Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  irrapxlem1 Structured version   Visualization version   GIF version

Theorem irrapxlem1 42778
Description: Lemma for irrapx1 42784. Divides the unit interval into 𝐵 half-open sections and using the pigeonhole principle fphpdo 42773 finds two multiples of 𝐴 in the same section mod 1. (Contributed by Stefan O'Rear, 12-Sep-2014.)
Assertion
Ref Expression
irrapxlem1 ((𝐴 ∈ ℝ+𝐵 ∈ ℕ) → ∃𝑥 ∈ (0...𝐵)∃𝑦 ∈ (0...𝐵)(𝑥 < 𝑦 ∧ (⌊‘(𝐵 · ((𝐴 · 𝑥) mod 1))) = (⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1)))))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦

Proof of Theorem irrapxlem1
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 fzssuz 13625 . . . 4 (0...𝐵) ⊆ (ℤ‘0)
2 uzssz 12924 . . . . 5 (ℤ‘0) ⊆ ℤ
3 zssre 12646 . . . . 5 ℤ ⊆ ℝ
42, 3sstri 4018 . . . 4 (ℤ‘0) ⊆ ℝ
51, 4sstri 4018 . . 3 (0...𝐵) ⊆ ℝ
65a1i 11 . 2 ((𝐴 ∈ ℝ+𝐵 ∈ ℕ) → (0...𝐵) ⊆ ℝ)
7 ovexd 7483 . 2 ((𝐴 ∈ ℝ+𝐵 ∈ ℕ) → (0...(𝐵 − 1)) ∈ V)
8 nnm1nn0 12594 . . . . 5 (𝐵 ∈ ℕ → (𝐵 − 1) ∈ ℕ0)
98adantl 481 . . . 4 ((𝐴 ∈ ℝ+𝐵 ∈ ℕ) → (𝐵 − 1) ∈ ℕ0)
10 nn0uz 12945 . . . 4 0 = (ℤ‘0)
119, 10eleqtrdi 2854 . . 3 ((𝐴 ∈ ℝ+𝐵 ∈ ℕ) → (𝐵 − 1) ∈ (ℤ‘0))
12 nnz 12660 . . . 4 (𝐵 ∈ ℕ → 𝐵 ∈ ℤ)
1312adantl 481 . . 3 ((𝐴 ∈ ℝ+𝐵 ∈ ℕ) → 𝐵 ∈ ℤ)
14 nnre 12300 . . . . 5 (𝐵 ∈ ℕ → 𝐵 ∈ ℝ)
1514adantl 481 . . . 4 ((𝐴 ∈ ℝ+𝐵 ∈ ℕ) → 𝐵 ∈ ℝ)
1615ltm1d 12227 . . 3 ((𝐴 ∈ ℝ+𝐵 ∈ ℕ) → (𝐵 − 1) < 𝐵)
17 fzsdom2 14477 . . 3 ((((𝐵 − 1) ∈ (ℤ‘0) ∧ 𝐵 ∈ ℤ) ∧ (𝐵 − 1) < 𝐵) → (0...(𝐵 − 1)) ≺ (0...𝐵))
1811, 13, 16, 17syl21anc 837 . 2 ((𝐴 ∈ ℝ+𝐵 ∈ ℕ) → (0...(𝐵 − 1)) ≺ (0...𝐵))
1914ad2antlr 726 . . . . . 6 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → 𝐵 ∈ ℝ)
20 rpre 13065 . . . . . . . . 9 (𝐴 ∈ ℝ+𝐴 ∈ ℝ)
2120ad2antrr 725 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → 𝐴 ∈ ℝ)
22 elfzelz 13584 . . . . . . . . . 10 (𝑎 ∈ (0...𝐵) → 𝑎 ∈ ℤ)
2322zred 12747 . . . . . . . . 9 (𝑎 ∈ (0...𝐵) → 𝑎 ∈ ℝ)
2423adantl 481 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → 𝑎 ∈ ℝ)
2521, 24remulcld 11320 . . . . . . 7 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → (𝐴 · 𝑎) ∈ ℝ)
26 1rp 13061 . . . . . . 7 1 ∈ ℝ+
27 modcl 13924 . . . . . . 7 (((𝐴 · 𝑎) ∈ ℝ ∧ 1 ∈ ℝ+) → ((𝐴 · 𝑎) mod 1) ∈ ℝ)
2825, 26, 27sylancl 585 . . . . . 6 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → ((𝐴 · 𝑎) mod 1) ∈ ℝ)
