MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coe1tmmul2 Structured version   Visualization version   GIF version

Theorem coe1tmmul2 22195
Description: Coefficient vector of a polynomial multiplied on the right by a term. (Contributed by Stefan O'Rear, 27-Mar-2015.)
Hypotheses
Ref Expression
coe1tm.z 0 = (0g𝑅)
coe1tm.k 𝐾 = (Base‘𝑅)
coe1tm.p 𝑃 = (Poly1𝑅)
coe1tm.x 𝑋 = (var1𝑅)
coe1tm.m · = ( ·𝑠𝑃)
coe1tm.n 𝑁 = (mulGrp‘𝑃)
coe1tm.e = (.g𝑁)
coe1tmmul.b 𝐵 = (Base‘𝑃)
coe1tmmul.t = (.r𝑃)
coe1tmmul.u × = (.r𝑅)
coe1tmmul.a (𝜑𝐴𝐵)
coe1tmmul.r (𝜑𝑅 ∈ Ring)
coe1tmmul.c (𝜑𝐶𝐾)
coe1tmmul.d (𝜑𝐷 ∈ ℕ0)
Assertion
Ref Expression
coe1tmmul2 (𝜑 → (coe1‘(𝐴 (𝐶 · (𝐷 𝑋)))) = (𝑥 ∈ ℕ0 ↦ if(𝐷𝑥, (((coe1𝐴)‘(𝑥𝐷)) × 𝐶), 0 )))
Distinct variable groups:   𝑥, 0   𝑥,𝐶   𝑥,𝐷   𝑥,𝐾   𝑥,   𝑥,𝐴   𝑥,𝑁   𝑥,𝑃   𝑥,𝑋   𝜑,𝑥   𝑥,𝑅   𝑥, ·   𝑥, ×   𝑥,
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem coe1tmmul2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 coe1tmmul.r . . 3 (𝜑𝑅 ∈ Ring)
2 coe1tmmul.a . . 3 (𝜑𝐴𝐵)
3 coe1tmmul.c . . . 4 (𝜑𝐶𝐾)
4 coe1tmmul.d . . . 4 (𝜑𝐷 ∈ ℕ0)
5 coe1tm.k . . . . 5 𝐾 = (Base‘𝑅)
6 coe1tm.p . . . . 5 𝑃 = (Poly1𝑅)
7 coe1tm.x . . . . 5 𝑋 = (var1𝑅)
8 coe1tm.m . . . . 5 · = ( ·𝑠𝑃)
9 coe1tm.n . . . . 5 𝑁 = (mulGrp‘𝑃)
10 coe1tm.e . . . . 5 = (.g𝑁)
11 coe1tmmul.b . . . . 5 𝐵 = (Base‘𝑃)
125, 6, 7, 8, 9, 10, 11ply1tmcl 22191 . . . 4 ((𝑅 ∈ Ring ∧ 𝐶𝐾𝐷 ∈ ℕ0) → (𝐶 · (𝐷 𝑋)) ∈ 𝐵)
131, 3, 4, 12syl3anc 1373 . . 3 (𝜑 → (𝐶 · (𝐷 𝑋)) ∈ 𝐵)
14 coe1tmmul.t . . . 4 = (.r𝑃)
15 coe1tmmul.u . . . 4 × = (.r𝑅)
166, 14, 15, 11coe1mul 22189 . . 3 ((𝑅 ∈ Ring ∧ 𝐴𝐵 ∧ (𝐶 · (𝐷 𝑋)) ∈ 𝐵) → (coe1‘(𝐴 (𝐶 · (𝐷 𝑋)))) = (𝑥 ∈ ℕ0 ↦ (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ (((coe1𝐴)‘𝑦) × ((coe1‘(𝐶 · (𝐷 𝑋)))‘(𝑥𝑦)))))))
171, 2, 13, 16syl3anc 1373 . 2 (𝜑 → (coe1‘(𝐴 (𝐶 · (𝐷 𝑋)))) = (𝑥 ∈ ℕ0 ↦ (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ (((coe1𝐴)‘𝑦) × ((coe1‘(𝐶 · (𝐷 𝑋)))‘(𝑥𝑦)))))))
18 eqeq2 2741 . . . 4 ((((coe1𝐴)‘(𝑥𝐷)) × 𝐶) = if(𝐷𝑥, (((coe1𝐴)‘(𝑥𝐷)) × 𝐶), 0 ) → ((𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ (((coe1𝐴)‘𝑦) × ((coe1‘(𝐶 · (𝐷 𝑋)))‘(𝑥𝑦))))) = (((coe1𝐴)‘(𝑥𝐷)) × 𝐶) ↔ (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ (((coe1𝐴)‘𝑦) × ((coe1‘(𝐶 · (𝐷 𝑋)))‘(𝑥𝑦))))) = if(𝐷𝑥, (((coe1𝐴)‘(𝑥𝐷)) × 𝐶), 0 )))
