| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2prm | Structured version Visualization version GIF version | ||
| Description: 2 is a prime number. (Contributed by Paul Chapman, 22-Jun-2011.) (Proof shortened by Fan Zheng, 16-Jun-2016.) |
| Ref | Expression |
|---|---|
| 2prm | ⊢ 2 ∈ ℙ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2z 12510 | . . 3 ⊢ 2 ∈ ℤ | |
| 2 | 1lt2 12298 | . . 3 ⊢ 1 < 2 | |
| 3 | eluz2b1 12819 | . . 3 ⊢ (2 ∈ (ℤ≥‘2) ↔ (2 ∈ ℤ ∧ 1 < 2)) | |
| 4 | 1, 2, 3 | mpbir2an 711 | . 2 ⊢ 2 ∈ (ℤ≥‘2) |
| 5 | ral0 4462 | . . 3 ⊢ ∀𝑧 ∈ ∅ ¬ 𝑧 ∥ 2 | |
| 6 | fzssuz 13467 | . . . . . 6 ⊢ (2...(2 − 1)) ⊆ (ℤ≥‘2) | |
| 7 | dfss2 3916 | . . . . . 6 ⊢ ((2...(2 − 1)) ⊆ (ℤ≥‘2) ↔ ((2...(2 − 1)) ∩ (ℤ≥‘2)) = (2...(2 − 1))) | |
| 8 | 6, 7 | mpbi 230 | . . . . 5 ⊢ ((2...(2 − 1)) ∩ (ℤ≥‘2)) = (2...(2 − 1)) |
| 9 | uzdisj 13499 | . . . . 5 ⊢ ((2...(2 − 1)) ∩ (ℤ≥‘2)) = ∅ | |
| 10 | 8, 9 | eqtr3i 2758 | . . . 4 ⊢ (2...(2 − 1)) = ∅ |
| 11 | 10 | raleqi 3291 | . . 3 ⊢ (∀𝑧 ∈ (2...(2 − 1)) ¬ 𝑧 ∥ 2 ↔ ∀𝑧 ∈ ∅ ¬ 𝑧 ∥ 2) |
| 12 | 5, 11 | mpbir 231 | . 2 ⊢ ∀𝑧 ∈ (2...(2 − 1)) ¬ 𝑧 ∥ 2 |
| 13 | isprm3 16596 | . 2 ⊢ (2 ∈ ℙ ↔ (2 ∈ (ℤ≥‘2) ∧ ∀𝑧 ∈ (2...(2 − 1)) ¬ 𝑧 ∥ 2)) | |
| 14 | 4, 12, 13 | mpbir2an 711 | 1 ⊢ 2 ∈ ℙ |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1541 ∈ wcel 2113 ∀wral 3048 ∩ cin 3897 ⊆ wss 3898 ∅c0 4282 class class class wbr 5093 ‘cfv 6486 (class class class)co 7352 1c1 11014 < clt 11153 − cmin 11351 2c2 12187 ℤcz 12475 ℤ≥cuz 12738 ...cfz 13409 ∥ cdvds 16165 ℙcprime 16584 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 ax-pre-sup 11091 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-2o 8392 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-sup 9333 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-div 11782 df-nn 12133 df-2 12195 df-3 12196 df-n0 12389 df-z 12476 df-uz 12739 df-rp 12893 df-fz 13410 df-seq 13911 df-exp 13971 df-cj 15008 df-re 15009 df-im 15010 df-sqrt 15144 df-abs 15145 df-dvds 16166 df-prm 16585 |
| This theorem is referenced by: 2mulprm 16606 ge2nprmge4 16614 isoddgcd1 16644 3lcm2e6 16645 pythagtriplem4 16733 pc2dvds 16793 oddprmdvds 16817 prmo2 16954 prmgaplem3 16967 lt6abl 19809 2logb9irr 26733 2logb3irr 26735 ppi2 27108 cht2 27110 1sgm2ppw 27139 perfectlem1 27168 perfectlem2 27169 perfect 27170 bpos1 27222 lgs2 27253 lgsdir2 27269 lgseisenlem2 27315 lgsquad2lem1 27323 lgsquad2lem2 27324 lgsquad3 27326 m1lgs 27327 2lgs 27346 2lgsoddprm 27355 dchrisum0flb 27449 numclwwlk5lem 30369 constrext2chnlem 33784 2sqr3minply 33814 2sqr3nconstr 33815 cos9thpinconstrlem2 33824 hgt750lemd 34682 12gcd5e1 42116 fltne 42762 flt4lem5a 42770 flt4lem5b 42771 flt4lem5c 42772 flt4lem5d 42773 flt4lem5e 42774 goldbachthlem2 47670 odz2prm2pw 47687 fmtnoprmfac1 47689 fmtnoprmfac2 47691 lighneallem2 47730 lighneallem3 47731 lighneallem4 47734 proththd 47738 isodd7 47789 gcd2odd1 47792 perfectALTV 47847 7gbow 47896 sbgoldbalt 47905 sgoldbeven3prm 47907 sbgoldbo 47911 nnsum3primes4 47912 nnsum3primesle9 47918 zlmodzxznm 48622 |
| Copyright terms: Public domain | W3C validator |