MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3decltc Structured version   Visualization version   GIF version

Theorem 3decltc 12689
Description: Comparing two decimal integers with three "digits" (unequal higher places). (Contributed by AV, 15-Jun-2021.) (Revised by AV, 6-Sep-2021.)
Hypotheses
Ref Expression
3decltc.a 𝐴 ∈ ℕ0
3decltc.b 𝐵 ∈ ℕ0
3decltc.c 𝐶 ∈ ℕ0
3decltc.d 𝐷 ∈ ℕ0
3decltc.e 𝐸 ∈ ℕ0
3decltc.f 𝐹 ∈ ℕ0
3decltc.3 𝐴 < 𝐵
3decltc.1 𝐶 < 10
3decltc.2 𝐸 < 10
Assertion
Ref Expression
3decltc 𝐴𝐶𝐸 < 𝐵𝐷𝐹

Proof of Theorem 3decltc
StepHypRef Expression
1 3decltc.a . . 3 𝐴 ∈ ℕ0
2 3decltc.c . . 3 𝐶 ∈ ℕ0
31, 2deccl 12671 . 2 𝐴𝐶 ∈ ℕ0
4 3decltc.b . . 3 𝐵 ∈ ℕ0
5 3decltc.d . . 3 𝐷 ∈ ℕ0
64, 5deccl 12671 . 2 𝐵𝐷 ∈ ℕ0
7 3decltc.e . 2 𝐸 ∈ ℕ0
8 3decltc.f . 2 𝐹 ∈ ℕ0
9 3decltc.2 . 2 𝐸 < 10
10 3decltc.1 . . 3 𝐶 < 10
11 3decltc.3 . . 3 𝐴 < 𝐵
121, 4, 2, 5, 10, 11decltc 12685 . 2 𝐴𝐶 < 𝐵𝐷
133, 6, 7, 8, 9, 12decltc 12685 1 𝐴𝐶𝐸 < 𝐵𝐷𝐹
Colors of variables: wff setvar class
Syntax hints:  wcel 2109   class class class wbr 5110  0cc0 11075  1c1 11076   < clt 11215  0cn0 12449  cdc 12656
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657
This theorem is referenced by:  139prm  17101  163prm  17102  317prm  17103  631prm  17104  log2le1  26867  dpmul4  32841  lcmineqlem  42047  257prm  47566  139prmALT  47601  127prm  47604
  Copyright terms: Public domain W3C validator