2919, 28remulcld 11320 . . . . 5 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → (𝐵 · ((𝐴 · 𝑎) mod 1)) ∈ ℝ)
3029flcld 13849 . . . 4 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → (⌊‘(𝐵 · ((𝐴 · 𝑎) mod 1))) ∈ ℤ)
3119recnd 11318 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → 𝐵 ∈ ℂ)
3231mul01d 11489 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → (𝐵 · 0) = 0)
33 modge0 13930 . . . . . . . . . 10 (((𝐴 · 𝑎) ∈ ℝ ∧ 1 ∈ ℝ+) → 0 ≤ ((𝐴 · 𝑎) mod 1))
3425, 26, 33sylancl 585 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → 0 ≤ ((𝐴 · 𝑎) mod 1))
35 0red 11293 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → 0 ∈ ℝ)
36 nngt0 12324 . . . . . . . . . . 11 (𝐵 ∈ ℕ → 0 < 𝐵)
3736ad2antlr 726 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → 0 < 𝐵)
38 lemul2 12147 . . . . . . . . . 10 ((0 ∈ ℝ ∧ ((𝐴 · 𝑎) mod 1) ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → (0 ≤ ((𝐴 · 𝑎) mod 1) ↔ (𝐵 · 0) ≤ (𝐵 · ((𝐴 · 𝑎) mod 1))))
3935, 28, 19, 37, 38syl112anc 1374 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → (0 ≤ ((𝐴 · 𝑎) mod 1) ↔ (𝐵 · 0) ≤ (𝐵 · ((𝐴 · 𝑎) mod 1))))
4034, 39mpbid 232 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → (𝐵 · 0) ≤ (𝐵 · ((𝐴 · 𝑎) mod 1)))
4132, 40eqbrtrrd 5190 . . . . . . 7 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → 0 ≤ (𝐵 · ((𝐴 · 𝑎) mod 1)))
4235, 29lenltd 11436 . . . . . . 7 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → (0 ≤ (𝐵 · ((𝐴 · 𝑎) mod 1)) ↔ ¬ (𝐵 · ((𝐴 · 𝑎) mod 1)) < 0))
4341, 42mpbid 232 . . . . . 6 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → ¬ (𝐵 · ((𝐴 · 𝑎) mod 1)) < 0)
44 0z 12650 . . . . . . 7 0 ∈ ℤ
45 fllt 13857 . . . . . . 7 (((𝐵 · ((𝐴 · 𝑎) mod 1)) ∈ ℝ ∧ 0 ∈ ℤ) → ((𝐵 · ((𝐴 · 𝑎) mod 1)) < 0 ↔ (⌊‘(𝐵 · ((𝐴 · 𝑎) mod 1))) < 0))
4629, 44, 45sylancl 585 . . . . . 6 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → ((𝐵 · ((𝐴 · 𝑎) mod 1)) < 0 ↔ (⌊‘(𝐵 · ((𝐴 · 𝑎) mod 1))) < 0))
4743, 46mtbid 324 . . . . 5 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → ¬ (⌊‘(𝐵 · ((𝐴 · 𝑎) mod 1))) < 0)
4830zred 12747 . . . . . 6 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → (⌊‘(𝐵 · ((𝐴 · 𝑎) mod 1))) ∈ ℝ)
4935, 48lenltd 11436 . . . . 5 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → (0 ≤ (⌊‘(𝐵 · ((𝐴 · 𝑎) mod 1))) ↔ ¬ (⌊‘(𝐵 · ((𝐴 · 𝑎) mod 1))) < 0))
5047, 49mpbird 257 . . . 4 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → 0 ≤ (⌊‘(𝐵 · ((𝐴 · 𝑎) mod 1))))
