| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2prm | Structured version Visualization version GIF version | ||
| Description: 2 is a prime number. (Contributed by Paul Chapman, 22-Jun-2011.) (Proof shortened by Fan Zheng, 16-Jun-2016.) |
| Ref | Expression |
|---|---|
| 2prm | ⊢ 2 ∈ ℙ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2z 12565 | . . 3 ⊢ 2 ∈ ℤ | |
| 2 | 1lt2 12352 | . . 3 ⊢ 1 < 2 | |
| 3 | eluz2b1 12878 | . . 3 ⊢ (2 ∈ (ℤ≥‘2) ↔ (2 ∈ ℤ ∧ 1 < 2)) | |
| 4 | 1, 2, 3 | mpbir2an 711 | . 2 ⊢ 2 ∈ (ℤ≥‘2) |
| 5 | ral0 4476 | . . 3 ⊢ ∀𝑧 ∈ ∅ ¬ 𝑧 ∥ 2 | |
| 6 | fzssuz 13526 | . . . . . 6 ⊢ (2...(2 − 1)) ⊆ (ℤ≥‘2) | |
| 7 | dfss2 3932 | . . . . . 6 ⊢ ((2...(2 − 1)) ⊆ (ℤ≥‘2) ↔ ((2...(2 − 1)) ∩ (ℤ≥‘2)) = (2...(2 − 1))) | |
| 8 | 6, 7 | mpbi 230 | . . . . 5 ⊢ ((2...(2 − 1)) ∩ (ℤ≥‘2)) = (2...(2 − 1)) |
| 9 | uzdisj 13558 | . . . . 5 ⊢ ((2...(2 − 1)) ∩ (ℤ≥‘2)) = ∅ | |
| 10 | 8, 9 | eqtr3i 2754 | . . . 4 ⊢ (2...(2 − 1)) = ∅ |
| 11 | 10 | raleqi 3297 | . . 3 ⊢ (∀𝑧 ∈ (2...(2 − 1)) ¬ 𝑧 ∥ 2 ↔ ∀𝑧 ∈ ∅ ¬ 𝑧 ∥ 2) |
| 12 | 5, 11 | mpbir 231 | . 2 ⊢ ∀𝑧 ∈ (2...(2 − 1)) ¬ 𝑧 ∥ 2 |
| 13 | isprm3 16653 | . 2 ⊢ (2 ∈ ℙ ↔ (2 ∈ (ℤ≥‘2) ∧ ∀𝑧 ∈ (2...(2 − 1)) ¬ 𝑧 ∥ 2)) | |
| 14 | 4, 12, 13 | mpbir2an 711 | 1 ⊢ 2 ∈ ℙ |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∩ cin 3913 ⊆ wss 3914 ∅c0 4296 class class class wbr 5107 ‘cfv 6511 (class class class)co 7387 1c1 11069 < clt 11208 − cmin 11405 2c2 12241 ℤcz 12529 ℤ≥cuz 12793 ...cfz 13468 ∥ cdvds 16222 ℙcprime 16641 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-sup 9393 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-n0 12443 df-z 12530 df-uz 12794 df-rp 12952 df-fz 13469 df-seq 13967 df-exp 14027 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 df-dvds 16223 df-prm 16642 |
| This theorem is referenced by: 2mulprm 16663 ge2nprmge4 16671 isoddgcd1 16701 3lcm2e6 16702 pythagtriplem4 16790 pc2dvds 16850 oddprmdvds 16874 prmo2 17011 prmgaplem3 17024 lt6abl 19825 2logb9irr 26705 2logb3irr 26707 ppi2 27080 cht2 27082 1sgm2ppw 27111 perfectlem1 27140 perfectlem2 27141 perfect 27142 bpos1 27194 lgs2 27225 lgsdir2 27241 lgseisenlem2 27287 lgsquad2lem1 27295 lgsquad2lem2 27296 lgsquad3 27298 m1lgs 27299 2lgs 27318 2lgsoddprm 27327 dchrisum0flb 27421 numclwwlk5lem 30316 constrext2chnlem 33740 2sqr3minply 33770 2sqr3nconstr 33771 cos9thpinconstrlem2 33780 hgt750lemd 34639 12gcd5e1 41991 fltne 42632 flt4lem5a 42640 flt4lem5b 42641 flt4lem5c 42642 flt4lem5d 42643 flt4lem5e 42644 goldbachthlem2 47547 odz2prm2pw 47564 fmtnoprmfac1 47566 fmtnoprmfac2 47568 lighneallem2 47607 lighneallem3 47608 lighneallem4 47611 proththd 47615 isodd7 47666 gcd2odd1 47669 perfectALTV 47724 7gbow 47773 sbgoldbalt 47782 sgoldbeven3prm 47784 sbgoldbo 47788 nnsum3primes4 47789 nnsum3primesle9 47795 zlmodzxznm 48486 |
| Copyright terms: Public domain | W3C validator |