![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dihjatcclem2 | Structured version Visualization version GIF version |
Description: Lemma for isomorphism H of lattice join of two atoms not under the fiducial hyperplane. (Contributed by NM, 26-Sep-2014.) |
Ref | Expression |
---|---|
dihjatcclem.b | β’ π΅ = (BaseβπΎ) |
dihjatcclem.l | β’ β€ = (leβπΎ) |
dihjatcclem.h | β’ π» = (LHypβπΎ) |
dihjatcclem.j | β’ β¨ = (joinβπΎ) |
dihjatcclem.m | β’ β§ = (meetβπΎ) |
dihjatcclem.a | β’ π΄ = (AtomsβπΎ) |
dihjatcclem.u | β’ π = ((DVecHβπΎ)βπ) |
dihjatcclem.s | β’ β = (LSSumβπ) |
dihjatcclem.i | β’ πΌ = ((DIsoHβπΎ)βπ) |
dihjatcclem.v | β’ π = ((π β¨ π) β§ π) |
dihjatcclem.k | β’ (π β (πΎ β HL β§ π β π»)) |
dihjatcclem.p | β’ (π β (π β π΄ β§ Β¬ π β€ π)) |
dihjatcclem.q | β’ (π β (π β π΄ β§ Β¬ π β€ π)) |
dihjatcclem2.c | β’ (π β (πΌβπ) β ((πΌβπ) β (πΌβπ))) |
Ref | Expression |
---|---|
dihjatcclem2 | β’ (π β (πΌβ(π β¨ π)) = ((πΌβπ) β (πΌβπ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dihjatcclem.b | . . 3 β’ π΅ = (BaseβπΎ) | |
2 | dihjatcclem.l | . . 3 β’ β€ = (leβπΎ) | |
3 | dihjatcclem.h | . . 3 β’ π» = (LHypβπΎ) | |
4 | dihjatcclem.j | . . 3 β’ β¨ = (joinβπΎ) | |
5 | dihjatcclem.m | . . 3 β’ β§ = (meetβπΎ) | |
6 | dihjatcclem.a | . . 3 β’ π΄ = (AtomsβπΎ) | |
7 | dihjatcclem.u | . . 3 β’ π = ((DVecHβπΎ)βπ) | |
8 | dihjatcclem.s | . . 3 β’ β = (LSSumβπ) | |
9 | dihjatcclem.i | . . 3 β’ πΌ = ((DIsoHβπΎ)βπ) | |
10 | dihjatcclem.v | . . 3 β’ π = ((π β¨ π) β§ π) | |
11 | dihjatcclem.k | . . 3 β’ (π β (πΎ β HL β§ π β π»)) | |
12 | dihjatcclem.p | . . 3 β’ (π β (π β π΄ β§ Β¬ π β€ π)) | |
13 | dihjatcclem.q | . . 3 β’ (π β (π β π΄ β§ Β¬ π β€ π)) | |
14 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 | dihjatcclem1 40593 | . 2 β’ (π β (πΌβ(π β¨ π)) = (((πΌβπ) β (πΌβπ)) β (πΌβπ))) |
15 | 3, 7, 11 | dvhlmod 40285 | . . . . 5 β’ (π β π β LMod) |
16 | eqid 2731 | . . . . . 6 β’ (LSubSpβπ) = (LSubSpβπ) | |
17 | 16 | lsssssubg 20714 | . . . . 5 β’ (π β LMod β (LSubSpβπ) β (SubGrpβπ)) |
18 | 15, 17 | syl 17 | . . . 4 β’ (π β (LSubSpβπ) β (SubGrpβπ)) |
19 | 12 | simpld 494 | . . . . . . 7 β’ (π β π β π΄) |
20 | 1, 6 | atbase 38463 | . . . . . . 7 β’ (π β π΄ β π β π΅) |
21 | 19, 20 | syl 17 | . . . . . 6 β’ (π β π β π΅) |
22 | 1, 3, 9, 7, 16 | dihlss 40425 | . . . . . 6 β’ (((πΎ β HL β§ π β π») β§ π β π΅) β (πΌβπ) β (LSubSpβπ)) |
