| Step | Hyp | Ref
| Expression |
| 1 | | foima 6800 |
. . 3
⊢ (𝐹:𝐴–onto→𝐵 → (𝐹 “ 𝐴) = 𝐵) |
| 2 | 1 | adantl 481 |
. 2
⊢ ((𝐴 ∈ Fin ∧ 𝐹:𝐴–onto→𝐵) → (𝐹 “ 𝐴) = 𝐵) |
| 3 | | imaeq2 6048 |
. . . . . . 7
⊢ (𝑥 = ∅ → (𝐹 “ 𝑥) = (𝐹 “ ∅)) |
| 4 | | ima0 6069 |
. . . . . . 7
⊢ (𝐹 “ ∅) =
∅ |
| 5 | 3, 4 | eqtrdi 2787 |
. . . . . 6
⊢ (𝑥 = ∅ → (𝐹 “ 𝑥) = ∅) |
| 6 | | id 22 |
. . . . . 6
⊢ (𝑥 = ∅ → 𝑥 = ∅) |
| 7 | 5, 6 | breq12d 5137 |
. . . . 5
⊢ (𝑥 = ∅ → ((𝐹 “ 𝑥) ≼ 𝑥 ↔ ∅ ≼
∅)) |
| 8 | 7 | imbi2d 340 |
. . . 4
⊢ (𝑥 = ∅ → ((𝐹 Fn 𝐴 → (𝐹 “ 𝑥) ≼ 𝑥) ↔ (𝐹 Fn 𝐴 → ∅ ≼
∅))) |
| 9 | | imaeq2 6048 |
. . . . . 6
⊢ (𝑥 = 𝑦 → (𝐹 “ 𝑥) = (𝐹 “ 𝑦)) |
| 10 | | id 22 |
. . . . . 6
⊢ (𝑥 = 𝑦 → 𝑥 = 𝑦) |
| 11 | 9, 10 | breq12d 5137 |
. . . . 5
⊢ (𝑥 = 𝑦 → ((𝐹 “ 𝑥) ≼ 𝑥 ↔ (𝐹 “ 𝑦) ≼ 𝑦)) |
| 12 | 11 | imbi2d 340 |
. . . 4
⊢ (𝑥 = 𝑦 → ((𝐹 Fn 𝐴 → (𝐹 “ 𝑥) ≼ 𝑥) ↔ (𝐹 Fn 𝐴 → (𝐹 “ 𝑦) ≼ 𝑦))) |
| 13 | | imaeq2 6048 |
. . . . . 6
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → (𝐹 “ 𝑥) = (𝐹 “ (𝑦 ∪ {𝑧}))) |
| 14 | | id 22 |
. . . . . 6
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → 𝑥 = (𝑦 ∪ {𝑧})) |
| 15 | 13, 14 | breq12d 5137 |
. . . . 5
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → ((𝐹 “ 𝑥) ≼ 𝑥 ↔ (𝐹 “ (𝑦 ∪ {𝑧})) ≼ (𝑦 ∪ {𝑧}))) |
| 16 | 15 | imbi2d 340 |
. . . 4
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → ((𝐹 Fn 𝐴 → (𝐹 “ 𝑥) ≼ 𝑥) ↔ (𝐹 Fn 𝐴 → (𝐹 “ (𝑦 ∪ {𝑧})) ≼ (𝑦 ∪ {𝑧})))) |
| 17 | | imaeq2 6048 |
. . . . . 6
⊢ (𝑥 = 𝐴 → (𝐹 “ 𝑥) = (𝐹 “ 𝐴)) |
| 18 | | id 22 |
. . . . . 6
⊢ (𝑥 = 𝐴 → 𝑥 = 𝐴) |
| 19 | 17, 18 | breq12d 5137 |
. . . . 5
⊢ (𝑥 = 𝐴 → ((𝐹 “ 𝑥) ≼ 𝑥 ↔ (𝐹 “ 𝐴) ≼ 𝐴)) |
| 20 | 19 | imbi2d 340 |
. . . 4
⊢ (𝑥 = 𝐴 → ((𝐹 Fn 𝐴 → (𝐹 “ 𝑥) ≼ 𝑥) ↔ (𝐹 Fn 𝐴 → (𝐹 “ 𝐴) ≼ 𝐴))) |
| 21 | | 0ex 5282 |
. . . . . 6
⊢ ∅
∈ V |
| 22 | 21 | 0dom 9125 |
. . . . 5
⊢ ∅
≼ ∅ |
| 23 | 22 | a1i 11 |
. . . 4
⊢ (𝐹 Fn 𝐴 → ∅ ≼
∅) |
| 24 | | fnfun 6643 |
. . . . . . . . . . . . . 14
⊢ (𝐹 Fn 𝐴 → Fun 𝐹) |
| 25 | 24 | ad2antrl 728 |
. . . . . . . . . . . . 13
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (𝐹 Fn 𝐴 ∧ (𝐹 “ 𝑦) ≼ 𝑦)) → Fun 𝐹) |
| 26 | | funressn 7154 |
. . . . . . . . . . . . 13
⊢ (Fun
𝐹 → (𝐹 ↾ {𝑧}) ⊆ {〈𝑧, (𝐹‘𝑧)〉}) |
