MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coe1tmmul2 Structured version   Visualization version   GIF version

Theorem coe1tmmul2 22300
Description: Coefficient vector of a polynomial multiplied on the right by a term. (Contributed by Stefan O'Rear, 27-Mar-2015.)
Hypotheses
Ref Expression
coe1tm.z 0 = (0g𝑅)
coe1tm.k 𝐾 = (Base‘𝑅)
coe1tm.p 𝑃 = (Poly1𝑅)
coe1tm.x 𝑋 = (var1𝑅)
coe1tm.m · = ( ·𝑠𝑃)
coe1tm.n 𝑁 = (mulGrp‘𝑃)
coe1tm.e = (.g𝑁)
coe1tmmul.b 𝐵 = (Base‘𝑃)
coe1tmmul.t = (.r𝑃)
coe1tmmul.u × = (.r𝑅)
coe1tmmul.a (𝜑𝐴𝐵)
coe1tmmul.r (𝜑𝑅 ∈ Ring)
coe1tmmul.c (𝜑𝐶𝐾)
coe1tmmul.d (𝜑𝐷 ∈ ℕ0)
Assertion
Ref Expression
coe1tmmul2 (𝜑 → (coe1‘(𝐴 (𝐶 · (𝐷 𝑋)))) = (𝑥 ∈ ℕ0 ↦ if(𝐷𝑥, (((coe1𝐴)‘(𝑥𝐷)) × 𝐶), 0 )))
Distinct variable groups:   𝑥, 0   𝑥,𝐶   𝑥,𝐷   𝑥,𝐾   𝑥,   𝑥,𝐴   𝑥,𝑁   𝑥,𝑃   𝑥,𝑋   𝜑,𝑥   𝑥,𝑅   𝑥, ·   𝑥, ×   𝑥,
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem coe1tmmul2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 coe1tmmul.r . . 3 (𝜑𝑅 ∈ Ring)
2 coe1tmmul.a . . 3 (𝜑𝐴𝐵)
3 coe1tmmul.c . . . 4 (𝜑𝐶𝐾)
4 coe1tmmul.d . . . 4 (𝜑𝐷 ∈ ℕ0)
5 coe1tm.k . . . . 5 𝐾 = (Base‘𝑅)
6 coe1tm.p . . . . 5 𝑃 = (Poly1𝑅)
7 coe1tm.x . . . . 5 𝑋 = (var1𝑅)
8 coe1tm.m . . . . 5 · = ( ·𝑠𝑃)
9 coe1tm.n . . . . 5 𝑁 = (mulGrp‘𝑃)
10 coe1tm.e . . . . 5 = (.g𝑁)
11 coe1tmmul.b . . . . 5 𝐵 = (Base‘𝑃)
125, 6, 7, 8, 9, 10, 11ply1tmcl 22296 . . . 4 ((𝑅 ∈ Ring ∧ 𝐶𝐾𝐷 ∈ ℕ0) → (𝐶 · (𝐷 𝑋)) ∈ 𝐵)
131, 3, 4, 12syl3anc 1371 . . 3 (𝜑 → (𝐶 · (𝐷 𝑋)) ∈ 𝐵)
14 coe1tmmul.t . . . 4 = (.r𝑃)
15 coe1tmmul.u . . . 4 × = (.r𝑅)
166, 14, 15, 11coe1mul 22294 . . 3 ((𝑅 ∈ Ring ∧ 𝐴𝐵 ∧ (𝐶 · (𝐷 𝑋)) ∈ 𝐵) → (coe1‘(𝐴 (𝐶 · (𝐷 𝑋)))) = (𝑥 ∈ ℕ0 ↦ (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ (((coe1𝐴)‘𝑦) × ((coe1‘(𝐶 · (𝐷 𝑋)))‘(𝑥𝑦)))))))
171, 2, 13, 16syl3anc 1371 . 2 (𝜑 → (coe1‘(𝐴 (𝐶 · (𝐷 𝑋)))) = (𝑥 ∈ ℕ0 ↦ (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ (((coe1𝐴)‘𝑦) × ((coe1‘(𝐶 · (𝐷 𝑋)))‘(𝑥𝑦)))))))
18 eqeq2 2752 . . . 4 ((((coe1𝐴)‘(𝑥𝐷)) × 𝐶) = if(𝐷𝑥, (((coe1𝐴)‘(𝑥𝐷)) × 𝐶), 0 ) → ((𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ (((coe1𝐴)‘𝑦) × ((coe1‘(𝐶 · (𝐷 𝑋)))‘(𝑥𝑦))))) = (((coe1𝐴)‘(𝑥𝐷)) × 𝐶) ↔ (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ (((coe1𝐴)‘𝑦) × ((coe1‘(𝐶 · (𝐷 𝑋)))‘(𝑥𝑦))))) = if(𝐷𝑥, (((coe1𝐴)‘(𝑥𝐷)) × 𝐶), 0 )))
