Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 2prm | Structured version Visualization version GIF version |
Description: 2 is a prime number. (Contributed by Paul Chapman, 22-Jun-2011.) (Proof shortened by Fan Zheng, 16-Jun-2016.) |
Ref | Expression |
---|---|
2prm | ⊢ 2 ∈ ℙ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2z 12361 | . . 3 ⊢ 2 ∈ ℤ | |
2 | 1lt2 12153 | . . 3 ⊢ 1 < 2 | |
3 | eluz2b1 12668 | . . 3 ⊢ (2 ∈ (ℤ≥‘2) ↔ (2 ∈ ℤ ∧ 1 < 2)) | |
4 | 1, 2, 3 | mpbir2an 708 | . 2 ⊢ 2 ∈ (ℤ≥‘2) |
5 | ral0 4444 | . . 3 ⊢ ∀𝑧 ∈ ∅ ¬ 𝑧 ∥ 2 | |
6 | fzssuz 13306 | . . . . . 6 ⊢ (2...(2 − 1)) ⊆ (ℤ≥‘2) | |
7 | df-ss 3905 | . . . . . 6 ⊢ ((2...(2 − 1)) ⊆ (ℤ≥‘2) ↔ ((2...(2 − 1)) ∩ (ℤ≥‘2)) = (2...(2 − 1))) | |
8 | 6, 7 | mpbi 229 | . . . . 5 ⊢ ((2...(2 − 1)) ∩ (ℤ≥‘2)) = (2...(2 − 1)) |
9 | uzdisj 13338 | . . . . 5 ⊢ ((2...(2 − 1)) ∩ (ℤ≥‘2)) = ∅ | |
10 | 8, 9 | eqtr3i 2769 | . . . 4 ⊢ (2...(2 − 1)) = ∅ |
11 | 10 | raleqi 3347 | . . 3 ⊢ (∀𝑧 ∈ (2...(2 − 1)) ¬ 𝑧 ∥ 2 ↔ ∀𝑧 ∈ ∅ ¬ 𝑧 ∥ 2) |
12 | 5, 11 | mpbir 230 | . 2 ⊢ ∀𝑧 ∈ (2...(2 − 1)) ¬ 𝑧 ∥ 2 |
13 | isprm3 16397 | . 2 ⊢ (2 ∈ ℙ ↔ (2 ∈ (ℤ≥‘2) ∧ ∀𝑧 ∈ (2...(2 − 1)) ¬ 𝑧 ∥ 2)) | |
14 | 4, 12, 13 | mpbir2an 708 | 1 ⊢ 2 ∈ ℙ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1539 ∈ wcel 2107 ∀wral 3065 ∩ cin 3887 ⊆ wss 3888 ∅c0 4257 class class class wbr 5075 ‘cfv 6437 (class class class)co 7284 1c1 10881 < clt 11018 − cmin 11214 2c2 12037 ℤcz 12328 ℤ≥cuz 12591 ...cfz 13248 ∥ cdvds 15972 ℙcprime 16385 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2710 ax-sep 5224 ax-nul 5231 ax-pow 5289 ax-pr 5353 ax-un 7597 ax-cnex 10936 ax-resscn 10937 ax-1cn 10938 ax-icn 10939 ax-addcl 10940 ax-addrcl 10941 ax-mulcl 10942 ax-mulrcl 10943 ax-mulcom 10944 ax-addass 10945 ax-mulass 10946 ax-distr 10947 ax-i2m1 10948 ax-1ne0 10949 ax-1rid 10950 ax-rnegex 10951 ax-rrecex 10952 ax-cnre 10953 ax-pre-lttri 10954 ax-pre-lttrn 10955 ax-pre-ltadd 10956 ax-pre-mulgt0 10957 ax-pre-sup 10958 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-rmo 3072 df-reu 3073 df-rab 3074 df-v 3435 df-sbc 3718 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-pss 3907 df-nul 4258 df-if 4461 df-pw 4536 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-iun 4927 df-br 5076 df-opab 5138 df-mpt 5159 df-tr 5193 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6206 df-ord 6273 df-on 6274 df-lim 6275 df-suc 6276 df-iota 6395 df-fun 6439 df-fn 6440 df-f 6441 df-f1 6442 df-fo 6443 df-f1o 6444 df-fv 6445 df-riota 7241 df-ov 7287 df-oprab 7288 df-mpo 7289 df-om 7722 df-1st 7840 df-2nd 7841 df-frecs 8106 df-wrecs 8137 df-recs 8211 df-rdg 8250 df-1o 8306 df-2o 8307 df-er 8507 df-en 8743 df-dom 8744 df-sdom 8745 df-fin 8746 df-sup 9210 df-pnf 11020 df-mnf 11021 df-xr 11022 df-ltxr 11023 df-le 11024 df-sub 11216 df-neg 11217 df-div 11642 df-nn 11983 df-2 12045 df-3 12046 df-n0 12243 df-z 12329 df-uz 12592 df-rp 12740 df-fz 13249 df-seq 13731 df-exp 13792 df-cj 14819 df-re 14820 df-im 14821 df-sqrt 14955 df-abs 14956 df-dvds 15973 df-prm 16386 |
This theorem is referenced by: 2mulprm 16407 ge2nprmge4 16415 isoddgcd1 16444 3lcm2e6 16445 pythagtriplem4 16529 pc2dvds 16589 oddprmdvds 16613 prmo2 16750 prmgaplem3 16763 lt6abl 19505 2logb9irr 25954 2logb3irr 25956 ppi2 26328 cht2 26330 1sgm2ppw 26357 perfectlem1 26386 perfectlem2 26387 perfect 26388 bpos1 26440 lgs2 26471 lgsdir2 26487 lgseisenlem2 26533 lgsquad2lem1 26541 lgsquad2lem2 26542 lgsquad3 26544 m1lgs 26545 2lgs 26564 2lgsoddprm 26573 dchrisum0flb 26667 numclwwlk5lem 28760 hgt750lemd 32637 12gcd5e1 40018 fltne 40488 flt4lem5a 40496 flt4lem5b 40497 flt4lem5c 40498 flt4lem5d 40499 flt4lem5e 40500 goldbachthlem2 45009 odz2prm2pw 45026 fmtnoprmfac1 45028 fmtnoprmfac2 45030 lighneallem2 45069 lighneallem3 45070 lighneallem4 45073 proththd 45077 isodd7 45128 gcd2odd1 45131 perfectALTV 45186 7gbow 45235 sbgoldbalt 45244 sgoldbeven3prm 45246 sbgoldbo 45250 nnsum3primes4 45251 nnsum3primesle9 45257 zlmodzxznm 45849 |
Copyright terms: Public domain | W3C validator |