23 | 11, 21, 22 | syl2anc 583 | . . . . 5 β’ (π β (πΌβπ) β (LSubSpβπ)) |
24 | 13 | simpld 494 | . . . . . . 7 β’ (π β π β π΄) |
25 | 1, 6 | atbase 38463 | . . . . . . 7 β’ (π β π΄ β π β π΅) |
26 | 24, 25 | syl 17 | . . . . . 6 β’ (π β π β π΅) |
27 | 1, 3, 9, 7, 16 | dihlss 40425 | . . . . . 6 β’ (((πΎ β HL β§ π β π») β§ π β π΅) β (πΌβπ) β (LSubSpβπ)) |
28 | 11, 26, 27 | syl2anc 583 | . . . . 5 β’ (π β (πΌβπ) β (LSubSpβπ)) |
29 | 16, 8 | lsmcl 20839 | . . . . 5 β’ ((π β LMod β§ (πΌβπ) β (LSubSpβπ) β§ (πΌβπ) β (LSubSpβπ)) β ((πΌβπ) β (πΌβπ)) β (LSubSpβπ)) |
30 | 15, 23, 28, 29 | syl3anc 1370 | . . . 4 β’ (π β ((πΌβπ) β (πΌβπ)) β (LSubSpβπ)) |
31 | 18, 30 | sseldd 3984 | . . 3 β’ (π β ((πΌβπ) β (πΌβπ)) β (SubGrpβπ)) |
32 | 10 | fveq2i 6895 | . . . . 5 β’ (πΌβπ) = (πΌβ((π β¨ π) β§ π)) |
33 | 11 | simpld 494 | . . . . . . . 8 β’ (π β πΎ β HL) |
34 | 33 | hllatd 38538 | . . . . . . 7 β’ (π β πΎ β Lat) |
35 | 1, 4, 6 | hlatjcl 38541 | . . . . . . . 8 β’ ((πΎ β HL β§ π β π΄ β§ π β π΄) β (π β¨ π) β π΅) |
36 | 33, 19, 24, 35 | syl3anc 1370 | . . . . . . 7 β’ (π β (π β¨ π) β π΅) |
37 | 11 | simprd 495 | . . . . . . . 8 β’ (π β π β π») |
38 | 1, 3 | lhpbase 39173 | . . . . . . . 8 β’ (π β π» β π β π΅) |
39 | 37, 38 | syl 17 | . . . . . . 7 β’ (π β π β π΅) |
40 | 1, 5 | latmcl 18398 | . . . . . . 7 β’ ((πΎ β Lat β§ (π β¨ π) β π΅ β§ π β π΅) β ((π β¨ π) β§ π) β π΅) |
41 | 34, 36, 39, 40 | syl3anc 1370 | . . . . . 6 β’ (π β ((π β¨ π) β§ π) β π΅) |
42 | 1, 3, 9, 7, 16 | dihlss 40425 | . . . . . 6 β’ (((πΎ β HL β§ π β π») β§ ((π β¨ π) β§ π) β π΅) β (πΌβ((π β¨ π) β§ π)) β (LSubSpβπ)) |
43 | 11, 41, 42 | syl2anc 583 | . . . . 5 β’ (π β (πΌβ((π β¨ π) β§ π)) β (LSubSpβπ)) |
44 | 32, 43 | eqeltrid 2836 | . . . 4 β’ (π β (πΌβπ) β (LSubSpβπ)) |
45 | 18, 44 | sseldd 3984 | . . 3 β’ (π β (πΌβπ) β (SubGrpβπ)) |
46 | dihjatcclem2.c | . . 3 β’ (π β (πΌβπ) β ((πΌβπ) β (πΌβπ))) | |
47 | 8 | lsmss2 19577 | . . 3 β’ ((((πΌβπ) β (πΌβπ)) β (SubGrpβπ) β§ (πΌβπ) β (SubGrpβπ) β§ (πΌβπ) β ((πΌβπ) β (πΌβπ))) β (((πΌβπ) β (πΌβπ)) β (πΌβπ)) = ((πΌβπ) β (πΌβπ))) |
48 | 31, 45, 46, 47 | syl3anc 1370 | . 2 β’ (π β (((πΌβπ) β (πΌβπ)) β (πΌβπ)) = ((πΌβπ) β (πΌβπ))) |