19 eqeq2 2752 . . . 4 ( 0 = if(𝐷𝑥, (((coe1𝐴)‘(𝑥𝐷)) × 𝐶), 0 ) → ((𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ (((coe1𝐴)‘𝑦) × ((coe1‘(𝐶 · (𝐷 𝑋)))‘(𝑥𝑦))))) = 0 ↔ (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ (((coe1𝐴)‘𝑦) × ((coe1‘(𝐶 · (𝐷 𝑋)))‘(𝑥𝑦))))) = if(𝐷𝑥, (((coe1𝐴)‘(𝑥𝐷)) × 𝐶), 0 )))
20 coe1tm.z . . . . . . 7 0 = (0g𝑅)
211adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) → 𝑅 ∈ Ring)
22 ringmnd 20270 . . . . . . . 8 (𝑅 ∈ Ring → 𝑅 ∈ Mnd)
2321, 22syl 17 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) → 𝑅 ∈ Mnd)
24 ovex 7481 . . . . . . . 8 (0...𝑥) ∈ V
2524a1i 11 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) → (0...𝑥) ∈ V)
26 simprr 772 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) → 𝐷𝑥)
274adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) → 𝐷 ∈ ℕ0)
28 simprl 770 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) → 𝑥 ∈ ℕ0)
29 nn0sub 12603 . . . . . . . . . 10 ((𝐷 ∈ ℕ0𝑥 ∈ ℕ0) → (𝐷𝑥 ↔ (𝑥𝐷) ∈ ℕ0))
3027, 28, 29syl2anc 583 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) → (𝐷𝑥 ↔ (𝑥𝐷) ∈ ℕ0))
3126, 30mpbid 232 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) → (𝑥𝐷) ∈ ℕ0)
3227nn0ge0d 12616 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) → 0 ≤ 𝐷)
33 nn0re 12562 . . . . . . . . . . 11 (𝑥 ∈ ℕ0𝑥 ∈ ℝ)
3433ad2antrl 727 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) → 𝑥 ∈ ℝ)
354nn0red 12614 . . . . . . . . . . 11 (𝜑𝐷 ∈ ℝ)
3635adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) → 𝐷 ∈ ℝ)
3734, 36subge02d 11882 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) → (0 ≤ 𝐷 ↔ (𝑥𝐷) ≤ 𝑥))
3832, 37mpbid 232 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) → (𝑥𝐷) ≤ 𝑥)
39 fznn0 13676 . . . . . . . . 9 (𝑥 ∈ ℕ0 → ((𝑥𝐷) ∈ (0...𝑥) ↔ ((𝑥𝐷) ∈ ℕ0 ∧ (𝑥𝐷) ≤ 𝑥)))
4039ad2antrl 727 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) → ((𝑥𝐷) ∈ (0...𝑥) ↔ ((𝑥𝐷) ∈ ℕ0 ∧ (𝑥𝐷) ≤ 𝑥)))
4131, 38, 40mpbir2and 712 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) → (𝑥𝐷) ∈ (0...𝑥))
421ad2antrr 725 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) ∧ 𝑦 ∈ (0...𝑥)) → 𝑅 ∈ Ring)