19 eqeq2 2741 . . . 4 ( 0 = if(𝐷𝑥, (((coe1𝐴)‘(𝑥𝐷)) × 𝐶), 0 ) → ((𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ (((coe1𝐴)‘𝑦) × ((coe1‘(𝐶 · (𝐷 𝑋)))‘(𝑥𝑦))))) = 0 ↔ (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ (((coe1𝐴)‘𝑦) × ((coe1‘(𝐶 · (𝐷 𝑋)))‘(𝑥𝑦))))) = if(𝐷𝑥, (((coe1𝐴)‘(𝑥𝐷)) × 𝐶), 0 )))
20 coe1tm.z . . . . . . 7 0 = (0g𝑅)
211adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) → 𝑅 ∈ Ring)
22 ringmnd 20163 . . . . . . . 8 (𝑅 ∈ Ring → 𝑅 ∈ Mnd)
2321, 22syl 17 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) → 𝑅 ∈ Mnd)
24 ovex 7402 . . . . . . . 8 (0...𝑥) ∈ V
2524a1i 11 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) → (0...𝑥) ∈ V)
26 simprr 772 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) → 𝐷𝑥)
274adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) → 𝐷 ∈ ℕ0)
28 simprl 770 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) → 𝑥 ∈ ℕ0)
29 nn0sub 12468 . . . . . . . . . 10 ((𝐷 ∈ ℕ0𝑥 ∈ ℕ0) → (𝐷𝑥 ↔ (𝑥𝐷) ∈ ℕ0))
3027, 28, 29syl2anc 584 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) → (𝐷𝑥 ↔ (𝑥𝐷) ∈ ℕ0))
3126, 30mpbid 232 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) → (𝑥𝐷) ∈ ℕ0)
3227nn0ge0d 12482 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) → 0 ≤ 𝐷)
33 nn0re 12427 . . . . . . . . . . 11 (𝑥 ∈ ℕ0𝑥 ∈ ℝ)
3433ad2antrl 728 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) → 𝑥 ∈ ℝ)
354nn0red 12480 . . . . . . . . . . 11 (𝜑𝐷 ∈ ℝ)
3635adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) → 𝐷 ∈ ℝ)
3734, 36subge02d 11746 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) → (0 ≤ 𝐷 ↔ (𝑥𝐷) ≤ 𝑥))
3832, 37mpbid 232 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) → (𝑥𝐷) ≤ 𝑥)
39 fznn0 13556 . . . . . . . . 9 (𝑥 ∈ ℕ0 → ((𝑥𝐷) ∈ (0...𝑥) ↔ ((𝑥𝐷) ∈ ℕ0 ∧ (𝑥𝐷) ≤ 𝑥)))
4039ad2antrl 728 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) → ((𝑥𝐷) ∈ (0...𝑥) ↔ ((𝑥𝐷) ∈ ℕ0 ∧ (𝑥𝐷) ≤ 𝑥)))
4131, 38, 40mpbir2and 713 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) → (𝑥𝐷) ∈ (0...𝑥))
421ad2antrr 726 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) ∧ 𝑦 ∈ (0...𝑥)) → 𝑅 ∈ Ring)
