![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2prm | Structured version Visualization version GIF version |
Description: 2 is a prime number. (Contributed by Paul Chapman, 22-Jun-2011.) (Proof shortened by Fan Zheng, 16-Jun-2016.) |
Ref | Expression |
---|---|
2prm | ⊢ 2 ∈ ℙ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2z 11616 | . . 3 ⊢ 2 ∈ ℤ | |
2 | 1lt2 11401 | . . 3 ⊢ 1 < 2 | |
3 | eluz2b1 11967 | . . 3 ⊢ (2 ∈ (ℤ≥‘2) ↔ (2 ∈ ℤ ∧ 1 < 2)) | |
4 | 1, 2, 3 | mpbir2an 690 | . 2 ⊢ 2 ∈ (ℤ≥‘2) |
5 | ral0 4218 | . . 3 ⊢ ∀𝑧 ∈ ∅ ¬ 𝑧 ∥ 2 | |
6 | fzssuz 12589 | . . . . . 6 ⊢ (2...(2 − 1)) ⊆ (ℤ≥‘2) | |
7 | df-ss 3737 | . . . . . 6 ⊢ ((2...(2 − 1)) ⊆ (ℤ≥‘2) ↔ ((2...(2 − 1)) ∩ (ℤ≥‘2)) = (2...(2 − 1))) | |
8 | 6, 7 | mpbi 220 | . . . . 5 ⊢ ((2...(2 − 1)) ∩ (ℤ≥‘2)) = (2...(2 − 1)) |
9 | uzdisj 12620 | . . . . 5 ⊢ ((2...(2 − 1)) ∩ (ℤ≥‘2)) = ∅ | |
10 | 8, 9 | eqtr3i 2795 | . . . 4 ⊢ (2...(2 − 1)) = ∅ |
11 | 10 | raleqi 3291 | . . 3 ⊢ (∀𝑧 ∈ (2...(2 − 1)) ¬ 𝑧 ∥ 2 ↔ ∀𝑧 ∈ ∅ ¬ 𝑧 ∥ 2) |
12 | 5, 11 | mpbir 221 | . 2 ⊢ ∀𝑧 ∈ (2...(2 − 1)) ¬ 𝑧 ∥ 2 |
13 | isprm3 15603 | . 2 ⊢ (2 ∈ ℙ ↔ (2 ∈ (ℤ≥‘2) ∧ ∀𝑧 ∈ (2...(2 − 1)) ¬ 𝑧 ∥ 2)) | |
14 | 4, 12, 13 | mpbir2an 690 | 1 ⊢ 2 ∈ ℙ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1631 ∈ wcel 2145 ∀wral 3061 ∩ cin 3722 ⊆ wss 3723 ∅c0 4063 class class class wbr 4787 ‘cfv 6030 (class class class)co 6796 1c1 10143 < clt 10280 − cmin 10472 2c2 11276 ℤcz 11584 ℤ≥cuz 11893 ...cfz 12533 ∥ cdvds 15189 ℙcprime 15592 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4916 ax-nul 4924 ax-pow 4975 ax-pr 5035 ax-un 7100 ax-cnex 10198 ax-resscn 10199 ax-1cn 10200 ax-icn 10201 ax-addcl 10202 ax-addrcl 10203 ax-mulcl 10204 ax-mulrcl 10205 ax-mulcom 10206 ax-addass 10207 ax-mulass 10208 ax-distr 10209 ax-i2m1 10210 ax-1ne0 10211 ax-1rid 10212 ax-rnegex 10213 ax-rrecex 10214 ax-cnre 10215 ax-pre-lttri 10216 ax-pre-lttrn 10217 ax-pre-ltadd 10218 ax-pre-mulgt0 10219 ax-pre-sup 10220 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-tp 4322 df-op 4324 df-uni 4576 df-iun 4657 df-br 4788 df-opab 4848 df-mpt 4865 df-tr 4888 df-id 5158 df-eprel 5163 df-po 5171 df-so 5172 df-fr 5209 df-we 5211 df-xp 5256 df-rel 5257 df-cnv 5258 df-co 5259 df-dm 5260 df-rn 5261 df-res 5262 df-ima 5263 df-pred 5822 df-ord 5868 df-on 5869 df-lim 5870 df-suc 5871 df-iota 5993 df-fun 6032 df-fn 6033 df-f 6034 df-f1 6035 df-fo 6036 df-f1o 6037 df-fv 6038 df-riota 6757 df-ov 6799 df-oprab 6800 df-mpt2 6801 df-om 7217 df-1st 7319 df-2nd 7320 df-wrecs 7563 df-recs 7625 df-rdg 7663 df-1o 7717 df-2o 7718 df-er 7900 df-en 8114 df-dom 8115 df-sdom 8116 df-fin 8117 df-sup 8508 df-pnf 10282 df-mnf 10283 df-xr 10284 df-ltxr 10285 df-le 10286 df-sub 10474 df-neg 10475 df-div 10891 df-nn 11227 df-2 11285 df-3 11286 df-n0 11500 df-z 11585 df-uz 11894 df-rp 12036 df-fz 12534 df-seq 13009 df-exp 13068 df-cj 14047 df-re 14048 df-im 14049 df-sqrt 14183 df-abs 14184 df-dvds 15190 df-prm 15593 |
This theorem is referenced by: isoddgcd1 15646 3lcm2e6 15647 pythagtriplem4 15731 pc2dvds 15790 oddprmdvds 15814 prmo2 15951 prmgaplem3 15964 lt6abl 18503 ppi2 25117 cht2 25119 1sgm2ppw 25146 perfectlem1 25175 perfectlem2 25176 perfect 25177 bpos1 25229 lgs2 25260 lgsdir2 25276 lgseisenlem2 25322 lgsquad2lem1 25330 lgsquad2lem2 25331 lgsquad3 25333 m1lgs 25334 2lgs 25353 2lgsoddprm 25362 dchrisum0flb 25420 numclwwlk5lem 27586 hgt750lemd 31066 goldbachthlem2 41981 odz2prm2pw 41998 fmtnoprmfac1 42000 fmtnoprmfac2 42002 lighneallem2 42046 lighneallem3 42047 lighneallem4 42050 proththd 42054 isodd7 42100 perfectALTV 42155 7gbow 42183 sbgoldbalt 42192 sgoldbeven3prm 42194 sbgoldbo 42198 nnsum3primes4 42199 nnsum3primesle9 42205 zlmodzxznm 42809 |
Copyright terms: Public domain | W3C validator |