 | syl13anc 1370 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵))) → ((((⦋𝐺 / 𝑔⦌𝑋 ∘ ⦋𝐼 / 𝑔⦌𝑋)‘𝑃) ≤ ((⦋𝐺 / 𝑔⦌𝑋‘𝑃) ∨ (𝑅‘⦋𝐼 / 𝑔⦌𝑋)) ∧ ((⦋𝐺 / 𝑔⦌𝑋 ∘ ⦋𝐼 / 𝑔⦌𝑋)‘𝑃) ≤ ((⦋𝐼 / 𝑔⦌𝑋‘𝑃) ∨ (𝑅‘⦋𝐺 / 𝑔⦌𝑋))) ↔ ((⦋𝐺 / 𝑔⦌𝑋 ∘ ⦋𝐼 / 𝑔⦌𝑋)‘𝑃) ≤ (((⦋𝐺 / 𝑔⦌𝑋‘𝑃) ∨ (𝑅‘⦋𝐼 / 𝑔⦌𝑋)) ∧ ((⦋𝐼 / 𝑔⦌𝑋‘𝑃) ∨ (𝑅‘⦋𝐺 / 𝑔⦌𝑋))))) |
52 | 12, 13, 51 | mpbi2and 708 |
1
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵))) → ((⦋𝐺 / 𝑔⦌𝑋 ∘ ⦋𝐼 / 𝑔⦌𝑋)‘𝑃) ≤ (((⦋𝐺 / 𝑔⦌𝑋‘𝑃) ∨ (𝑅‘⦋𝐼 / 𝑔⦌𝑋)) ∧ ((⦋𝐼 / 𝑔⦌𝑋‘𝑃) ∨ (𝑅‘⦋𝐺 / 𝑔⦌𝑋)))) |