43 eqid 2729 . . . . . . . . . . . . 13 (coe1𝐴) = (coe1𝐴)
4443, 11, 6, 5coe1f 22129 . . . . . . . . . . . 12 (𝐴𝐵 → (coe1𝐴):ℕ0𝐾)
452, 44syl 17 . . . . . . . . . . 11 (𝜑 → (coe1𝐴):ℕ0𝐾)
4645ad2antrr 726 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) ∧ 𝑦 ∈ (0...𝑥)) → (coe1𝐴):ℕ0𝐾)
47 elfznn0 13557 . . . . . . . . . . 11 (𝑦 ∈ (0...𝑥) → 𝑦 ∈ ℕ0)
4847adantl 481 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) ∧ 𝑦 ∈ (0...𝑥)) → 𝑦 ∈ ℕ0)
4946, 48ffvelcdmd 7039 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) ∧ 𝑦 ∈ (0...𝑥)) → ((coe1𝐴)‘𝑦) ∈ 𝐾)
50 eqid 2729 . . . . . . . . . . . . 13 (coe1‘(𝐶 · (𝐷 𝑋))) = (coe1‘(𝐶 · (𝐷 𝑋)))
5150, 11, 6, 5coe1f 22129 . . . . . . . . . . . 12 ((𝐶 · (𝐷 𝑋)) ∈ 𝐵 → (coe1‘(𝐶 · (𝐷 𝑋))):ℕ0𝐾)
5213, 51syl 17 . . . . . . . . . . 11 (𝜑 → (coe1‘(𝐶 · (𝐷 𝑋))):ℕ0𝐾)
5352ad2antrr 726 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) ∧ 𝑦 ∈ (0...𝑥)) → (coe1‘(𝐶 · (𝐷 𝑋))):ℕ0𝐾)
54 fznn0sub 13493 . . . . . . . . . . 11 (𝑦 ∈ (0...𝑥) → (𝑥𝑦) ∈ ℕ0)
5554adantl 481 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) ∧ 𝑦 ∈ (0...𝑥)) → (𝑥𝑦) ∈ ℕ0)
5653, 55ffvelcdmd 7039 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) ∧ 𝑦 ∈ (0...𝑥)) → ((coe1‘(𝐶 · (𝐷 𝑋)))‘(𝑥𝑦)) ∈ 𝐾)
575, 15ringcl 20170 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ ((coe1𝐴)‘𝑦) ∈ 𝐾 ∧ ((coe1‘(𝐶 · (𝐷 𝑋)))‘(𝑥𝑦)) ∈ 𝐾) → (((coe1𝐴)‘𝑦) × ((coe1‘(𝐶 · (𝐷 𝑋)))‘(𝑥𝑦))) ∈ 𝐾)
5842, 49, 56, 57syl3anc 1373 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) ∧ 𝑦 ∈ (0...𝑥)) → (((coe1𝐴)‘𝑦) × ((coe1‘(𝐶 · (𝐷 𝑋)))‘(𝑥𝑦))) ∈ 𝐾)
5958fmpttd 7069 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) → (𝑦 ∈ (0...𝑥) ↦ (((coe1𝐴)‘𝑦) × ((coe1‘(𝐶 · (𝐷 𝑋)))‘(𝑥𝑦)))):(0...𝑥)⟶𝐾)
601ad2antrr 726 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) ∧ 𝑦 ∈ ((0...𝑥) ∖ {(𝑥𝐷)})) → 𝑅 ∈ Ring)
613ad2antrr 726 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) ∧ 𝑦 ∈ ((0...𝑥) ∖ {(𝑥𝐷)})) → 𝐶𝐾)
624ad2antrr 726 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) ∧ 𝑦 ∈ ((0...𝑥) ∖ {(𝑥𝐷)})) → 𝐷 ∈ ℕ0)
63 eldifi 4090 . . . . . . . . . . . . 13 (𝑦 ∈ ((0...𝑥) ∖ {(𝑥𝐷)}) → 𝑦 ∈ (0...𝑥))
6463, 54syl 17 . . . . . . . . . . . 12 (𝑦 ∈ ((0...𝑥) ∖ {(𝑥𝐷)}) → (𝑥𝑦) ∈ ℕ0)