43 eqid 2740 . . . . . . . . . . . . 13 (coe1𝐴) = (coe1𝐴)
4443, 11, 6, 5coe1f 22234 . . . . . . . . . . . 12 (𝐴𝐵 → (coe1𝐴):ℕ0𝐾)
452, 44syl 17 . . . . . . . . . . 11 (𝜑 → (coe1𝐴):ℕ0𝐾)
4645ad2antrr 725 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) ∧ 𝑦 ∈ (0...𝑥)) → (coe1𝐴):ℕ0𝐾)
47 elfznn0 13677 . . . . . . . . . . 11 (𝑦 ∈ (0...𝑥) → 𝑦 ∈ ℕ0)
4847adantl 481 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) ∧ 𝑦 ∈ (0...𝑥)) → 𝑦 ∈ ℕ0)
4946, 48ffvelcdmd 7119 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) ∧ 𝑦 ∈ (0...𝑥)) → ((coe1𝐴)‘𝑦) ∈ 𝐾)
50 eqid 2740 . . . . . . . . . . . . 13 (coe1‘(𝐶 · (𝐷 𝑋))) = (coe1‘(𝐶 · (𝐷 𝑋)))
5150, 11, 6, 5coe1f 22234 . . . . . . . . . . . 12 ((𝐶 · (𝐷 𝑋)) ∈ 𝐵 → (coe1‘(𝐶 · (𝐷 𝑋))):ℕ0𝐾)
5213, 51syl 17 . . . . . . . . . . 11 (𝜑 → (coe1‘(𝐶 · (𝐷 𝑋))):ℕ0𝐾)
5352ad2antrr 725 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) ∧ 𝑦 ∈ (0...𝑥)) → (coe1‘(𝐶 · (𝐷 𝑋))):ℕ0𝐾)
54 fznn0sub 13616 . . . . . . . . . . 11 (𝑦 ∈ (0...𝑥) → (𝑥𝑦) ∈ ℕ0)
5554adantl 481 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) ∧ 𝑦 ∈ (0...𝑥)) → (𝑥𝑦) ∈ ℕ0)
5653, 55ffvelcdmd 7119 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) ∧ 𝑦 ∈ (0...𝑥)) → ((coe1‘(𝐶 · (𝐷 𝑋)))‘(𝑥𝑦)) ∈ 𝐾)
575, 15ringcl 20277 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ ((coe1𝐴)‘𝑦) ∈ 𝐾 ∧ ((coe1‘(𝐶 · (𝐷 𝑋)))‘(𝑥𝑦)) ∈ 𝐾) → (((coe1𝐴)‘𝑦) × ((coe1‘(𝐶 · (𝐷 𝑋)))‘(𝑥𝑦))) ∈ 𝐾)
5842, 49, 56, 57syl3anc 1371 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) ∧ 𝑦 ∈ (0...𝑥)) → (((coe1𝐴)‘𝑦) × ((coe1‘(𝐶 · (𝐷 𝑋)))‘(𝑥𝑦))) ∈ 𝐾)
5958fmpttd 7149 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) → (𝑦 ∈ (0...𝑥) ↦ (((coe1𝐴)‘𝑦) × ((coe1‘(𝐶 · (𝐷 𝑋)))‘(𝑥𝑦)))):(0...𝑥)⟶𝐾)
601ad2antrr 725 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) ∧ 𝑦 ∈ ((0...𝑥) ∖ {(𝑥𝐷)})) → 𝑅 ∈ Ring)
613ad2antrr 725 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) ∧ 𝑦 ∈ ((0...𝑥) ∖ {(𝑥𝐷)})) → 𝐶𝐾)
624ad2antrr 725 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) ∧ 𝑦 ∈ ((0...𝑥) ∖ {(𝑥𝐷)})) → 𝐷 ∈ ℕ0)
63 eldifi 4154 . . . . . . . . . . . . 13 (𝑦 ∈ ((0...𝑥) ∖ {(𝑥𝐷)}) → 𝑦 ∈ (0...𝑥))
6463, 54syl 17 . . . . . . . . . . . 12 (𝑦 ∈ ((0...𝑥) ∖ {(𝑥𝐷)}) → (𝑥𝑦) ∈ ℕ0)
