Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  irrapxlem1 Structured version   Visualization version   GIF version

Theorem irrapxlem1 42792
Description: Lemma for irrapx1 42798. Divides the unit interval into 𝐵 half-open sections and using the pigeonhole principle fphpdo 42787 finds two multiples of 𝐴 in the same section mod 1. (Contributed by Stefan O'Rear, 12-Sep-2014.)
Assertion
Ref Expression
irrapxlem1 ((𝐴 ∈ ℝ+𝐵 ∈ ℕ) → ∃𝑥 ∈ (0...𝐵)∃𝑦 ∈ (0...𝐵)(𝑥 < 𝑦 ∧ (⌊‘(𝐵 · ((𝐴 · 𝑥) mod 1))) = (⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1)))))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦

Proof of Theorem irrapxlem1
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 fzssuz 13580 . . . 4 (0...𝐵) ⊆ (ℤ‘0)
2 uzssz 12871 . . . . 5 (ℤ‘0) ⊆ ℤ
3 zssre 12593 . . . . 5 ℤ ⊆ ℝ
42, 3sstri 3968 . . . 4 (ℤ‘0) ⊆ ℝ
51, 4sstri 3968 . . 3 (0...𝐵) ⊆ ℝ
65a1i 11 . 2 ((𝐴 ∈ ℝ+𝐵 ∈ ℕ) → (0...𝐵) ⊆ ℝ)
7 ovexd 7438 . 2 ((𝐴 ∈ ℝ+𝐵 ∈ ℕ) → (0...(𝐵 − 1)) ∈ V)
8 nnm1nn0 12540 . . . . 5 (𝐵 ∈ ℕ → (𝐵 − 1) ∈ ℕ0)
98adantl 481 . . . 4 ((𝐴 ∈ ℝ+𝐵 ∈ ℕ) → (𝐵 − 1) ∈ ℕ0)
10 nn0uz 12892 . . . 4 0 = (ℤ‘0)
119, 10eleqtrdi 2844 . . 3 ((𝐴 ∈ ℝ+𝐵 ∈ ℕ) → (𝐵 − 1) ∈ (ℤ‘0))
12 nnz 12607 . . . 4 (𝐵 ∈ ℕ → 𝐵 ∈ ℤ)
1312adantl 481 . . 3 ((𝐴 ∈ ℝ+𝐵 ∈ ℕ) → 𝐵 ∈ ℤ)
14 nnre 12245 . . . . 5 (𝐵 ∈ ℕ → 𝐵 ∈ ℝ)
1514adantl 481 . . . 4 ((𝐴 ∈ ℝ+𝐵 ∈ ℕ) → 𝐵 ∈ ℝ)
1615ltm1d 12172 . . 3 ((𝐴 ∈ ℝ+𝐵 ∈ ℕ) → (𝐵 − 1) < 𝐵)
17 fzsdom2 14444 . . 3 ((((𝐵 − 1) ∈ (ℤ‘0) ∧ 𝐵 ∈ ℤ) ∧ (𝐵 − 1) < 𝐵) → (0...(𝐵 − 1)) ≺ (0...𝐵))
1811, 13, 16, 17syl21anc 837 . 2 ((𝐴 ∈ ℝ+𝐵 ∈ ℕ) → (0...(𝐵 − 1)) ≺ (0...𝐵))
1914ad2antlr 727 . . . . . 6 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → 𝐵 ∈ ℝ)
20 rpre 13015 . . . . . . . . 9 (𝐴 ∈ ℝ+𝐴 ∈ ℝ)
2120ad2antrr 726 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → 𝐴 ∈ ℝ)
22 elfzelz 13539 . . . . . . . . . 10 (𝑎 ∈ (0...𝐵) → 𝑎 ∈ ℤ)
2322zred 12695 . . . . . . . . 9 (𝑎 ∈ (0...𝐵) → 𝑎 ∈ ℝ)
2423adantl 481 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → 𝑎 ∈ ℝ)
2521, 24remulcld 11263 . . . . . . 7 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → (𝐴 · 𝑎) ∈ ℝ)
26 1rp 13010 . . . . . . 7 1 ∈ ℝ+
27 modcl 13888 . . . . . . 7 (((𝐴 · 𝑎) ∈ ℝ ∧ 1 ∈ ℝ+) → ((𝐴 · 𝑎) mod 1) ∈ ℝ)
2825, 26, 27sylancl 586 . . . . . 6 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → ((𝐴 · 𝑎) mod 1) ∈ ℝ)
2919, 28remulcld 11263 . . . . 5 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → (𝐵 · ((𝐴 · 𝑎) mod 1)) ∈ ℝ)