6564adantl 481 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) ∧ 𝑦 ∈ ((0...𝑥) ∖ {(𝑥𝐷)})) → (𝑥𝑦) ∈ ℕ0)
66 eldifsn 4746 . . . . . . . . . . . 12 (𝑦 ∈ ((0...𝑥) ∖ {(𝑥𝐷)}) ↔ (𝑦 ∈ (0...𝑥) ∧ 𝑦 ≠ (𝑥𝐷)))
67 simplrl 776 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) ∧ 𝑦 ∈ (0...𝑥)) → 𝑥 ∈ ℕ0)
6867nn0cnd 12481 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) ∧ 𝑦 ∈ (0...𝑥)) → 𝑥 ∈ ℂ)
6947nn0cnd 12481 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ (0...𝑥) → 𝑦 ∈ ℂ)
7069adantl 481 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) ∧ 𝑦 ∈ (0...𝑥)) → 𝑦 ∈ ℂ)
7168, 70nncand 11514 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) ∧ 𝑦 ∈ (0...𝑥)) → (𝑥 − (𝑥𝑦)) = 𝑦)
7271eqcomd 2735 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) ∧ 𝑦 ∈ (0...𝑥)) → 𝑦 = (𝑥 − (𝑥𝑦)))
73 oveq2 7377 . . . . . . . . . . . . . . . 16 (𝐷 = (𝑥𝑦) → (𝑥𝐷) = (𝑥 − (𝑥𝑦)))
7473eqeq2d 2740 . . . . . . . . . . . . . . 15 (𝐷 = (𝑥𝑦) → (𝑦 = (𝑥𝐷) ↔ 𝑦 = (𝑥 − (𝑥𝑦))))
7572, 74syl5ibrcom 247 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) ∧ 𝑦 ∈ (0...𝑥)) → (𝐷 = (𝑥𝑦) → 𝑦 = (𝑥𝐷)))
7675necon3d 2946 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) ∧ 𝑦 ∈ (0...𝑥)) → (𝑦 ≠ (𝑥𝐷) → 𝐷 ≠ (𝑥𝑦)))
7776impr 454 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) ∧ (𝑦 ∈ (0...𝑥) ∧ 𝑦 ≠ (𝑥𝐷))) → 𝐷 ≠ (𝑥𝑦))
7866, 77sylan2b 594 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) ∧ 𝑦 ∈ ((0...𝑥) ∖ {(𝑥𝐷)})) → 𝐷 ≠ (𝑥𝑦))
7920, 5, 6, 7, 8, 9, 10, 60, 61, 62, 65, 78coe1tmfv2 22194 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) ∧ 𝑦 ∈ ((0...𝑥) ∖ {(𝑥𝐷)})) → ((coe1‘(𝐶 · (𝐷 𝑋)))‘(𝑥𝑦)) = 0 )
8079oveq2d 7385 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) ∧ 𝑦 ∈ ((0...𝑥) ∖ {(𝑥𝐷)})) → (((coe1𝐴)‘𝑦) × ((coe1‘(𝐶 · (𝐷 𝑋)))‘(𝑥𝑦))) = (((coe1𝐴)‘𝑦) × 0 ))
815, 15, 20ringrz 20214 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ ((coe1𝐴)‘𝑦) ∈ 𝐾) → (((coe1𝐴)‘𝑦) × 0 ) = 0 )
8242, 49, 81syl2anc 584 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) ∧ 𝑦 ∈ (0...𝑥)) → (((coe1𝐴)‘𝑦) × 0 ) = 0 )
8363, 82sylan2 593 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) ∧ 𝑦 ∈ ((0...𝑥) ∖ {(𝑥𝐷)})) → (((coe1𝐴)‘𝑦) × 0 ) = 0 )