6564adantl 481 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) ∧ 𝑦 ∈ ((0...𝑥) ∖ {(𝑥𝐷)})) → (𝑥𝑦) ∈ ℕ0)
66 eldifsn 4811 . . . . . . . . . . . 12 (𝑦 ∈ ((0...𝑥) ∖ {(𝑥𝐷)}) ↔ (𝑦 ∈ (0...𝑥) ∧ 𝑦 ≠ (𝑥𝐷)))
67 simplrl 776 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) ∧ 𝑦 ∈ (0...𝑥)) → 𝑥 ∈ ℕ0)
6867nn0cnd 12615 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) ∧ 𝑦 ∈ (0...𝑥)) → 𝑥 ∈ ℂ)
6947nn0cnd 12615 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ (0...𝑥) → 𝑦 ∈ ℂ)
7069adantl 481 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) ∧ 𝑦 ∈ (0...𝑥)) → 𝑦 ∈ ℂ)
7168, 70nncand 11652 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) ∧ 𝑦 ∈ (0...𝑥)) → (𝑥 − (𝑥𝑦)) = 𝑦)
7271eqcomd 2746 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) ∧ 𝑦 ∈ (0...𝑥)) → 𝑦 = (𝑥 − (𝑥𝑦)))
73 oveq2 7456 . . . . . . . . . . . . . . . 16 (𝐷 = (𝑥𝑦) → (𝑥𝐷) = (𝑥 − (𝑥𝑦)))
7473eqeq2d 2751 . . . . . . . . . . . . . . 15 (𝐷 = (𝑥𝑦) → (𝑦 = (𝑥𝐷) ↔ 𝑦 = (𝑥 − (𝑥𝑦))))
7572, 74syl5ibrcom 247 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) ∧ 𝑦 ∈ (0...𝑥)) → (𝐷 = (𝑥𝑦) → 𝑦 = (𝑥𝐷)))
7675necon3d 2967 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) ∧ 𝑦 ∈ (0...𝑥)) → (𝑦 ≠ (𝑥𝐷) → 𝐷 ≠ (𝑥𝑦)))
7776impr 454 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) ∧ (𝑦 ∈ (0...𝑥) ∧ 𝑦 ≠ (𝑥𝐷))) → 𝐷 ≠ (𝑥𝑦))
7866, 77sylan2b 593 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) ∧ 𝑦 ∈ ((0...𝑥) ∖ {(𝑥𝐷)})) → 𝐷 ≠ (𝑥𝑦))
7920, 5, 6, 7, 8, 9, 10, 60, 61, 62, 65, 78coe1tmfv2 22299 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) ∧ 𝑦 ∈ ((0...𝑥) ∖ {(𝑥𝐷)})) → ((coe1‘(𝐶 · (𝐷 𝑋)))‘(𝑥𝑦)) = 0 )
8079oveq2d 7464 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) ∧ 𝑦 ∈ ((0...𝑥) ∖ {(𝑥𝐷)})) → (((coe1𝐴)‘𝑦) × ((coe1‘(𝐶 · (𝐷 𝑋)))‘(𝑥𝑦))) = (((coe1𝐴)‘𝑦) × 0 ))
815, 15, 20ringrz 20317 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ ((coe1𝐴)‘𝑦) ∈ 𝐾) → (((coe1𝐴)‘𝑦) × 0 ) = 0 )
8242, 49, 81syl2anc 583 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) ∧ 𝑦 ∈ (0...𝑥)) → (((coe1𝐴)‘𝑦) × 0 ) = 0 )
8363, 82sylan2 592 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) ∧ 𝑦 ∈ ((0...𝑥) ∖ {(𝑥𝐷)})) → (((coe1𝐴)‘𝑦) × 0 ) = 0 )