51 elnn0z 12652 . . . 4 ((⌊‘(𝐵 · ((𝐴 · 𝑎) mod 1))) ∈ ℕ0 ↔ ((⌊‘(𝐵 · ((𝐴 · 𝑎) mod 1))) ∈ ℤ ∧ 0 ≤ (⌊‘(𝐵 · ((𝐴 · 𝑎) mod 1)))))
5230, 50, 51sylanbrc 582 . . 3 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → (⌊‘(𝐵 · ((𝐴 · 𝑎) mod 1))) ∈ ℕ0)
538ad2antlr 726 . . 3 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → (𝐵 − 1) ∈ ℕ0)
54 flle 13850 . . . . . . 7 ((𝐵 · ((𝐴 · 𝑎) mod 1)) ∈ ℝ → (⌊‘(𝐵 · ((𝐴 · 𝑎) mod 1))) ≤ (𝐵 · ((𝐴 · 𝑎) mod 1)))
5529, 54syl 17 . . . . . 6 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → (⌊‘(𝐵 · ((𝐴 · 𝑎) mod 1))) ≤ (𝐵 · ((𝐴 · 𝑎) mod 1)))
56 modlt 13931 . . . . . . . . 9 (((𝐴 · 𝑎) ∈ ℝ ∧ 1 ∈ ℝ+) → ((𝐴 · 𝑎) mod 1) < 1)
5725, 26, 56sylancl 585 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → ((𝐴 · 𝑎) mod 1) < 1)
58 1red 11291 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → 1 ∈ ℝ)
59 ltmul2 12145 . . . . . . . . 9 ((((𝐴 · 𝑎) mod 1) ∈ ℝ ∧ 1 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → (((𝐴 · 𝑎) mod 1) < 1 ↔ (𝐵 · ((𝐴 · 𝑎) mod 1)) < (𝐵 · 1)))
6028, 58, 19, 37, 59syl112anc 1374 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → (((𝐴 · 𝑎) mod 1) < 1 ↔ (𝐵 · ((𝐴 · 𝑎) mod 1)) < (𝐵 · 1)))
6157, 60mpbid 232 . . . . . . 7 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → (𝐵 · ((𝐴 · 𝑎) mod 1)) < (𝐵 · 1))
6231mulridd 11307 . . . . . . 7 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → (𝐵 · 1) = 𝐵)
6361, 62breqtrd 5192 . . . . . 6 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → (𝐵 · ((𝐴 · 𝑎) mod 1)) < 𝐵)
6448, 29, 19, 55, 63lelttrd 11448 . . . . 5 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → (⌊‘(𝐵 · ((𝐴 · 𝑎) mod 1))) < 𝐵)
65 nncn 12301 . . . . . . 7 (𝐵 ∈ ℕ → 𝐵 ∈ ℂ)
66 ax-1cn 11242 . . . . . . 7 1 ∈ ℂ
67 npcan 11545 . . . . . . 7 ((𝐵 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐵 − 1) + 1) = 𝐵)
6865, 66, 67sylancl 585 . . . . . 6 (𝐵 ∈ ℕ → ((𝐵 − 1) + 1) = 𝐵)
6968ad2antlr 726 . . . . 5 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → ((𝐵 − 1) + 1) = 𝐵)
7064, 69breqtrrd 5194 . . . 4 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → (⌊‘(𝐵 · ((𝐴 · 𝑎) mod 1))) < ((𝐵 − 1) + 1))
7112ad2antlr 726 . . . . . 6 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → 𝐵 ∈ ℤ)
72 1z 12673 . . . . . 6 1 ∈ ℤ
73 zsubcl 12685 . . . . . 6 ((𝐵 ∈ ℤ ∧ 1 ∈ ℤ) → (𝐵 − 1) ∈ ℤ)