3029flcld 13813 . . . 4 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → (⌊‘(𝐵 · ((𝐴 · 𝑎) mod 1))) ∈ ℤ)
3119recnd 11261 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → 𝐵 ∈ ℂ)
3231mul01d 11432 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → (𝐵 · 0) = 0)
33 modge0 13894 . . . . . . . . . 10 (((𝐴 · 𝑎) ∈ ℝ ∧ 1 ∈ ℝ+) → 0 ≤ ((𝐴 · 𝑎) mod 1))
3425, 26, 33sylancl 586 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → 0 ≤ ((𝐴 · 𝑎) mod 1))
35 0red 11236 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → 0 ∈ ℝ)
36 nngt0 12269 . . . . . . . . . . 11 (𝐵 ∈ ℕ → 0 < 𝐵)
3736ad2antlr 727 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → 0 < 𝐵)
38 lemul2 12092 . . . . . . . . . 10 ((0 ∈ ℝ ∧ ((𝐴 · 𝑎) mod 1) ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → (0 ≤ ((𝐴 · 𝑎) mod 1) ↔ (𝐵 · 0) ≤ (𝐵 · ((𝐴 · 𝑎) mod 1))))
3935, 28, 19, 37, 38syl112anc 1376 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → (0 ≤ ((𝐴 · 𝑎) mod 1) ↔ (𝐵 · 0) ≤ (𝐵 · ((𝐴 · 𝑎) mod 1))))
4034, 39mpbid 232 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → (𝐵 · 0) ≤ (𝐵 · ((𝐴 · 𝑎) mod 1)))
4132, 40eqbrtrrd 5143 . . . . . . 7 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → 0 ≤ (𝐵 · ((𝐴 · 𝑎) mod 1)))
4235, 29lenltd 11379 . . . . . . 7 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → (0 ≤ (𝐵 · ((𝐴 · 𝑎) mod 1)) ↔ ¬ (𝐵 · ((𝐴 · 𝑎) mod 1)) < 0))
4341, 42mpbid 232 . . . . . 6 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → ¬ (𝐵 · ((𝐴 · 𝑎) mod 1)) < 0)
44 0z 12597 . . . . . . 7 0 ∈ ℤ
45 fllt 13821 . . . . . . 7 (((𝐵 · ((𝐴 · 𝑎) mod 1)) ∈ ℝ ∧ 0 ∈ ℤ) → ((𝐵 · ((𝐴 · 𝑎) mod 1)) < 0 ↔ (⌊‘(𝐵 · ((𝐴 · 𝑎) mod 1))) < 0))
4629, 44, 45sylancl 586 . . . . . 6 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → ((𝐵 · ((𝐴 · 𝑎) mod 1)) < 0 ↔ (⌊‘(𝐵 · ((𝐴 · 𝑎) mod 1))) < 0))
4743, 46mtbid 324 . . . . 5 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → ¬ (⌊‘(𝐵 · ((𝐴 · 𝑎) mod 1))) < 0)
4830zred 12695 . . . . . 6 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → (⌊‘(𝐵 · ((𝐴 · 𝑎) mod 1))) ∈ ℝ)
4935, 48lenltd 11379 . . . . 5 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → (0 ≤ (⌊‘(𝐵 · ((𝐴 · 𝑎) mod 1))) ↔ ¬ (⌊‘(𝐵 · ((𝐴 · 𝑎) mod 1))) < 0))
5047, 49mpbird 257 . . . 4 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → 0 ≤ (⌊‘(𝐵 · ((𝐴 · 𝑎) mod 1))))
51 elnn0z 12599 . . . 4 ((⌊‘(𝐵 · ((𝐴 · 𝑎) mod 1))) ∈ ℕ0 ↔ ((⌊‘(𝐵 · ((𝐴 · 𝑎) mod 1))) ∈ ℤ ∧ 0 ≤ (⌊‘(𝐵 · ((𝐴 · 𝑎) mod 1)))))