8480, 83eqtrd 2780 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) ∧ 𝑦 ∈ ((0...𝑥) ∖ {(𝑥𝐷)})) → (((coe1𝐴)‘𝑦) × ((coe1‘(𝐶 · (𝐷 𝑋)))‘(𝑥𝑦))) = 0 )
8584, 25suppss2 8241 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) → ((𝑦 ∈ (0...𝑥) ↦ (((coe1𝐴)‘𝑦) × ((coe1‘(𝐶 · (𝐷 𝑋)))‘(𝑥𝑦)))) supp 0 ) ⊆ {(𝑥𝐷)})
865, 20, 23, 25, 41, 59, 85gsumpt 20004 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) → (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ (((coe1𝐴)‘𝑦) × ((coe1‘(𝐶 · (𝐷 𝑋)))‘(𝑥𝑦))))) = ((𝑦 ∈ (0...𝑥) ↦ (((coe1𝐴)‘𝑦) × ((coe1‘(𝐶 · (𝐷 𝑋)))‘(𝑥𝑦))))‘(𝑥𝐷)))
87 fveq2 6920 . . . . . . . . 9 (𝑦 = (𝑥𝐷) → ((coe1𝐴)‘𝑦) = ((coe1𝐴)‘(𝑥𝐷)))
88 oveq2 7456 . . . . . . . . . 10 (𝑦 = (𝑥𝐷) → (𝑥𝑦) = (𝑥 − (𝑥𝐷)))
8988fveq2d 6924 . . . . . . . . 9 (𝑦 = (𝑥𝐷) → ((coe1‘(𝐶 · (𝐷 𝑋)))‘(𝑥𝑦)) = ((coe1‘(𝐶 · (𝐷 𝑋)))‘(𝑥 − (𝑥𝐷))))
9087, 89oveq12d 7466 . . . . . . . 8 (𝑦 = (𝑥𝐷) → (((coe1𝐴)‘𝑦) × ((coe1‘(𝐶 · (𝐷 𝑋)))‘(𝑥𝑦))) = (((coe1𝐴)‘(𝑥𝐷)) × ((coe1‘(𝐶 · (𝐷 𝑋)))‘(𝑥 − (𝑥𝐷)))))
91 eqid 2740 . . . . . . . 8 (𝑦 ∈ (0...𝑥) ↦ (((coe1𝐴)‘𝑦) × ((coe1‘(𝐶 · (𝐷 𝑋)))‘(𝑥𝑦)))) = (𝑦 ∈ (0...𝑥) ↦ (((coe1𝐴)‘𝑦) × ((coe1‘(𝐶 · (𝐷 𝑋)))‘(𝑥𝑦))))
92 ovex 7481 . . . . . . . 8 (((coe1𝐴)‘(𝑥𝐷)) × ((coe1‘(𝐶 · (𝐷 𝑋)))‘(𝑥 − (𝑥𝐷)))) ∈ V
9390, 91, 92fvmpt 7029 . . . . . . 7 ((𝑥𝐷) ∈ (0...𝑥) → ((𝑦 ∈ (0...𝑥) ↦ (((coe1𝐴)‘𝑦) × ((coe1‘(𝐶 · (𝐷 𝑋)))‘(𝑥𝑦))))‘(𝑥𝐷)) = (((coe1𝐴)‘(𝑥𝐷)) × ((coe1‘(𝐶 · (𝐷 𝑋)))‘(𝑥 − (𝑥𝐷)))))
9441, 93syl 17 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) → ((𝑦 ∈ (0...𝑥) ↦ (((coe1𝐴)‘𝑦) × ((coe1‘(𝐶 · (𝐷 𝑋)))‘(𝑥𝑦))))‘(𝑥𝐷)) = (((coe1𝐴)‘(𝑥𝐷)) × ((coe1‘(𝐶 · (𝐷 𝑋)))‘(𝑥 − (𝑥𝐷)))))
9528nn0cnd 12615 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) → 𝑥 ∈ ℂ)
9627nn0cnd 12615 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) → 𝐷 ∈ ℂ)
9795, 96nncand 11652 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) → (𝑥 − (𝑥𝐷)) = 𝐷)
9897fveq2d 6924 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) → ((coe1‘(𝐶 · (𝐷 𝑋)))‘(𝑥 − (𝑥𝐷))) = ((coe1‘(𝐶 · (𝐷 𝑋)))‘𝐷))
993adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) → 𝐶𝐾)
10020, 5, 6, 7, 8, 9, 10coe1tmfv1 22298 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝐶𝐾𝐷 ∈ ℕ0) → ((coe1‘(𝐶 · (𝐷 𝑋)))‘𝐷) = 𝐶)
