Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 2prm | Structured version Visualization version GIF version |
Description: 2 is a prime number. (Contributed by Paul Chapman, 22-Jun-2011.) (Proof shortened by Fan Zheng, 16-Jun-2016.) |
Ref | Expression |
---|---|
2prm | ⊢ 2 ∈ ℙ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2z 12282 | . . 3 ⊢ 2 ∈ ℤ | |
2 | 1lt2 12074 | . . 3 ⊢ 1 < 2 | |
3 | eluz2b1 12588 | . . 3 ⊢ (2 ∈ (ℤ≥‘2) ↔ (2 ∈ ℤ ∧ 1 < 2)) | |
4 | 1, 2, 3 | mpbir2an 707 | . 2 ⊢ 2 ∈ (ℤ≥‘2) |
5 | ral0 4440 | . . 3 ⊢ ∀𝑧 ∈ ∅ ¬ 𝑧 ∥ 2 | |
6 | fzssuz 13226 | . . . . . 6 ⊢ (2...(2 − 1)) ⊆ (ℤ≥‘2) | |
7 | df-ss 3900 | . . . . . 6 ⊢ ((2...(2 − 1)) ⊆ (ℤ≥‘2) ↔ ((2...(2 − 1)) ∩ (ℤ≥‘2)) = (2...(2 − 1))) | |
8 | 6, 7 | mpbi 229 | . . . . 5 ⊢ ((2...(2 − 1)) ∩ (ℤ≥‘2)) = (2...(2 − 1)) |
9 | uzdisj 13258 | . . . . 5 ⊢ ((2...(2 − 1)) ∩ (ℤ≥‘2)) = ∅ | |
10 | 8, 9 | eqtr3i 2768 | . . . 4 ⊢ (2...(2 − 1)) = ∅ |
11 | 10 | raleqi 3337 | . . 3 ⊢ (∀𝑧 ∈ (2...(2 − 1)) ¬ 𝑧 ∥ 2 ↔ ∀𝑧 ∈ ∅ ¬ 𝑧 ∥ 2) |
12 | 5, 11 | mpbir 230 | . 2 ⊢ ∀𝑧 ∈ (2...(2 − 1)) ¬ 𝑧 ∥ 2 |
13 | isprm3 16316 | . 2 ⊢ (2 ∈ ℙ ↔ (2 ∈ (ℤ≥‘2) ∧ ∀𝑧 ∈ (2...(2 − 1)) ¬ 𝑧 ∥ 2)) | |
14 | 4, 12, 13 | mpbir2an 707 | 1 ⊢ 2 ∈ ℙ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ∩ cin 3882 ⊆ wss 3883 ∅c0 4253 class class class wbr 5070 ‘cfv 6418 (class class class)co 7255 1c1 10803 < clt 10940 − cmin 11135 2c2 11958 ℤcz 12249 ℤ≥cuz 12511 ...cfz 13168 ∥ cdvds 15891 ℙcprime 16304 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-2o 8268 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-sup 9131 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-n0 12164 df-z 12250 df-uz 12512 df-rp 12660 df-fz 13169 df-seq 13650 df-exp 13711 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-dvds 15892 df-prm 16305 |
This theorem is referenced by: 2mulprm 16326 ge2nprmge4 16334 isoddgcd1 16363 3lcm2e6 16364 pythagtriplem4 16448 pc2dvds 16508 oddprmdvds 16532 prmo2 16669 prmgaplem3 16682 lt6abl 19411 2logb9irr 25850 2logb3irr 25852 ppi2 26224 cht2 26226 1sgm2ppw 26253 perfectlem1 26282 perfectlem2 26283 perfect 26284 bpos1 26336 lgs2 26367 lgsdir2 26383 lgseisenlem2 26429 lgsquad2lem1 26437 lgsquad2lem2 26438 lgsquad3 26440 m1lgs 26441 2lgs 26460 2lgsoddprm 26469 dchrisum0flb 26563 numclwwlk5lem 28652 hgt750lemd 32528 12gcd5e1 39939 fltne 40397 flt4lem5a 40405 flt4lem5b 40406 flt4lem5c 40407 flt4lem5d 40408 flt4lem5e 40409 goldbachthlem2 44886 odz2prm2pw 44903 fmtnoprmfac1 44905 fmtnoprmfac2 44907 lighneallem2 44946 lighneallem3 44947 lighneallem4 44950 proththd 44954 isodd7 45005 gcd2odd1 45008 perfectALTV 45063 7gbow 45112 sbgoldbalt 45121 sgoldbeven3prm 45123 sbgoldbo 45127 nnsum3primes4 45128 nnsum3primesle9 45134 zlmodzxznm 45726 |
Copyright terms: Public domain | W3C validator |