8480, 83eqtrd 2764 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) ∧ 𝑦 ∈ ((0...𝑥) ∖ {(𝑥𝐷)})) → (((coe1𝐴)‘𝑦) × ((coe1‘(𝐶 · (𝐷 𝑋)))‘(𝑥𝑦))) = 0 )
8584, 25suppss2 8156 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) → ((𝑦 ∈ (0...𝑥) ↦ (((coe1𝐴)‘𝑦) × ((coe1‘(𝐶 · (𝐷 𝑋)))‘(𝑥𝑦)))) supp 0 ) ⊆ {(𝑥𝐷)})
865, 20, 23, 25, 41, 59, 85gsumpt 19876 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) → (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ (((coe1𝐴)‘𝑦) × ((coe1‘(𝐶 · (𝐷 𝑋)))‘(𝑥𝑦))))) = ((𝑦 ∈ (0...𝑥) ↦ (((coe1𝐴)‘𝑦) × ((coe1‘(𝐶 · (𝐷 𝑋)))‘(𝑥𝑦))))‘(𝑥𝐷)))
87 fveq2 6840 . . . . . . . . 9 (𝑦 = (𝑥𝐷) → ((coe1𝐴)‘𝑦) = ((coe1𝐴)‘(𝑥𝐷)))
88 oveq2 7377 . . . . . . . . . 10 (𝑦 = (𝑥𝐷) → (𝑥𝑦) = (𝑥 − (𝑥𝐷)))
8988fveq2d 6844 . . . . . . . . 9 (𝑦 = (𝑥𝐷) → ((coe1‘(𝐶 · (𝐷 𝑋)))‘(𝑥𝑦)) = ((coe1‘(𝐶 · (𝐷 𝑋)))‘(𝑥 − (𝑥𝐷))))
9087, 89oveq12d 7387 . . . . . . . 8 (𝑦 = (𝑥𝐷) → (((coe1𝐴)‘𝑦) × ((coe1‘(𝐶 · (𝐷 𝑋)))‘(𝑥𝑦))) = (((coe1𝐴)‘(𝑥𝐷)) × ((coe1‘(𝐶 · (𝐷 𝑋)))‘(𝑥 − (𝑥𝐷)))))
91 eqid 2729 . . . . . . . 8 (𝑦 ∈ (0...𝑥) ↦ (((coe1𝐴)‘𝑦) × ((coe1‘(𝐶 · (𝐷 𝑋)))‘(𝑥𝑦)))) = (𝑦 ∈ (0...𝑥) ↦ (((coe1𝐴)‘𝑦) × ((coe1‘(𝐶 · (𝐷 𝑋)))‘(𝑥𝑦))))
92 ovex 7402 . . . . . . . 8 (((coe1𝐴)‘(𝑥𝐷)) × ((coe1‘(𝐶 · (𝐷 𝑋)))‘(𝑥 − (𝑥𝐷)))) ∈ V
9390, 91, 92fvmpt 6950 . . . . . . 7 ((𝑥𝐷) ∈ (0...𝑥) → ((𝑦 ∈ (0...𝑥) ↦ (((coe1𝐴)‘𝑦) × ((coe1‘(𝐶 · (𝐷 𝑋)))‘(𝑥𝑦))))‘(𝑥𝐷)) = (((coe1𝐴)‘(𝑥𝐷)) × ((coe1‘(𝐶 · (𝐷 𝑋)))‘(𝑥 − (𝑥𝐷)))))
9441, 93syl 17 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) → ((𝑦 ∈ (0...𝑥) ↦ (((coe1𝐴)‘𝑦) × ((coe1‘(𝐶 · (𝐷 𝑋)))‘(𝑥𝑦))))‘(𝑥𝐷)) = (((coe1𝐴)‘(𝑥𝐷)) × ((coe1‘(𝐶 · (𝐷 𝑋)))‘(𝑥 − (𝑥𝐷)))))
9528nn0cnd 12481 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) → 𝑥 ∈ ℂ)
9627nn0cnd 12481 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) → 𝐷 ∈ ℂ)
9795, 96nncand 11514 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) → (𝑥 − (𝑥𝐷)) = 𝐷)
9897fveq2d 6844 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) → ((coe1‘(𝐶 · (𝐷 𝑋)))‘(𝑥 − (𝑥𝐷))) = ((coe1‘(𝐶 · (𝐷 𝑋)))‘𝐷))
993adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) → 𝐶𝐾)
10020, 5, 6, 7, 8, 9, 10coe1tmfv1 22193 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝐶𝐾𝐷 ∈ ℕ0) → ((coe1‘(𝐶 · (𝐷 𝑋)))‘𝐷) = 𝐶)
