![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2prm | Structured version Visualization version GIF version |
Description: 2 is a prime number. (Contributed by Paul Chapman, 22-Jun-2011.) (Proof shortened by Fan Zheng, 16-Jun-2016.) |
Ref | Expression |
---|---|
2prm | ⊢ 2 ∈ ℙ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2z 12593 | . . 3 ⊢ 2 ∈ ℤ | |
2 | 1lt2 12382 | . . 3 ⊢ 1 < 2 | |
3 | eluz2b1 12902 | . . 3 ⊢ (2 ∈ (ℤ≥‘2) ↔ (2 ∈ ℤ ∧ 1 < 2)) | |
4 | 1, 2, 3 | mpbir2an 709 | . 2 ⊢ 2 ∈ (ℤ≥‘2) |
5 | ral0 4512 | . . 3 ⊢ ∀𝑧 ∈ ∅ ¬ 𝑧 ∥ 2 | |
6 | fzssuz 13541 | . . . . . 6 ⊢ (2...(2 − 1)) ⊆ (ℤ≥‘2) | |
7 | df-ss 3965 | . . . . . 6 ⊢ ((2...(2 − 1)) ⊆ (ℤ≥‘2) ↔ ((2...(2 − 1)) ∩ (ℤ≥‘2)) = (2...(2 − 1))) | |
8 | 6, 7 | mpbi 229 | . . . . 5 ⊢ ((2...(2 − 1)) ∩ (ℤ≥‘2)) = (2...(2 − 1)) |
9 | uzdisj 13573 | . . . . 5 ⊢ ((2...(2 − 1)) ∩ (ℤ≥‘2)) = ∅ | |
10 | 8, 9 | eqtr3i 2762 | . . . 4 ⊢ (2...(2 − 1)) = ∅ |
11 | 10 | raleqi 3323 | . . 3 ⊢ (∀𝑧 ∈ (2...(2 − 1)) ¬ 𝑧 ∥ 2 ↔ ∀𝑧 ∈ ∅ ¬ 𝑧 ∥ 2) |
12 | 5, 11 | mpbir 230 | . 2 ⊢ ∀𝑧 ∈ (2...(2 − 1)) ¬ 𝑧 ∥ 2 |
13 | isprm3 16619 | . 2 ⊢ (2 ∈ ℙ ↔ (2 ∈ (ℤ≥‘2) ∧ ∀𝑧 ∈ (2...(2 − 1)) ¬ 𝑧 ∥ 2)) | |
14 | 4, 12, 13 | mpbir2an 709 | 1 ⊢ 2 ∈ ℙ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1541 ∈ wcel 2106 ∀wral 3061 ∩ cin 3947 ⊆ wss 3948 ∅c0 4322 class class class wbr 5148 ‘cfv 6543 (class class class)co 7408 1c1 11110 < clt 11247 − cmin 11443 2c2 12266 ℤcz 12557 ℤ≥cuz 12821 ...cfz 13483 ∥ cdvds 16196 ℙcprime 16607 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 ax-pre-sup 11187 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-1st 7974 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-1o 8465 df-2o 8466 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-sup 9436 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-div 11871 df-nn 12212 df-2 12274 df-3 12275 df-n0 12472 df-z 12558 df-uz 12822 df-rp 12974 df-fz 13484 df-seq 13966 df-exp 14027 df-cj 15045 df-re 15046 df-im 15047 df-sqrt 15181 df-abs 15182 df-dvds 16197 df-prm 16608 |
This theorem is referenced by: 2mulprm 16629 ge2nprmge4 16637 isoddgcd1 16666 3lcm2e6 16667 pythagtriplem4 16751 pc2dvds 16811 oddprmdvds 16835 prmo2 16972 prmgaplem3 16985 lt6abl 19762 2logb9irr 26297 2logb3irr 26299 ppi2 26671 cht2 26673 1sgm2ppw 26700 perfectlem1 26729 perfectlem2 26730 perfect 26731 bpos1 26783 lgs2 26814 lgsdir2 26830 lgseisenlem2 26876 lgsquad2lem1 26884 lgsquad2lem2 26885 lgsquad3 26887 m1lgs 26888 2lgs 26907 2lgsoddprm 26916 dchrisum0flb 27010 numclwwlk5lem 29637 hgt750lemd 33655 12gcd5e1 40863 fltne 41387 flt4lem5a 41395 flt4lem5b 41396 flt4lem5c 41397 flt4lem5d 41398 flt4lem5e 41399 goldbachthlem2 46204 odz2prm2pw 46221 fmtnoprmfac1 46223 fmtnoprmfac2 46225 lighneallem2 46264 lighneallem3 46265 lighneallem4 46268 proththd 46272 isodd7 46323 gcd2odd1 46326 perfectALTV 46381 7gbow 46430 sbgoldbalt 46439 sgoldbeven3prm 46441 sbgoldbo 46445 nnsum3primes4 46446 nnsum3primesle9 46452 zlmodzxznm 47168 |
Copyright terms: Public domain | W3C validator |