![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2prm | Structured version Visualization version GIF version |
Description: 2 is a prime number. (Contributed by Paul Chapman, 22-Jun-2011.) (Proof shortened by Fan Zheng, 16-Jun-2016.) |
Ref | Expression |
---|---|
2prm | ⊢ 2 ∈ ℙ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2z 12594 | . . 3 ⊢ 2 ∈ ℤ | |
2 | 1lt2 12383 | . . 3 ⊢ 1 < 2 | |
3 | eluz2b1 12903 | . . 3 ⊢ (2 ∈ (ℤ≥‘2) ↔ (2 ∈ ℤ ∧ 1 < 2)) | |
4 | 1, 2, 3 | mpbir2an 710 | . 2 ⊢ 2 ∈ (ℤ≥‘2) |
5 | ral0 4513 | . . 3 ⊢ ∀𝑧 ∈ ∅ ¬ 𝑧 ∥ 2 | |
6 | fzssuz 13542 | . . . . . 6 ⊢ (2...(2 − 1)) ⊆ (ℤ≥‘2) | |
7 | df-ss 3966 | . . . . . 6 ⊢ ((2...(2 − 1)) ⊆ (ℤ≥‘2) ↔ ((2...(2 − 1)) ∩ (ℤ≥‘2)) = (2...(2 − 1))) | |
8 | 6, 7 | mpbi 229 | . . . . 5 ⊢ ((2...(2 − 1)) ∩ (ℤ≥‘2)) = (2...(2 − 1)) |
9 | uzdisj 13574 | . . . . 5 ⊢ ((2...(2 − 1)) ∩ (ℤ≥‘2)) = ∅ | |
10 | 8, 9 | eqtr3i 2763 | . . . 4 ⊢ (2...(2 − 1)) = ∅ |
11 | 10 | raleqi 3324 | . . 3 ⊢ (∀𝑧 ∈ (2...(2 − 1)) ¬ 𝑧 ∥ 2 ↔ ∀𝑧 ∈ ∅ ¬ 𝑧 ∥ 2) |
12 | 5, 11 | mpbir 230 | . 2 ⊢ ∀𝑧 ∈ (2...(2 − 1)) ¬ 𝑧 ∥ 2 |
13 | isprm3 16620 | . 2 ⊢ (2 ∈ ℙ ↔ (2 ∈ (ℤ≥‘2) ∧ ∀𝑧 ∈ (2...(2 − 1)) ¬ 𝑧 ∥ 2)) | |
14 | 4, 12, 13 | mpbir2an 710 | 1 ⊢ 2 ∈ ℙ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1542 ∈ wcel 2107 ∀wral 3062 ∩ cin 3948 ⊆ wss 3949 ∅c0 4323 class class class wbr 5149 ‘cfv 6544 (class class class)co 7409 1c1 11111 < clt 11248 − cmin 11444 2c2 12267 ℤcz 12558 ℤ≥cuz 12822 ...cfz 13484 ∥ cdvds 16197 ℙcprime 16608 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 ax-pre-sup 11188 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-1st 7975 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-1o 8466 df-2o 8467 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-fin 8943 df-sup 9437 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-div 11872 df-nn 12213 df-2 12275 df-3 12276 df-n0 12473 df-z 12559 df-uz 12823 df-rp 12975 df-fz 13485 df-seq 13967 df-exp 14028 df-cj 15046 df-re 15047 df-im 15048 df-sqrt 15182 df-abs 15183 df-dvds 16198 df-prm 16609 |
This theorem is referenced by: 2mulprm 16630 ge2nprmge4 16638 isoddgcd1 16667 3lcm2e6 16668 pythagtriplem4 16752 pc2dvds 16812 oddprmdvds 16836 prmo2 16973 prmgaplem3 16986 lt6abl 19763 2logb9irr 26300 2logb3irr 26302 ppi2 26674 cht2 26676 1sgm2ppw 26703 perfectlem1 26732 perfectlem2 26733 perfect 26734 bpos1 26786 lgs2 26817 lgsdir2 26833 lgseisenlem2 26879 lgsquad2lem1 26887 lgsquad2lem2 26888 lgsquad3 26890 m1lgs 26891 2lgs 26910 2lgsoddprm 26919 dchrisum0flb 27013 numclwwlk5lem 29640 hgt750lemd 33660 12gcd5e1 40868 fltne 41386 flt4lem5a 41394 flt4lem5b 41395 flt4lem5c 41396 flt4lem5d 41397 flt4lem5e 41398 goldbachthlem2 46214 odz2prm2pw 46231 fmtnoprmfac1 46233 fmtnoprmfac2 46235 lighneallem2 46274 lighneallem3 46275 lighneallem4 46278 proththd 46282 isodd7 46333 gcd2odd1 46336 perfectALTV 46391 7gbow 46440 sbgoldbalt 46449 sgoldbeven3prm 46451 sbgoldbo 46455 nnsum3primes4 46456 nnsum3primesle9 46462 zlmodzxznm 47178 |
Copyright terms: Public domain | W3C validator |