5230, 50, 51sylanbrc 583 . . 3 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → (⌊‘(𝐵 · ((𝐴 · 𝑎) mod 1))) ∈ ℕ0)
538ad2antlr 727 . . 3 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → (𝐵 − 1) ∈ ℕ0)
54 flle 13814 . . . . . . 7 ((𝐵 · ((𝐴 · 𝑎) mod 1)) ∈ ℝ → (⌊‘(𝐵 · ((𝐴 · 𝑎) mod 1))) ≤ (𝐵 · ((𝐴 · 𝑎) mod 1)))
5529, 54syl 17 . . . . . 6 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → (⌊‘(𝐵 · ((𝐴 · 𝑎) mod 1))) ≤ (𝐵 · ((𝐴 · 𝑎) mod 1)))
56 modlt 13895 . . . . . . . . 9 (((𝐴 · 𝑎) ∈ ℝ ∧ 1 ∈ ℝ+) → ((𝐴 · 𝑎) mod 1) < 1)
5725, 26, 56sylancl 586 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → ((𝐴 · 𝑎) mod 1) < 1)
58 1red 11234 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → 1 ∈ ℝ)
59 ltmul2 12090 . . . . . . . . 9 ((((𝐴 · 𝑎) mod 1) ∈ ℝ ∧ 1 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → (((𝐴 · 𝑎) mod 1) < 1 ↔ (𝐵 · ((𝐴 · 𝑎) mod 1)) < (𝐵 · 1)))
6028, 58, 19, 37, 59syl112anc 1376 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → (((𝐴 · 𝑎) mod 1) < 1 ↔ (𝐵 · ((𝐴 · 𝑎) mod 1)) < (𝐵 · 1)))
6157, 60mpbid 232 . . . . . . 7 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → (𝐵 · ((𝐴 · 𝑎) mod 1)) < (𝐵 · 1))
6231mulridd 11250 . . . . . . 7 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → (𝐵 · 1) = 𝐵)
6361, 62breqtrd 5145 . . . . . 6 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → (𝐵 · ((𝐴 · 𝑎) mod 1)) < 𝐵)
6448, 29, 19, 55, 63lelttrd 11391 . . . . 5 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → (⌊‘(𝐵 · ((𝐴 · 𝑎) mod 1))) < 𝐵)
65 nncn 12246 . . . . . . 7 (𝐵 ∈ ℕ → 𝐵 ∈ ℂ)
66 ax-1cn 11185 . . . . . . 7 1 ∈ ℂ
67 npcan 11489 . . . . . . 7 ((𝐵 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐵 − 1) + 1) = 𝐵)
6865, 66, 67sylancl 586 . . . . . 6 (𝐵 ∈ ℕ → ((𝐵 − 1) + 1) = 𝐵)
6968ad2antlr 727 . . . . 5 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → ((𝐵 − 1) + 1) = 𝐵)
7064, 69breqtrrd 5147 . . . 4 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → (⌊‘(𝐵 · ((𝐴 · 𝑎) mod 1))) < ((𝐵 − 1) + 1))
7112ad2antlr 727 . . . . . 6 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → 𝐵 ∈ ℤ)
72 1z 12620 . . . . . 6 1 ∈ ℤ
73 zsubcl 12632 . . . . . 6 ((𝐵 ∈ ℤ ∧ 1 ∈ ℤ) → (𝐵 − 1) ∈ ℤ)
7471, 72, 73sylancl 586 . . . . 5 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → (𝐵 − 1) ∈ ℤ)
