| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2prm | Structured version Visualization version GIF version | ||
| Description: 2 is a prime number. (Contributed by Paul Chapman, 22-Jun-2011.) (Proof shortened by Fan Zheng, 16-Jun-2016.) |
| Ref | Expression |
|---|---|
| 2prm | ⊢ 2 ∈ ℙ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2z 12624 | . . 3 ⊢ 2 ∈ ℤ | |
| 2 | 1lt2 12411 | . . 3 ⊢ 1 < 2 | |
| 3 | eluz2b1 12935 | . . 3 ⊢ (2 ∈ (ℤ≥‘2) ↔ (2 ∈ ℤ ∧ 1 < 2)) | |
| 4 | 1, 2, 3 | mpbir2an 711 | . 2 ⊢ 2 ∈ (ℤ≥‘2) |
| 5 | ral0 4488 | . . 3 ⊢ ∀𝑧 ∈ ∅ ¬ 𝑧 ∥ 2 | |
| 6 | fzssuz 13582 | . . . . . 6 ⊢ (2...(2 − 1)) ⊆ (ℤ≥‘2) | |
| 7 | dfss2 3944 | . . . . . 6 ⊢ ((2...(2 − 1)) ⊆ (ℤ≥‘2) ↔ ((2...(2 − 1)) ∩ (ℤ≥‘2)) = (2...(2 − 1))) | |
| 8 | 6, 7 | mpbi 230 | . . . . 5 ⊢ ((2...(2 − 1)) ∩ (ℤ≥‘2)) = (2...(2 − 1)) |
| 9 | uzdisj 13614 | . . . . 5 ⊢ ((2...(2 − 1)) ∩ (ℤ≥‘2)) = ∅ | |
| 10 | 8, 9 | eqtr3i 2760 | . . . 4 ⊢ (2...(2 − 1)) = ∅ |
| 11 | 10 | raleqi 3303 | . . 3 ⊢ (∀𝑧 ∈ (2...(2 − 1)) ¬ 𝑧 ∥ 2 ↔ ∀𝑧 ∈ ∅ ¬ 𝑧 ∥ 2) |
| 12 | 5, 11 | mpbir 231 | . 2 ⊢ ∀𝑧 ∈ (2...(2 − 1)) ¬ 𝑧 ∥ 2 |
| 13 | isprm3 16702 | . 2 ⊢ (2 ∈ ℙ ↔ (2 ∈ (ℤ≥‘2) ∧ ∀𝑧 ∈ (2...(2 − 1)) ¬ 𝑧 ∥ 2)) | |
| 14 | 4, 12, 13 | mpbir2an 711 | 1 ⊢ 2 ∈ ℙ |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2108 ∀wral 3051 ∩ cin 3925 ⊆ wss 3926 ∅c0 4308 class class class wbr 5119 ‘cfv 6531 (class class class)co 7405 1c1 11130 < clt 11269 − cmin 11466 2c2 12295 ℤcz 12588 ℤ≥cuz 12852 ...cfz 13524 ∥ cdvds 16272 ℙcprime 16690 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-pre-sup 11207 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-sup 9454 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-2 12303 df-3 12304 df-n0 12502 df-z 12589 df-uz 12853 df-rp 13009 df-fz 13525 df-seq 14020 df-exp 14080 df-cj 15118 df-re 15119 df-im 15120 df-sqrt 15254 df-abs 15255 df-dvds 16273 df-prm 16691 |
| This theorem is referenced by: 2mulprm 16712 ge2nprmge4 16720 isoddgcd1 16750 3lcm2e6 16751 pythagtriplem4 16839 pc2dvds 16899 oddprmdvds 16923 prmo2 17060 prmgaplem3 17073 lt6abl 19876 2logb9irr 26757 2logb3irr 26759 ppi2 27132 cht2 27134 1sgm2ppw 27163 perfectlem1 27192 perfectlem2 27193 perfect 27194 bpos1 27246 lgs2 27277 lgsdir2 27293 lgseisenlem2 27339 lgsquad2lem1 27347 lgsquad2lem2 27348 lgsquad3 27350 m1lgs 27351 2lgs 27370 2lgsoddprm 27379 dchrisum0flb 27473 numclwwlk5lem 30368 constrext2chnlem 33784 2sqr3minply 33814 2sqr3nconstr 33815 hgt750lemd 34680 12gcd5e1 42016 fltne 42667 flt4lem5a 42675 flt4lem5b 42676 flt4lem5c 42677 flt4lem5d 42678 flt4lem5e 42679 goldbachthlem2 47560 odz2prm2pw 47577 fmtnoprmfac1 47579 fmtnoprmfac2 47581 lighneallem2 47620 lighneallem3 47621 lighneallem4 47624 proththd 47628 isodd7 47679 gcd2odd1 47682 perfectALTV 47737 7gbow 47786 sbgoldbalt 47795 sgoldbeven3prm 47797 sbgoldbo 47801 nnsum3primes4 47802 nnsum3primesle9 47808 zlmodzxznm 48473 |
| Copyright terms: Public domain | W3C validator |