10121, 99, 27, 100syl3anc 1373 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) → ((coe1‘(𝐶 · (𝐷 𝑋)))‘𝐷) = 𝐶)
10298, 101eqtrd 2764 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) → ((coe1‘(𝐶 · (𝐷 𝑋)))‘(𝑥 − (𝑥𝐷))) = 𝐶)
103102oveq2d 7385 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) → (((coe1𝐴)‘(𝑥𝐷)) × ((coe1‘(𝐶 · (𝐷 𝑋)))‘(𝑥 − (𝑥𝐷)))) = (((coe1𝐴)‘(𝑥𝐷)) × 𝐶))
10486, 94, 1033eqtrd 2768 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) → (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ (((coe1𝐴)‘𝑦) × ((coe1‘(𝐶 · (𝐷 𝑋)))‘(𝑥𝑦))))) = (((coe1𝐴)‘(𝑥𝐷)) × 𝐶))
105104anassrs 467 . . . 4 (((𝜑𝑥 ∈ ℕ0) ∧ 𝐷𝑥) → (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ (((coe1𝐴)‘𝑦) × ((coe1‘(𝐶 · (𝐷 𝑋)))‘(𝑥𝑦))))) = (((coe1𝐴)‘(𝑥𝐷)) × 𝐶))
1061ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℕ0) ∧ (¬ 𝐷𝑥𝑦 ∈ (0...𝑥))) → 𝑅 ∈ Ring)
1073ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℕ0) ∧ (¬ 𝐷𝑥𝑦 ∈ (0...𝑥))) → 𝐶𝐾)
1084ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℕ0) ∧ (¬ 𝐷𝑥𝑦 ∈ (0...𝑥))) → 𝐷 ∈ ℕ0)
10954ad2antll 729 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℕ0) ∧ (¬ 𝐷𝑥𝑦 ∈ (0...𝑥))) → (𝑥𝑦) ∈ ℕ0)
11054nn0red 12480 . . . . . . . . . . . . 13 (𝑦 ∈ (0...𝑥) → (𝑥𝑦) ∈ ℝ)
111110ad2antll 729 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℕ0) ∧ (¬ 𝐷𝑥𝑦 ∈ (0...𝑥))) → (𝑥𝑦) ∈ ℝ)
11233ad2antlr 727 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℕ0) ∧ (¬ 𝐷𝑥𝑦 ∈ (0...𝑥))) → 𝑥 ∈ ℝ)
11335ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℕ0) ∧ (¬ 𝐷𝑥𝑦 ∈ (0...𝑥))) → 𝐷 ∈ ℝ)
11447ad2antll 729 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℕ0) ∧ (¬ 𝐷𝑥𝑦 ∈ (0...𝑥))) → 𝑦 ∈ ℕ0)
115114nn0ge0d 12482 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℕ0) ∧ (¬ 𝐷𝑥𝑦 ∈ (0...𝑥))) → 0 ≤ 𝑦)
11647nn0red 12480 . . . . . . . . . . . . . . . 16 (𝑦 ∈ (0...𝑥) → 𝑦 ∈ ℝ)
117116ad2antll 729 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℕ0) ∧ (¬ 𝐷𝑥𝑦 ∈ (0...𝑥))) → 𝑦 ∈ ℝ)
118112, 117subge02d 11746 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℕ0) ∧ (¬ 𝐷𝑥𝑦 ∈ (0...𝑥))) → (0 ≤ 𝑦 ↔ (𝑥𝑦) ≤ 𝑥))
119115, 118mpbid 232 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℕ0) ∧ (¬ 𝐷𝑥𝑦 ∈ (0...𝑥))) → (𝑥𝑦) ≤ 𝑥)