75 zleltp1 12641 . . . . 5 (((⌊‘(𝐵 · ((𝐴 · 𝑎) mod 1))) ∈ ℤ ∧ (𝐵 − 1) ∈ ℤ) → ((⌊‘(𝐵 · ((𝐴 · 𝑎) mod 1))) ≤ (𝐵 − 1) ↔ (⌊‘(𝐵 · ((𝐴 · 𝑎) mod 1))) < ((𝐵 − 1) + 1)))
7630, 74, 75syl2anc 584 . . . 4 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → ((⌊‘(𝐵 · ((𝐴 · 𝑎) mod 1))) ≤ (𝐵 − 1) ↔ (⌊‘(𝐵 · ((𝐴 · 𝑎) mod 1))) < ((𝐵 − 1) + 1)))
7770, 76mpbird 257 . . 3 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → (⌊‘(𝐵 · ((𝐴 · 𝑎) mod 1))) ≤ (𝐵 − 1))
78 elfz2nn0 13633 . . 3 ((⌊‘(𝐵 · ((𝐴 · 𝑎) mod 1))) ∈ (0...(𝐵 − 1)) ↔ ((⌊‘(𝐵 · ((𝐴 · 𝑎) mod 1))) ∈ ℕ0 ∧ (𝐵 − 1) ∈ ℕ0 ∧ (⌊‘(𝐵 · ((𝐴 · 𝑎) mod 1))) ≤ (𝐵 − 1)))
7952, 53, 77, 78syl3anbrc 1344 . 2 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → (⌊‘(𝐵 · ((𝐴 · 𝑎) mod 1))) ∈ (0...(𝐵 − 1)))
80 oveq2 7411 . . . . 5 (𝑎 = 𝑥 → (𝐴 · 𝑎) = (𝐴 · 𝑥))
8180oveq1d 7418 . . . 4 (𝑎 = 𝑥 → ((𝐴 · 𝑎) mod 1) = ((𝐴 · 𝑥) mod 1))
8281oveq2d 7419 . . 3 (𝑎 = 𝑥 → (𝐵 · ((𝐴 · 𝑎) mod 1)) = (𝐵 · ((𝐴 · 𝑥) mod 1)))
8382fveq2d 6879 . 2 (𝑎 = 𝑥 → (⌊‘(𝐵 · ((𝐴 · 𝑎) mod 1))) = (⌊‘(𝐵 · ((𝐴 · 𝑥) mod 1))))
84 oveq2 7411 . . . . 5 (𝑎 = 𝑦 → (𝐴 · 𝑎) = (𝐴 · 𝑦))
8584oveq1d 7418 . . . 4 (𝑎 = 𝑦 → ((𝐴 · 𝑎) mod 1) = ((𝐴 · 𝑦) mod 1))
8685oveq2d 7419 . . 3 (𝑎 = 𝑦 → (𝐵 · ((𝐴 · 𝑎) mod 1)) = (𝐵 · ((𝐴 · 𝑦) mod 1)))
8786fveq2d 6879 . 2 (𝑎 = 𝑦 → (⌊‘(𝐵 · ((𝐴 · 𝑎) mod 1))) = (⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1))))
886, 7, 18, 79, 83, 87fphpdo 42787 1 ((𝐴 ∈ ℝ+𝐵 ∈ ℕ) → ∃𝑥 ∈ (0...𝐵)∃𝑦 ∈ (0...𝐵)(𝑥 < 𝑦 ∧ (⌊‘(𝐵 · ((𝐴 · 𝑥) mod 1))) = (⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wrex 3060  wss 3926   class class class wbr 5119  cfv 6530  (class class class)co 7403  csdm 8956  cc 11125  cr 11126  0cc0 11127  1c1 11128   + caddc 11130   · cmul 11132   < clt 11267  cle 11268  cmin 11464  cn 12238  0cn0 12499  cz 12586  cuz 12850  +crp 13006  ...cfz 13522  cfl 13805   mod cmo 13884
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204  ax-pre-sup 11205
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-om 7860  df-1st 7986  df-2nd 7987  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-oadd 8482  df-er 8717  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-sup 9452  df-inf 9453  df-card 9951  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-div 11893  df-nn 12239  df-n0 12500  df-xnn0 12573  df-z 12587  df-uz 12851  df-rp 13007  df-fz 13523  df-fl 13807  df-mod 13885  df-hash 14347
This theorem is referenced by:  irrapxlem2  42793
  Copyright terms: Public domain W3C validator