10121, 99, 27, 100syl3anc 1371 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) → ((coe1‘(𝐶 · (𝐷 𝑋)))‘𝐷) = 𝐶)
10298, 101eqtrd 2780 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) → ((coe1‘(𝐶 · (𝐷 𝑋)))‘(𝑥 − (𝑥𝐷))) = 𝐶)
103102oveq2d 7464 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) → (((coe1𝐴)‘(𝑥𝐷)) × ((coe1‘(𝐶 · (𝐷 𝑋)))‘(𝑥 − (𝑥𝐷)))) = (((coe1𝐴)‘(𝑥𝐷)) × 𝐶))
10486, 94, 1033eqtrd 2784 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) → (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ (((coe1𝐴)‘𝑦) × ((coe1‘(𝐶 · (𝐷 𝑋)))‘(𝑥𝑦))))) = (((coe1𝐴)‘(𝑥𝐷)) × 𝐶))
105104anassrs 467 . . . 4 (((𝜑𝑥 ∈ ℕ0) ∧ 𝐷𝑥) → (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ (((coe1𝐴)‘𝑦) × ((coe1‘(𝐶 · (𝐷 𝑋)))‘(𝑥𝑦))))) = (((coe1𝐴)‘(𝑥𝐷)) × 𝐶))
1061ad2antrr 725 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℕ0) ∧ (¬ 𝐷𝑥𝑦 ∈ (0...𝑥))) → 𝑅 ∈ Ring)
1073ad2antrr 725 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℕ0) ∧ (¬ 𝐷𝑥𝑦 ∈ (0...𝑥))) → 𝐶𝐾)
1084ad2antrr 725 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℕ0) ∧ (¬ 𝐷𝑥𝑦 ∈ (0...𝑥))) → 𝐷 ∈ ℕ0)
10954ad2antll 728 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℕ0) ∧ (¬ 𝐷𝑥𝑦 ∈ (0...𝑥))) → (𝑥𝑦) ∈ ℕ0)
11054nn0red 12614 . . . . . . . . . . . . 13 (𝑦 ∈ (0...𝑥) → (𝑥𝑦) ∈ ℝ)
111110ad2antll 728 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℕ0) ∧ (¬ 𝐷𝑥𝑦 ∈ (0...𝑥))) → (𝑥𝑦) ∈ ℝ)
11233ad2antlr 726 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℕ0) ∧ (¬ 𝐷𝑥𝑦 ∈ (0...𝑥))) → 𝑥 ∈ ℝ)
11335ad2antrr 725 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℕ0) ∧ (¬ 𝐷𝑥𝑦 ∈ (0...𝑥))) → 𝐷 ∈ ℝ)
11447ad2antll 728 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℕ0) ∧ (¬ 𝐷𝑥𝑦 ∈ (0...𝑥))) → 𝑦 ∈ ℕ0)
115114nn0ge0d 12616 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℕ0) ∧ (¬ 𝐷𝑥𝑦 ∈ (0...𝑥))) → 0 ≤ 𝑦)
11647nn0red 12614 . . . . . . . . . . . . . . . 16 (𝑦 ∈ (0...𝑥) → 𝑦 ∈ ℝ)
117116ad2antll 728 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℕ0) ∧ (¬ 𝐷𝑥𝑦 ∈ (0...𝑥))) → 𝑦 ∈ ℝ)
118112, 117subge02d 11882 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℕ0) ∧ (¬ 𝐷𝑥𝑦 ∈ (0...𝑥))) → (0 ≤ 𝑦 ↔ (𝑥𝑦) ≤ 𝑥))