120 simprl 770 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℕ0) ∧ (¬ 𝐷𝑥𝑦 ∈ (0...𝑥))) → ¬ 𝐷𝑥)
121112, 113ltnled 11297 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℕ0) ∧ (¬ 𝐷𝑥𝑦 ∈ (0...𝑥))) → (𝑥 < 𝐷 ↔ ¬ 𝐷𝑥))
122120, 121mpbird 257 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℕ0) ∧ (¬ 𝐷𝑥𝑦 ∈ (0...𝑥))) → 𝑥 < 𝐷)
123111, 112, 113, 119, 122lelttrd 11308 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℕ0) ∧ (¬ 𝐷𝑥𝑦 ∈ (0...𝑥))) → (𝑥𝑦) < 𝐷)
124111, 123gtned 11285 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℕ0) ∧ (¬ 𝐷𝑥𝑦 ∈ (0...𝑥))) → 𝐷 ≠ (𝑥𝑦))
12520, 5, 6, 7, 8, 9, 10, 106, 107, 108, 109, 124coe1tmfv2 22194 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℕ0) ∧ (¬ 𝐷𝑥𝑦 ∈ (0...𝑥))) → ((coe1‘(𝐶 · (𝐷 𝑋)))‘(𝑥𝑦)) = 0 )
126125oveq2d 7385 . . . . . . . . 9 (((𝜑𝑥 ∈ ℕ0) ∧ (¬ 𝐷𝑥𝑦 ∈ (0...𝑥))) → (((coe1𝐴)‘𝑦) × ((coe1‘(𝐶 · (𝐷 𝑋)))‘(𝑥𝑦))) = (((coe1𝐴)‘𝑦) × 0 ))
12745ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℕ0) ∧ (¬ 𝐷𝑥𝑦 ∈ (0...𝑥))) → (coe1𝐴):ℕ0𝐾)
128127, 114ffvelcdmd 7039 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℕ0) ∧ (¬ 𝐷𝑥𝑦 ∈ (0...𝑥))) → ((coe1𝐴)‘𝑦) ∈ 𝐾)
129106, 128, 81syl2anc 584 . . . . . . . . 9 (((𝜑𝑥 ∈ ℕ0) ∧ (¬ 𝐷𝑥𝑦 ∈ (0...𝑥))) → (((coe1𝐴)‘𝑦) × 0 ) = 0 )
130126, 129eqtrd 2764 . . . . . . . 8 (((𝜑𝑥 ∈ ℕ0) ∧ (¬ 𝐷𝑥𝑦 ∈ (0...𝑥))) → (((coe1𝐴)‘𝑦) × ((coe1‘(𝐶 · (𝐷 𝑋)))‘(𝑥𝑦))) = 0 )
131130anassrs 467 . . . . . . 7 ((((𝜑𝑥 ∈ ℕ0) ∧ ¬ 𝐷𝑥) ∧ 𝑦 ∈ (0...𝑥)) → (((coe1𝐴)‘𝑦) × ((coe1‘(𝐶 · (𝐷 𝑋)))‘(𝑥𝑦))) = 0 )
132131mpteq2dva 5195 . . . . . 6 (((𝜑𝑥 ∈ ℕ0) ∧ ¬ 𝐷𝑥) → (𝑦 ∈ (0...𝑥) ↦ (((coe1𝐴)‘𝑦) × ((coe1‘(𝐶 · (𝐷 𝑋)))‘(𝑥𝑦)))) = (𝑦 ∈ (0...𝑥) ↦ 0 ))
133132oveq2d 7385 . . . . 5 (((𝜑𝑥 ∈ ℕ0) ∧ ¬ 𝐷𝑥) → (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ (((coe1𝐴)‘𝑦) × ((coe1‘(𝐶 · (𝐷 𝑋)))‘(𝑥𝑦))))) = (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ 0 )))
1341, 22syl 17 . . . . . . 7 (𝜑𝑅 ∈ Mnd)
13520gsumz 18745 . . . . . . 7 ((𝑅 ∈ Mnd ∧ (0...𝑥) ∈ V) → (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ 0 )) = 0 )
136134, 24, 135sylancl 586 . . . . . 6 (𝜑 → (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ 0 )) = 0 )
137136ad2antrr 726 . . . . 5 (((𝜑𝑥 ∈ ℕ0) ∧ ¬ 𝐷𝑥) → (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ 0 )) = 0 )
