MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrbagfsuppOLD Structured version   Visualization version   GIF version

Theorem psrbagfsuppOLD 21853
Description: Obsolete version of psrbagfsupp 21852 as of 7-Aug-2024. (Contributed by Stefan O'Rear, 9-Mar-2015.) (Revised by AV, 18-Jul-2019.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
psrbag.d 𝐷 = {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin}
Assertion
Ref Expression
psrbagfsuppOLD ((𝑋 ∈ 𝐷 ∧ 𝐼 ∈ 𝑉) β†’ 𝑋 finSupp 0)
Distinct variable groups:   𝑓,𝐼   𝑓,𝑋
Allowed substitution hints:   𝐷(𝑓)   𝑉(𝑓)

Proof of Theorem psrbagfsuppOLD
StepHypRef Expression
1 psrbag.d . . . . 5 𝐷 = {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin}
21psrbag 21849 . . . 4 (𝐼 ∈ 𝑉 β†’ (𝑋 ∈ 𝐷 ↔ (𝑋:πΌβŸΆβ„•0 ∧ (◑𝑋 β€œ β„•) ∈ Fin)))
32biimpac 477 . . 3 ((𝑋 ∈ 𝐷 ∧ 𝐼 ∈ 𝑉) β†’ (𝑋:πΌβŸΆβ„•0 ∧ (◑𝑋 β€œ β„•) ∈ Fin))
43simprd 494 . 2 ((𝑋 ∈ 𝐷 ∧ 𝐼 ∈ 𝑉) β†’ (◑𝑋 β€œ β„•) ∈ Fin)
5 simpr 483 . . 3 ((𝑋 ∈ 𝐷 ∧ 𝐼 ∈ 𝑉) β†’ 𝐼 ∈ 𝑉)
61psrbagfOLD 21851 . . . 4 ((𝐼 ∈ 𝑉 ∧ 𝑋 ∈ 𝐷) β†’ 𝑋:πΌβŸΆβ„•0)
76ancoms 457 . . 3 ((𝑋 ∈ 𝐷 ∧ 𝐼 ∈ 𝑉) β†’ 𝑋:πΌβŸΆβ„•0)
8 fcdmnn0fsupp 12554 . . 3 ((𝐼 ∈ 𝑉 ∧ 𝑋:πΌβŸΆβ„•0) β†’ (𝑋 finSupp 0 ↔ (◑𝑋 β€œ β„•) ∈ Fin))
95, 7, 8syl2anc 582 . 2 ((𝑋 ∈ 𝐷 ∧ 𝐼 ∈ 𝑉) β†’ (𝑋 finSupp 0 ↔ (◑𝑋 β€œ β„•) ∈ Fin))
104, 9mpbird 256 1 ((𝑋 ∈ 𝐷 ∧ 𝐼 ∈ 𝑉) β†’ 𝑋 finSupp 0)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 394   = wceq 1533   ∈ wcel 2098  {crab 3419   class class class wbr 5144  β—‘ccnv 5672   β€œ cima 5676  βŸΆwf 6539  (class class class)co 7413   ↑m cmap 8838  Fincfn 8957   finSupp cfsupp 9380  0cc0 11133  β„•cn 12237  β„•0cn0 12497
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5281  ax-sep 5295  ax-nul 5302  ax-pow 5360  ax-pr 5424  ax-un 7735  ax-cnex 11189  ax-resscn 11190  ax-1cn 11191  ax-icn 11192  ax-addcl 11193  ax-addrcl 11194  ax-mulcl 11195  ax-mulrcl 11196  ax-mulcom 11197  ax-addass 11198  ax-mulass 11199  ax-distr 11200  ax-i2m1 11201  ax-1ne0 11202  ax-1rid 11203  ax-rnegex 11204  ax-rrecex 11205  ax-cnre 11206  ax-pre-lttri 11207  ax-pre-lttrn 11208  ax-pre-ltadd 11209
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3961  df-nul 4320  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4905  df-iun 4994  df-br 5145  df-opab 5207  df-mpt 5228  df-tr 5262  df-id 5571  df-eprel 5577  df-po 5585  df-so 5586  df-fr 5628  df-we 5630  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7866  df-2nd 7988  df-supp 8159  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8718  df-map 8840  df-en 8958  df-dom 8959  df-sdom 8960  df-fsupp 9381  df-pnf 11275  df-mnf 11276  df-xr 11277  df-ltxr 11278  df-le 11279  df-nn 12238  df-n0 12498
This theorem is referenced by:  psrbagev1OLD  22024  tdeglem1OLD  26005  tdeglem3OLD  26007  tdeglem4OLD  26009
  Copyright terms: Public domain W3C validator