MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrbagfsuppOLD Structured version   Visualization version   GIF version

Theorem psrbagfsuppOLD 21841
Description: Obsolete version of psrbagfsupp 21840 as of 7-Aug-2024. (Contributed by Stefan O'Rear, 9-Mar-2015.) (Revised by AV, 18-Jul-2019.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
psrbag.d 𝐷 = {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin}
Assertion
Ref Expression
psrbagfsuppOLD ((𝑋 ∈ 𝐷 ∧ 𝐼 ∈ 𝑉) β†’ 𝑋 finSupp 0)
Distinct variable groups:   𝑓,𝐼   𝑓,𝑋
Allowed substitution hints:   𝐷(𝑓)   𝑉(𝑓)

Proof of Theorem psrbagfsuppOLD
StepHypRef Expression
1 psrbag.d . . . . 5 𝐷 = {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin}
21psrbag 21837 . . . 4 (𝐼 ∈ 𝑉 β†’ (𝑋 ∈ 𝐷 ↔ (𝑋:πΌβŸΆβ„•0 ∧ (◑𝑋 β€œ β„•) ∈ Fin)))
32biimpac 478 . . 3 ((𝑋 ∈ 𝐷 ∧ 𝐼 ∈ 𝑉) β†’ (𝑋:πΌβŸΆβ„•0 ∧ (◑𝑋 β€œ β„•) ∈ Fin))
43simprd 495 . 2 ((𝑋 ∈ 𝐷 ∧ 𝐼 ∈ 𝑉) β†’ (◑𝑋 β€œ β„•) ∈ Fin)
5 simpr 484 . . 3 ((𝑋 ∈ 𝐷 ∧ 𝐼 ∈ 𝑉) β†’ 𝐼 ∈ 𝑉)
61psrbagfOLD 21839 . . . 4 ((𝐼 ∈ 𝑉 ∧ 𝑋 ∈ 𝐷) β†’ 𝑋:πΌβŸΆβ„•0)
76ancoms 458 . . 3 ((𝑋 ∈ 𝐷 ∧ 𝐼 ∈ 𝑉) β†’ 𝑋:πΌβŸΆβ„•0)
8 fcdmnn0fsupp 12551 . . 3 ((𝐼 ∈ 𝑉 ∧ 𝑋:πΌβŸΆβ„•0) β†’ (𝑋 finSupp 0 ↔ (◑𝑋 β€œ β„•) ∈ Fin))
95, 7, 8syl2anc 583 . 2 ((𝑋 ∈ 𝐷 ∧ 𝐼 ∈ 𝑉) β†’ (𝑋 finSupp 0 ↔ (◑𝑋 β€œ β„•) ∈ Fin))
104, 9mpbird 257 1 ((𝑋 ∈ 𝐷 ∧ 𝐼 ∈ 𝑉) β†’ 𝑋 finSupp 0)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 395   = wceq 1534   ∈ wcel 2099  {crab 3427   class class class wbr 5142  β—‘ccnv 5671   β€œ cima 5675  βŸΆwf 6538  (class class class)co 7414   ↑m cmap 8836  Fincfn 8955   finSupp cfsupp 9377  0cc0 11130  β„•cn 12234  β„•0cn0 12494
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11186  ax-resscn 11187  ax-1cn 11188  ax-icn 11189  ax-addcl 11190  ax-addrcl 11191  ax-mulcl 11192  ax-mulrcl 11193  ax-mulcom 11194  ax-addass 11195  ax-mulass 11196  ax-distr 11197  ax-i2m1 11198  ax-1ne0 11199  ax-1rid 11200  ax-rnegex 11201  ax-rrecex 11202  ax-cnre 11203  ax-pre-lttri 11204  ax-pre-lttrn 11205  ax-pre-ltadd 11206
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7865  df-2nd 7988  df-supp 8160  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8718  df-map 8838  df-en 8956  df-dom 8957  df-sdom 8958  df-fsupp 9378  df-pnf 11272  df-mnf 11273  df-xr 11274  df-ltxr 11275  df-le 11276  df-nn 12235  df-n0 12495
This theorem is referenced by:  psrbagev1OLD  22009  tdeglem1OLD  25979  tdeglem3OLD  25981  tdeglem4OLD  25983
  Copyright terms: Public domain W3C validator