|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > divmuld | Structured version Visualization version GIF version | ||
| Description: Relationship between division and multiplication. (Contributed by Mario Carneiro, 27-May-2016.) | 
| Ref | Expression | 
|---|---|
| div1d.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) | 
| divcld.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) | 
| divmuld.3 | ⊢ (𝜑 → 𝐶 ∈ ℂ) | 
| divmuld.4 | ⊢ (𝜑 → 𝐵 ≠ 0) | 
| Ref | Expression | 
|---|---|
| divmuld | ⊢ (𝜑 → ((𝐴 / 𝐵) = 𝐶 ↔ (𝐵 · 𝐶) = 𝐴)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | div1d.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | divmuld.3 | . 2 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
| 3 | divcld.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 4 | divmuld.4 | . 2 ⊢ (𝜑 → 𝐵 ≠ 0) | |
| 5 | divmul 11926 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → ((𝐴 / 𝐵) = 𝐶 ↔ (𝐵 · 𝐶) = 𝐴)) | |
| 6 | 1, 2, 3, 4, 5 | syl112anc 1375 | 1 ⊢ (𝜑 → ((𝐴 / 𝐵) = 𝐶 ↔ (𝐵 · 𝐶) = 𝐴)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1539 ∈ wcel 2107 ≠ wne 2939 (class class class)co 7432 ℂcc 11154 0cc0 11156 · cmul 11161 / cdiv 11921 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-mulcom 11220 ax-addass 11221 ax-mulass 11222 ax-distr 11223 ax-i2m1 11224 ax-1ne0 11225 ax-1rid 11226 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 ax-pre-ltadd 11232 ax-pre-mulgt0 11233 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-po 5591 df-so 5592 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-er 8746 df-en 8987 df-dom 8988 df-sdom 8989 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-sub 11495 df-neg 11496 df-div 11922 | 
| This theorem is referenced by: nndiv 12313 recval 15362 clim2div 15926 sinadd 16201 tanaddlem 16203 pc2dvds 16918 odmulgeq 19576 zringunit 21478 prmirredlem 21484 nrginvrcnlem 24713 i1fmulclem 25738 itg1mulc 25740 mvth 26032 efopn 26701 cxpeq 26801 ang180lem3 26855 quad2 26883 asinneg 26930 dvdsflf1o 27231 muinv 27237 brbtwn2 28921 colinearalg 28926 axeuclidlem 28978 axcontlem8 28987 lcmineqlem10 42040 3lexlogpow5ineq5 42062 aks6d1c2 42132 unitscyglem4 42200 qirropth 42924 binomcxplemfrat 44375 binomcxplemnotnn0 44380 fourierswlem 46250 eenglngeehlnmlem1 48663 eenglngeehlnmlem2 48664 line2x 48680 | 
| Copyright terms: Public domain | W3C validator |