| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2prm | Structured version Visualization version GIF version | ||
| Description: 2 is a prime number. (Contributed by Paul Chapman, 22-Jun-2011.) (Proof shortened by Fan Zheng, 16-Jun-2016.) |
| Ref | Expression |
|---|---|
| 2prm | ⊢ 2 ∈ ℙ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2z 12525 | . . 3 ⊢ 2 ∈ ℤ | |
| 2 | 1lt2 12312 | . . 3 ⊢ 1 < 2 | |
| 3 | eluz2b1 12838 | . . 3 ⊢ (2 ∈ (ℤ≥‘2) ↔ (2 ∈ ℤ ∧ 1 < 2)) | |
| 4 | 1, 2, 3 | mpbir2an 711 | . 2 ⊢ 2 ∈ (ℤ≥‘2) |
| 5 | ral0 4466 | . . 3 ⊢ ∀𝑧 ∈ ∅ ¬ 𝑧 ∥ 2 | |
| 6 | fzssuz 13486 | . . . . . 6 ⊢ (2...(2 − 1)) ⊆ (ℤ≥‘2) | |
| 7 | dfss2 3923 | . . . . . 6 ⊢ ((2...(2 − 1)) ⊆ (ℤ≥‘2) ↔ ((2...(2 − 1)) ∩ (ℤ≥‘2)) = (2...(2 − 1))) | |
| 8 | 6, 7 | mpbi 230 | . . . . 5 ⊢ ((2...(2 − 1)) ∩ (ℤ≥‘2)) = (2...(2 − 1)) |
| 9 | uzdisj 13518 | . . . . 5 ⊢ ((2...(2 − 1)) ∩ (ℤ≥‘2)) = ∅ | |
| 10 | 8, 9 | eqtr3i 2754 | . . . 4 ⊢ (2...(2 − 1)) = ∅ |
| 11 | 10 | raleqi 3288 | . . 3 ⊢ (∀𝑧 ∈ (2...(2 − 1)) ¬ 𝑧 ∥ 2 ↔ ∀𝑧 ∈ ∅ ¬ 𝑧 ∥ 2) |
| 12 | 5, 11 | mpbir 231 | . 2 ⊢ ∀𝑧 ∈ (2...(2 − 1)) ¬ 𝑧 ∥ 2 |
| 13 | isprm3 16612 | . 2 ⊢ (2 ∈ ℙ ↔ (2 ∈ (ℤ≥‘2) ∧ ∀𝑧 ∈ (2...(2 − 1)) ¬ 𝑧 ∥ 2)) | |
| 14 | 4, 12, 13 | mpbir2an 711 | 1 ⊢ 2 ∈ ℙ |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∩ cin 3904 ⊆ wss 3905 ∅c0 4286 class class class wbr 5095 ‘cfv 6486 (class class class)co 7353 1c1 11029 < clt 11168 − cmin 11365 2c2 12201 ℤcz 12489 ℤ≥cuz 12753 ...cfz 13428 ∥ cdvds 16181 ℙcprime 16600 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-pre-sup 11106 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-2o 8396 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-sup 9351 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-div 11796 df-nn 12147 df-2 12209 df-3 12210 df-n0 12403 df-z 12490 df-uz 12754 df-rp 12912 df-fz 13429 df-seq 13927 df-exp 13987 df-cj 15024 df-re 15025 df-im 15026 df-sqrt 15160 df-abs 15161 df-dvds 16182 df-prm 16601 |
| This theorem is referenced by: 2mulprm 16622 ge2nprmge4 16630 isoddgcd1 16660 3lcm2e6 16661 pythagtriplem4 16749 pc2dvds 16809 oddprmdvds 16833 prmo2 16970 prmgaplem3 16983 lt6abl 19792 2logb9irr 26721 2logb3irr 26723 ppi2 27096 cht2 27098 1sgm2ppw 27127 perfectlem1 27156 perfectlem2 27157 perfect 27158 bpos1 27210 lgs2 27241 lgsdir2 27257 lgseisenlem2 27303 lgsquad2lem1 27311 lgsquad2lem2 27312 lgsquad3 27314 m1lgs 27315 2lgs 27334 2lgsoddprm 27343 dchrisum0flb 27437 numclwwlk5lem 30349 constrext2chnlem 33716 2sqr3minply 33746 2sqr3nconstr 33747 cos9thpinconstrlem2 33756 hgt750lemd 34615 12gcd5e1 41976 fltne 42617 flt4lem5a 42625 flt4lem5b 42626 flt4lem5c 42627 flt4lem5d 42628 flt4lem5e 42629 goldbachthlem2 47531 odz2prm2pw 47548 fmtnoprmfac1 47550 fmtnoprmfac2 47552 lighneallem2 47591 lighneallem3 47592 lighneallem4 47595 proththd 47599 isodd7 47650 gcd2odd1 47653 perfectALTV 47708 7gbow 47757 sbgoldbalt 47766 sgoldbeven3prm 47768 sbgoldbo 47772 nnsum3primes4 47773 nnsum3primesle9 47779 zlmodzxznm 48483 |
| Copyright terms: Public domain | W3C validator |