138133, 137eqtrd 2764 . . . 4 (((𝜑𝑥 ∈ ℕ0) ∧ ¬ 𝐷𝑥) → (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ (((coe1𝐴)‘𝑦) × ((coe1‘(𝐶 · (𝐷 𝑋)))‘(𝑥𝑦))))) = 0 )
13918, 19, 105, 138ifbothda 4523 . . 3 ((𝜑𝑥 ∈ ℕ0) → (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ (((coe1𝐴)‘𝑦) × ((coe1‘(𝐶 · (𝐷 𝑋)))‘(𝑥𝑦))))) = if(𝐷𝑥, (((coe1𝐴)‘(𝑥𝐷)) × 𝐶), 0 ))
140139mpteq2dva 5195 . 2 (𝜑 → (𝑥 ∈ ℕ0 ↦ (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ (((coe1𝐴)‘𝑦) × ((coe1‘(𝐶 · (𝐷 𝑋)))‘(𝑥𝑦)))))) = (𝑥 ∈ ℕ0 ↦ if(𝐷𝑥, (((coe1𝐴)‘(𝑥𝐷)) × 𝐶), 0 )))
14117, 140eqtrd 2764 1 (𝜑 → (coe1‘(𝐴 (𝐶 · (𝐷 𝑋)))) = (𝑥 ∈ ℕ0 ↦ if(𝐷𝑥, (((coe1𝐴)‘(𝑥𝐷)) × 𝐶), 0 )))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  Vcvv 3444  cdif 3908  ifcif 4484  {csn 4585   class class class wbr 5102  cmpt 5183  wf 6495  cfv 6499  (class class class)co 7369  cc 11042  cr 11043  0cc0 11044   < clt 11184  cle 11185  cmin 11381  0cn0 12418  ...cfz 13444  Basecbs 17155  .rcmulr 17197   ·𝑠 cvsca 17200  0gc0g 17378   Σg cgsu 17379  Mndcmnd 18643  .gcmg 18981  mulGrpcmgp 20060  Ringcrg 20153  var1cv1 22093  Poly1cpl1 22094  coe1cco1 22095
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-ofr 7634  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-map 8778  df-pm 8779  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-sup 9369  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-fz 13445  df-fzo 13592  df-seq 13943  df-hash 14272  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-hom 17220  df-cco 17221  df-0g 17380  df-gsum 17381  df-prds 17386  df-pws 17388  df-mre 17523  df-mrc 17524  df-acs 17526  df-mgm 18549  df-sgrp 18628  df-mnd 18644  df-mhm 18692  df-submnd 18693  df-grp 18850  df-minusg 18851  df-sbg 18852  df-mulg 18982  df-subg 19037  df-ghm 19127  df-cntz 19231  df-cmn 19696  df-abl 19697  df-mgp 20061  df-rng 20073  df-ur 20102  df-ring 20155  df-subrng 20466  df-subrg 20490  df-lmod 20800  df-lss 20870  df-psr 21851  df-mvr 21852  df-mpl 21853  df-opsr 21855  df-psr1 22097  df-vr1 22098  df-ply1 22099  df-coe1 22100
This theorem is referenced by:  coe1tmmul2fv  22197  coe1sclmul2  22203
  Copyright terms: Public domain W3C validator