![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fzssnn0 | Structured version Visualization version GIF version |
Description: A finite set of sequential integers that is a subset of ℕ0. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
Ref | Expression |
---|---|
fzssnn0 | ⊢ (0...𝑁) ⊆ ℕ0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fzssuz 12640 | . 2 ⊢ (0...𝑁) ⊆ (ℤ≥‘0) | |
2 | nn0uz 11970 | . . 3 ⊢ ℕ0 = (ℤ≥‘0) | |
3 | 2 | eqcomi 2812 | . 2 ⊢ (ℤ≥‘0) = ℕ0 |
4 | 1, 3 | sseqtri 3837 | 1 ⊢ (0...𝑁) ⊆ ℕ0 |
Colors of variables: wff setvar class |
Syntax hints: ⊆ wss 3773 ‘cfv 6105 (class class class)co 6882 0cc0 10228 ℕ0cn0 11584 ℤ≥cuz 11934 ...cfz 12584 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2379 ax-ext 2781 ax-sep 4979 ax-nul 4987 ax-pow 5039 ax-pr 5101 ax-un 7187 ax-cnex 10284 ax-resscn 10285 ax-1cn 10286 ax-icn 10287 ax-addcl 10288 ax-addrcl 10289 ax-mulcl 10290 ax-mulrcl 10291 ax-mulcom 10292 ax-addass 10293 ax-mulass 10294 ax-distr 10295 ax-i2m1 10296 ax-1ne0 10297 ax-1rid 10298 ax-rnegex 10299 ax-rrecex 10300 ax-cnre 10301 ax-pre-lttri 10302 ax-pre-lttrn 10303 ax-pre-ltadd 10304 ax-pre-mulgt0 10305 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2593 df-eu 2611 df-clab 2790 df-cleq 2796 df-clel 2799 df-nfc 2934 df-ne 2976 df-nel 3079 df-ral 3098 df-rex 3099 df-reu 3100 df-rab 3102 df-v 3391 df-sbc 3638 df-csb 3733 df-dif 3776 df-un 3778 df-in 3780 df-ss 3787 df-pss 3789 df-nul 4120 df-if 4282 df-pw 4355 df-sn 4373 df-pr 4375 df-tp 4377 df-op 4379 df-uni 4633 df-iun 4716 df-br 4848 df-opab 4910 df-mpt 4927 df-tr 4950 df-id 5224 df-eprel 5229 df-po 5237 df-so 5238 df-fr 5275 df-we 5277 df-xp 5322 df-rel 5323 df-cnv 5324 df-co 5325 df-dm 5326 df-rn 5327 df-res 5328 df-ima 5329 df-pred 5902 df-ord 5948 df-on 5949 df-lim 5950 df-suc 5951 df-iota 6068 df-fun 6107 df-fn 6108 df-f 6109 df-f1 6110 df-fo 6111 df-f1o 6112 df-fv 6113 df-riota 6843 df-ov 6885 df-oprab 6886 df-mpt2 6887 df-om 7304 df-1st 7405 df-2nd 7406 df-wrecs 7649 df-recs 7711 df-rdg 7749 df-er 7986 df-en 8200 df-dom 8201 df-sdom 8202 df-pnf 10369 df-mnf 10370 df-xr 10371 df-ltxr 10372 df-le 10373 df-sub 10562 df-neg 10563 df-nn 11317 df-n0 11585 df-z 11671 df-uz 11935 df-fz 12585 |
This theorem is referenced by: etransclem15 41213 etransclem24 41222 etransclem25 41223 etransclem26 41224 etransclem28 41226 etransclem31 41229 etransclem34 41232 etransclem35 41233 etransclem37 41235 etransclem44 41242 |
Copyright terms: Public domain | W3C validator |