119115, 118mpbid 232 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℕ0) ∧ (¬ 𝐷𝑥𝑦 ∈ (0...𝑥))) → (𝑥𝑦) ≤ 𝑥)
120 simprl 770 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℕ0) ∧ (¬ 𝐷𝑥𝑦 ∈ (0...𝑥))) → ¬ 𝐷𝑥)
121112, 113ltnled 11437 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℕ0) ∧ (¬ 𝐷𝑥𝑦 ∈ (0...𝑥))) → (𝑥 < 𝐷 ↔ ¬ 𝐷𝑥))
122120, 121mpbird 257 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℕ0) ∧ (¬ 𝐷𝑥𝑦 ∈ (0...𝑥))) → 𝑥 < 𝐷)
123111, 112, 113, 119, 122lelttrd 11448 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℕ0) ∧ (¬ 𝐷𝑥𝑦 ∈ (0...𝑥))) → (𝑥𝑦) < 𝐷)
124111, 123gtned 11425 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℕ0) ∧ (¬ 𝐷𝑥𝑦 ∈ (0...𝑥))) → 𝐷 ≠ (𝑥𝑦))
12520, 5, 6, 7, 8, 9, 10, 106, 107, 108, 109, 124coe1tmfv2 22299 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℕ0) ∧ (¬ 𝐷𝑥𝑦 ∈ (0...𝑥))) → ((coe1‘(𝐶 · (𝐷 𝑋)))‘(𝑥𝑦)) = 0 )
126125oveq2d 7464 . . . . . . . . 9 (((𝜑𝑥 ∈ ℕ0) ∧ (¬ 𝐷𝑥𝑦 ∈ (0...𝑥))) → (((coe1𝐴)‘𝑦) × ((coe1‘(𝐶 · (𝐷 𝑋)))‘(𝑥𝑦))) = (((coe1𝐴)‘𝑦) × 0 ))
12745ad2antrr 725 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℕ0) ∧ (¬ 𝐷𝑥𝑦 ∈ (0...𝑥))) → (coe1𝐴):ℕ0𝐾)
128127, 114ffvelcdmd 7119 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℕ0) ∧ (¬ 𝐷𝑥𝑦 ∈ (0...𝑥))) → ((coe1𝐴)‘𝑦) ∈ 𝐾)
129106, 128, 81syl2anc 583 . . . . . . . . 9 (((𝜑𝑥 ∈ ℕ0) ∧ (¬ 𝐷𝑥𝑦 ∈ (0...𝑥))) → (((coe1𝐴)‘𝑦) × 0 ) = 0 )
130126, 129eqtrd 2780 . . . . . . . 8 (((𝜑𝑥 ∈ ℕ0) ∧ (¬ 𝐷𝑥𝑦 ∈ (0...𝑥))) → (((coe1𝐴)‘𝑦) × ((coe1‘(𝐶 · (𝐷 𝑋)))‘(𝑥𝑦))) = 0 )
131130anassrs 467 . . . . . . 7 ((((𝜑𝑥 ∈ ℕ0) ∧ ¬ 𝐷𝑥) ∧ 𝑦 ∈ (0...𝑥)) → (((coe1𝐴)‘𝑦) × ((coe1‘(𝐶 · (𝐷 𝑋)))‘(𝑥𝑦))) = 0 )
132131mpteq2dva 5266 . . . . . 6 (((𝜑𝑥 ∈ ℕ0) ∧ ¬ 𝐷𝑥) → (𝑦 ∈ (0...𝑥) ↦ (((coe1𝐴)‘𝑦) × ((coe1‘(𝐶 · (𝐷 𝑋)))‘(𝑥𝑦)))) = (𝑦 ∈ (0...𝑥) ↦ 0 ))
133132oveq2d 7464 . . . . 5 (((𝜑𝑥 ∈ ℕ0) ∧ ¬ 𝐷𝑥) → (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ (((coe1𝐴)‘𝑦) × ((coe1‘(𝐶 · (𝐷 𝑋)))‘(𝑥𝑦))))) = (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ 0 )))
1341, 22syl 17 . . . . . . 7 (𝜑𝑅 ∈ Mnd)
13520gsumz 18871 . . . . . . 7 ((𝑅 ∈ Mnd ∧ (0...𝑥) ∈ V) → (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ 0 )) = 0 )
136134, 24, 135sylancl 585 . . . . . 6 (𝜑 → (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ 0 )) = 0 )