7471, 72, 73sylancl 585 . . . . 5 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → (𝐵 − 1) ∈ ℤ)
75 zleltp1 12694 . . . . 5 (((⌊‘(𝐵 · ((𝐴 · 𝑎) mod 1))) ∈ ℤ ∧ (𝐵 − 1) ∈ ℤ) → ((⌊‘(𝐵 · ((𝐴 · 𝑎) mod 1))) ≤ (𝐵 − 1) ↔ (⌊‘(𝐵 · ((𝐴 · 𝑎) mod 1))) < ((𝐵 − 1) + 1)))
7630, 74, 75syl2anc 583 . . . 4 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → ((⌊‘(𝐵 · ((𝐴 · 𝑎) mod 1))) ≤ (𝐵 − 1) ↔ (⌊‘(𝐵 · ((𝐴 · 𝑎) mod 1))) < ((𝐵 − 1) + 1)))
7770, 76mpbird 257 . . 3 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → (⌊‘(𝐵 · ((𝐴 · 𝑎) mod 1))) ≤ (𝐵 − 1))
78 elfz2nn0 13675 . . 3 ((⌊‘(𝐵 · ((𝐴 · 𝑎) mod 1))) ∈ (0...(𝐵 − 1)) ↔ ((⌊‘(𝐵 · ((𝐴 · 𝑎) mod 1))) ∈ ℕ0 ∧ (𝐵 − 1) ∈ ℕ0 ∧ (⌊‘(𝐵 · ((𝐴 · 𝑎) mod 1))) ≤ (𝐵 − 1)))
7952, 53, 77, 78syl3anbrc 1343 . 2 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → (⌊‘(𝐵 · ((𝐴 · 𝑎) mod 1))) ∈ (0...(𝐵 − 1)))
80 oveq2 7456 . . . . 5 (𝑎 = 𝑥 → (𝐴 · 𝑎) = (𝐴 · 𝑥))
8180oveq1d 7463 . . . 4 (𝑎 = 𝑥 → ((𝐴 · 𝑎) mod 1) = ((𝐴 · 𝑥) mod 1))
8281oveq2d 7464 . . 3 (𝑎 = 𝑥 → (𝐵 · ((𝐴 · 𝑎) mod 1)) = (𝐵 · ((𝐴 · 𝑥) mod 1)))
8382fveq2d 6924 . 2 (𝑎 = 𝑥 → (⌊‘(𝐵 · ((𝐴 · 𝑎) mod 1))) = (⌊‘(𝐵 · ((𝐴 · 𝑥) mod 1))))
84 oveq2 7456 . . . . 5 (𝑎 = 𝑦 → (𝐴 · 𝑎) = (𝐴 · 𝑦))
8584oveq1d 7463 . . . 4 (𝑎 = 𝑦 → ((𝐴 · 𝑎) mod 1) = ((𝐴 · 𝑦) mod 1))
8685oveq2d 7464 . . 3 (𝑎 = 𝑦 → (𝐵 · ((𝐴 · 𝑎) mod 1)) = (𝐵 · ((𝐴 · 𝑦) mod 1)))
8786fveq2d 6924 . 2 (𝑎 = 𝑦 → (⌊‘(𝐵 · ((𝐴 · 𝑎) mod 1))) = (⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1))))
886, 7, 18, 79, 83, 87fphpdo 42773 1 ((𝐴 ∈ ℝ+𝐵 ∈ ℕ) → ∃𝑥 ∈ (0...𝐵)∃𝑦 ∈ (0...𝐵)(𝑥 < 𝑦 ∧ (⌊‘(𝐵 · ((𝐴 · 𝑥) mod 1))) = (⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wrex 3076  wss 3976   class class class wbr 5166  cfv 6573  (class class class)co 7448  csdm 9002  cc 11182  cr 11183  0cc0 11184  1c1 11185   + caddc 11187   · cmul 11189   < clt 11324  cle 11325  cmin 11520  cn 12293  0cn0 12553  cz 12639  cuz 12903  +crp 13057  ...cfz 13567  cfl 13841   mod cmo 13920
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-oadd 8526  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-inf 9512  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-n0 12554  df-xnn0 12626  df-z 12640  df-uz 12904  df-rp 13058  df-fz 13568  df-fl 13843  df-mod 13921  df-hash 14380
This theorem is referenced by:  irrapxlem2  42779
  Copyright terms: Public domain W3C validator