| 27 | | rnss 5924 |
. . . . . . . . . . . . 13
⊢ ((𝐹 ↾ {𝑧}) ⊆ {〈𝑧, (𝐹‘𝑧)〉} → ran (𝐹 ↾ {𝑧}) ⊆ ran {〈𝑧, (𝐹‘𝑧)〉}) |
| 28 | 25, 26, 27 | 3syl 18 |
. . . . . . . . . . . 12
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (𝐹 Fn 𝐴 ∧ (𝐹 “ 𝑦) ≼ 𝑦)) → ran (𝐹 ↾ {𝑧}) ⊆ ran {〈𝑧, (𝐹‘𝑧)〉}) |
| 29 | | df-ima 5672 |
. . . . . . . . . . . 12
⊢ (𝐹 “ {𝑧}) = ran (𝐹 ↾ {𝑧}) |
| 30 | | vex 3468 |
. . . . . . . . . . . . . 14
⊢ 𝑧 ∈ V |
| 31 | 30 | rnsnop 6218 |
. . . . . . . . . . . . 13
⊢ ran
{〈𝑧, (𝐹‘𝑧)〉} = {(𝐹‘𝑧)} |
| 32 | 31 | eqcomi 2745 |
. . . . . . . . . . . 12
⊢ {(𝐹‘𝑧)} = ran {〈𝑧, (𝐹‘𝑧)〉} |
| 33 | 28, 29, 32 | 3sstr4g 4017 |
. . . . . . . . . . 11
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (𝐹 Fn 𝐴 ∧ (𝐹 “ 𝑦) ≼ 𝑦)) → (𝐹 “ {𝑧}) ⊆ {(𝐹‘𝑧)}) |
| 34 | | snex 5411 |
. . . . . . . . . . 11
⊢ {(𝐹‘𝑧)} ∈ V |
| 35 | | ssexg 5298 |
. . . . . . . . . . 11
⊢ (((𝐹 “ {𝑧}) ⊆ {(𝐹‘𝑧)} ∧ {(𝐹‘𝑧)} ∈ V) → (𝐹 “ {𝑧}) ∈ V) |
| 36 | 33, 34, 35 | sylancl 586 |
. . . . . . . . . 10
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (𝐹 Fn 𝐴 ∧ (𝐹 “ 𝑦) ≼ 𝑦)) → (𝐹 “ {𝑧}) ∈ V) |
| 37 | | fvi 6960 |
. . . . . . . . . 10
⊢ ((𝐹 “ {𝑧}) ∈ V → ( I ‘(𝐹 “ {𝑧})) = (𝐹 “ {𝑧})) |
| 38 | 36, 37 | syl 17 |
. . . . . . . . 9
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (𝐹 Fn 𝐴 ∧ (𝐹 “ 𝑦) ≼ 𝑦)) → ( I ‘(𝐹 “ {𝑧})) = (𝐹 “ {𝑧})) |
| 39 | 38 | uneq2d 4148 |
. . . . . . . 8
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (𝐹 Fn 𝐴 ∧ (𝐹 “ 𝑦) ≼ 𝑦)) → ((𝐹 “ 𝑦) ∪ ( I ‘(𝐹 “ {𝑧}))) = ((𝐹 “ 𝑦) ∪ (𝐹 “ {𝑧}))) |
| 40 | | imaundi 6143 |
. . . . . . . 8
⊢ (𝐹 “ (𝑦 ∪ {𝑧})) = ((𝐹 “ 𝑦) ∪ (𝐹 “ {𝑧})) |
| 41 | 39, 40 | eqtr4di 2789 |
. . . . . . 7
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (𝐹 Fn 𝐴 ∧ (𝐹 “ 𝑦) ≼ 𝑦)) → ((𝐹 “ 𝑦) ∪ ( I ‘(𝐹 “ {𝑧}))) = (𝐹 “ (𝑦 ∪ {𝑧}))) |
| 42 | | simprr 772 |
. . . . . . . 8
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (𝐹 Fn 𝐴 ∧ (𝐹 “ 𝑦) ≼ 𝑦)) → (𝐹 “ 𝑦) ≼ 𝑦) |
| 43 | | ssdomg 9019 |
. . . . . . . . . . 11
⊢ ({(𝐹‘𝑧)} ∈ V → ((𝐹 “ {𝑧}) ⊆ {(𝐹‘𝑧)} → (𝐹 “ {𝑧}) ≼ {(𝐹‘𝑧)})) |
| 44 | 34, 33, 43 | mpsyl 68 |
. . . . . . . . . 10
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (𝐹 Fn 𝐴 ∧ (𝐹 “ 𝑦) ≼ 𝑦)) → (𝐹 “ {𝑧}) ≼ {(𝐹‘𝑧)}) |