137136ad2antrr 725 . . . . 5 (((𝜑𝑥 ∈ ℕ0) ∧ ¬ 𝐷𝑥) → (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ 0 )) = 0 )
138133, 137eqtrd 2780 . . . 4 (((𝜑𝑥 ∈ ℕ0) ∧ ¬ 𝐷𝑥) → (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ (((coe1𝐴)‘𝑦) × ((coe1‘(𝐶 · (𝐷 𝑋)))‘(𝑥𝑦))))) = 0 )
13918, 19, 105, 138ifbothda 4586 . . 3 ((𝜑𝑥 ∈ ℕ0) → (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ (((coe1𝐴)‘𝑦) × ((coe1‘(𝐶 · (𝐷 𝑋)))‘(𝑥𝑦))))) = if(𝐷𝑥, (((coe1𝐴)‘(𝑥𝐷)) × 𝐶), 0 ))
140139mpteq2dva 5266 . 2 (𝜑 → (𝑥 ∈ ℕ0 ↦ (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ (((coe1𝐴)‘𝑦) × ((coe1‘(𝐶 · (𝐷 𝑋)))‘(𝑥𝑦)))))) = (𝑥 ∈ ℕ0 ↦ if(𝐷𝑥, (((coe1𝐴)‘(𝑥𝐷)) × 𝐶), 0 )))
14117, 140eqtrd 2780 1 (𝜑 → (coe1‘(𝐴 (𝐶 · (𝐷 𝑋)))) = (𝑥 ∈ ℕ0 ↦ if(𝐷𝑥, (((coe1𝐴)‘(𝑥𝐷)) × 𝐶), 0 )))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wne 2946  Vcvv 3488  cdif 3973  ifcif 4548  {csn 4648   class class class wbr 5166  cmpt 5249  wf 6569  cfv 6573  (class class class)co 7448  cc 11182  cr 11183  0cc0 11184   < clt 11324  cle 11325  cmin 11520  0cn0 12553  ...cfz 13567  Basecbs 17258  .rcmulr 17312   ·𝑠 cvsca 17315  0gc0g 17499   Σg cgsu 17500  Mndcmnd 18772  .gcmg 19107  mulGrpcmgp 20161  Ringcrg 20260  var1cv1 22198  Poly1cpl1 22199  coe1cco1 22200
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-ofr 7715  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-sup 9511  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-fz 13568  df-fzo 13712  df-seq 14053  df-hash 14380  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-hom 17335  df-cco 17336  df-0g 17501  df-gsum 17502  df-prds 17507  df-pws 17509  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-mhm 18818  df-submnd 18819  df-grp 18976  df-minusg 18977  df-sbg 18978  df-mulg 19108  df-subg 19163  df-ghm 19253  df-cntz 19357  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-subrng 20572  df-subrg 20597  df-lmod 20882  df-lss 20953  df-psr 21952  df-mvr 21953  df-mpl 21954  df-opsr 21956  df-psr1 22202  df-vr1 22203  df-ply1 22204  df-coe1 22205
This theorem is referenced by:  coe1tmmul2fv  22302  coe1sclmul2  22308
  Copyright terms: Public domain W3C validator