49 | 14, 48 | eqtrd 2771 | 1 β’ (π β (πΌβ(π β¨ π)) = ((πΌβπ) β (πΌβπ))) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β§ wa 395 = wceq 1540 β wcel 2105 β wss 3949 class class class wbr 5149 βcfv 6544 (class class class)co 7412 Basecbs 17149 lecple 17209 joincjn 18269 meetcmee 18270 Latclat 18389 SubGrpcsubg 19037 LSSumclsm 19544 LModclmod 20615 LSubSpclss 20687 Atomscatm 38437 HLchlt 38524 LHypclh 39159 DVecHcdvh 40253 DIsoHcdih 40403 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7728 ax-cnex 11169 ax-resscn 11170 ax-1cn 11171 ax-icn 11172 ax-addcl 11173 ax-addrcl 11174 ax-mulcl 11175 ax-mulrcl 11176 ax-mulcom 11177 ax-addass 11178 ax-mulass 11179 ax-distr 11180 ax-i2m1 11181 ax-1ne0 11182 ax-1rid 11183 ax-rnegex 11184 ax-rrecex 11185 ax-cnre 11186 ax-pre-lttri 11187 ax-pre-lttrn 11188 ax-pre-ltadd 11189 ax-pre-mulgt0 11190 ax-riotaBAD 38127 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-iin 5001 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7859 df-1st 7978 df-2nd 7979 df-tpos 8214 df-undef 8261 df-frecs 8269 df-wrecs 8300 df-recs 8374 df-rdg 8413 df-1o 8469 df-er 8706 df-map 8825 df-en 8943 df-dom 8944 df-sdom 8945 df-fin 8946 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-nn 12218 df-2 12280 df-3 12281 df-4 12282 df-5 12283 df-6 12284 df-n0 12478 df-z 12564 df-uz 12828 df-fz 13490 df-struct 17085 df-sets 17102 df-slot 17120 df-ndx 17132 df-base 17150 df-ress 17179 df-plusg 17215 df-mulr 17216 df-sca 17218 df-vsca 17219 df-0g 17392 df-proset 18253 df-poset 18271 df-plt 18288 df-lub 18304 df-glb 18305 df-join 18306 df-meet 18307 df-p0 18383 df-p1 18384 df-lat 18390 df-clat 18457 df-mgm 18566 df-sgrp 18645 df-mnd 18661 df-submnd 18707 df-grp 18859 df-minusg 18860 df-sbg 18861 df-subg 19040 df-cntz 19223 df-lsm 19546 df-cmn 19692 df-abl 19693 df-mgp 20030 df-rng 20048 df-ur 20077 df-ring 20130 df-oppr 20226 df-dvdsr 20249 df-unit 20250 df-invr 20280 df-dvr 20293 df-drng 20503 df-lmod 20617 df-lss 20688 df-lsp 20728 df-lvec 20859 df-oposet 38350 df-ol 38352 df-oml 38353 df-covers 38440 df-ats 38441 df-atl 38472 df-cvlat 38496 df-hlat 38525 df-llines 38673 df-lplanes 38674 df-lvols 38675 df-lines 38676 df-psubsp 38678 df-pmap 38679 df-padd 38971 df-lhyp 39163 df-laut 39164 df-ldil 39279 df-ltrn 39280 df-trl 39334 df-tendo 39930 df-edring 39932 df-disoa 40204 df-dvech 40254 df-dib 40314 df-dic 40348 df-dih 40404 |
This theorem is referenced by: dihjatcc 40597 |
Copyright terms: Public domain | W3C validator |