| 45 | | fvex 6894 |
. . . . . . . . . . . 12
⊢ (𝐹‘𝑧) ∈ V |
| 46 | 45 | ensn1 9040 |
. . . . . . . . . . 11
⊢ {(𝐹‘𝑧)} ≈ 1o |
| 47 | 30 | ensn1 9040 |
. . . . . . . . . . 11
⊢ {𝑧} ≈
1o |
| 48 | 46, 47 | entr4i 9030 |
. . . . . . . . . 10
⊢ {(𝐹‘𝑧)} ≈ {𝑧} |
| 49 | | domentr 9032 |
. . . . . . . . . 10
⊢ (((𝐹 “ {𝑧}) ≼ {(𝐹‘𝑧)} ∧ {(𝐹‘𝑧)} ≈ {𝑧}) → (𝐹 “ {𝑧}) ≼ {𝑧}) |
| 50 | 44, 48, 49 | sylancl 586 |
. . . . . . . . 9
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (𝐹 Fn 𝐴 ∧ (𝐹 “ 𝑦) ≼ 𝑦)) → (𝐹 “ {𝑧}) ≼ {𝑧}) |
| 51 | 38, 50 | eqbrtrd 5146 |
. . . . . . . 8
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (𝐹 Fn 𝐴 ∧ (𝐹 “ 𝑦) ≼ 𝑦)) → ( I ‘(𝐹 “ {𝑧})) ≼ {𝑧}) |
| 52 | | simplr 768 |
. . . . . . . . 9
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (𝐹 Fn 𝐴 ∧ (𝐹 “ 𝑦) ≼ 𝑦)) → ¬ 𝑧 ∈ 𝑦) |
| 53 | | disjsn 4692 |
. . . . . . . . 9
⊢ ((𝑦 ∩ {𝑧}) = ∅ ↔ ¬ 𝑧 ∈ 𝑦) |
| 54 | 52, 53 | sylibr 234 |
. . . . . . . 8
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (𝐹 Fn 𝐴 ∧ (𝐹 “ 𝑦) ≼ 𝑦)) → (𝑦 ∩ {𝑧}) = ∅) |
| 55 | | undom 9078 |
. . . . . . . 8
⊢ ((((𝐹 “ 𝑦) ≼ 𝑦 ∧ ( I ‘(𝐹 “ {𝑧})) ≼ {𝑧}) ∧ (𝑦 ∩ {𝑧}) = ∅) → ((𝐹 “ 𝑦) ∪ ( I ‘(𝐹 “ {𝑧}))) ≼ (𝑦 ∪ {𝑧})) |
| 56 | 42, 51, 54, 55 | syl21anc 837 |
. . . . . . 7
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (𝐹 Fn 𝐴 ∧ (𝐹 “ 𝑦) ≼ 𝑦)) → ((𝐹 “ 𝑦) ∪ ( I ‘(𝐹 “ {𝑧}))) ≼ (𝑦 ∪ {𝑧})) |
| 57 | 41, 56 | eqbrtrrd 5148 |
. . . . . 6
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (𝐹 Fn 𝐴 ∧ (𝐹 “ 𝑦) ≼ 𝑦)) → (𝐹 “ (𝑦 ∪ {𝑧})) ≼ (𝑦 ∪ {𝑧})) |
| 58 | 57 | exp32 420 |
. . . . 5
⊢ ((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) → (𝐹 Fn 𝐴 → ((𝐹 “ 𝑦) ≼ 𝑦 → (𝐹 “ (𝑦 ∪ {𝑧})) ≼ (𝑦 ∪ {𝑧})))) |
| 59 | 58 | a2d 29 |
. . . 4
⊢ ((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) → ((𝐹 Fn 𝐴 → (𝐹 “ 𝑦) ≼ 𝑦) → (𝐹 Fn 𝐴 → (𝐹 “ (𝑦 ∪ {𝑧})) ≼ (𝑦 ∪ {𝑧})))) |
| 60 | 8, 12, 16, 20, 23, 59 | findcard2s 9184 |
. . 3
⊢ (𝐴 ∈ Fin → (𝐹 Fn 𝐴 → (𝐹 “ 𝐴) ≼ 𝐴)) |
| 61 | | fofn 6797 |
. . 3
⊢ (𝐹:𝐴–onto→𝐵 → 𝐹 Fn 𝐴) |
| 62 | 60, 61 | impel 505 |
. 2
⊢ ((𝐴 ∈ Fin ∧ 𝐹:𝐴–onto→𝐵) → (𝐹 “ 𝐴) ≼ 𝐴) |
| 63 | 2, 62 | eqbrtrrd 5148 |
1
⊢ ((𝐴 ∈ Fin ∧ 𝐹:𝐴–onto→𝐵) → 𝐵 ≼ 𝐴) |