![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lpadmax | Structured version Visualization version GIF version |
Description: Length of a left-padded word, in the general case, expressed with an if statement. (Contributed by Thierry Arnoux, 7-Aug-2023.) |
Ref | Expression |
---|---|
lpadlen.1 | ⊢ (𝜑 → 𝐿 ∈ ℕ0) |
lpadlen.2 | ⊢ (𝜑 → 𝑊 ∈ Word 𝑆) |
lpadlen.3 | ⊢ (𝜑 → 𝐶 ∈ 𝑆) |
Ref | Expression |
---|---|
lpadmax | ⊢ (𝜑 → (♯‘((𝐶 leftpad 𝑊)‘𝐿)) = if(𝐿 ≤ (♯‘𝑊), (♯‘𝑊), 𝐿)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq2 2738 | . 2 ⊢ ((♯‘𝑊) = if(𝐿 ≤ (♯‘𝑊), (♯‘𝑊), 𝐿) → ((♯‘((𝐶 leftpad 𝑊)‘𝐿)) = (♯‘𝑊) ↔ (♯‘((𝐶 leftpad 𝑊)‘𝐿)) = if(𝐿 ≤ (♯‘𝑊), (♯‘𝑊), 𝐿))) | |
2 | eqeq2 2738 | . 2 ⊢ (𝐿 = if(𝐿 ≤ (♯‘𝑊), (♯‘𝑊), 𝐿) → ((♯‘((𝐶 leftpad 𝑊)‘𝐿)) = 𝐿 ↔ (♯‘((𝐶 leftpad 𝑊)‘𝐿)) = if(𝐿 ≤ (♯‘𝑊), (♯‘𝑊), 𝐿))) | |
3 | lpadlen.1 | . . . 4 ⊢ (𝜑 → 𝐿 ∈ ℕ0) | |
4 | 3 | adantr 479 | . . 3 ⊢ ((𝜑 ∧ 𝐿 ≤ (♯‘𝑊)) → 𝐿 ∈ ℕ0) |
5 | lpadlen.2 | . . . 4 ⊢ (𝜑 → 𝑊 ∈ Word 𝑆) | |
6 | 5 | adantr 479 | . . 3 ⊢ ((𝜑 ∧ 𝐿 ≤ (♯‘𝑊)) → 𝑊 ∈ Word 𝑆) |
7 | lpadlen.3 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑆) | |
8 | 7 | adantr 479 | . . 3 ⊢ ((𝜑 ∧ 𝐿 ≤ (♯‘𝑊)) → 𝐶 ∈ 𝑆) |
9 | simpr 483 | . . 3 ⊢ ((𝜑 ∧ 𝐿 ≤ (♯‘𝑊)) → 𝐿 ≤ (♯‘𝑊)) | |
10 | 4, 6, 8, 9 | lpadlen1 34525 | . 2 ⊢ ((𝜑 ∧ 𝐿 ≤ (♯‘𝑊)) → (♯‘((𝐶 leftpad 𝑊)‘𝐿)) = (♯‘𝑊)) |
11 | 3 | adantr 479 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝐿 ≤ (♯‘𝑊)) → 𝐿 ∈ ℕ0) |
12 | 5 | adantr 479 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝐿 ≤ (♯‘𝑊)) → 𝑊 ∈ Word 𝑆) |
13 | 7 | adantr 479 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝐿 ≤ (♯‘𝑊)) → 𝐶 ∈ 𝑆) |
14 | lencl 14541 | . . . . . . 7 ⊢ (𝑊 ∈ Word 𝑆 → (♯‘𝑊) ∈ ℕ0) | |
15 | 5, 14 | syl 17 | . . . . . 6 ⊢ (𝜑 → (♯‘𝑊) ∈ ℕ0) |
16 | 15 | nn0red 12585 | . . . . 5 ⊢ (𝜑 → (♯‘𝑊) ∈ ℝ) |
17 | 16 | adantr 479 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐿 ≤ (♯‘𝑊)) → (♯‘𝑊) ∈ ℝ) |
18 | 11 | nn0red 12585 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐿 ≤ (♯‘𝑊)) → 𝐿 ∈ ℝ) |
19 | 3 | nn0red 12585 | . . . . . 6 ⊢ (𝜑 → 𝐿 ∈ ℝ) |
20 | 16, 19 | ltnled 11411 | . . . . 5 ⊢ (𝜑 → ((♯‘𝑊) < 𝐿 ↔ ¬ 𝐿 ≤ (♯‘𝑊))) |
21 | 20 | biimpar 476 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐿 ≤ (♯‘𝑊)) → (♯‘𝑊) < 𝐿) |
22 | 17, 18, 21 | ltled 11412 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝐿 ≤ (♯‘𝑊)) → (♯‘𝑊) ≤ 𝐿) |
23 | 11, 12, 13, 22 | lpadlen2 34527 | . 2 ⊢ ((𝜑 ∧ ¬ 𝐿 ≤ (♯‘𝑊)) → (♯‘((𝐶 leftpad 𝑊)‘𝐿)) = 𝐿) |
24 | 1, 2, 10, 23 | ifbothda 4571 | 1 ⊢ (𝜑 → (♯‘((𝐶 leftpad 𝑊)‘𝐿)) = if(𝐿 ≤ (♯‘𝑊), (♯‘𝑊), 𝐿)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 394 = wceq 1534 ∈ wcel 2099 ifcif 4533 class class class wbr 5153 ‘cfv 6554 (class class class)co 7424 ℝcr 11157 < clt 11298 ≤ cle 11299 ℕ0cn0 12524 ♯chash 14347 Word cword 14522 leftpad clpad 34520 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5290 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11214 ax-resscn 11215 ax-1cn 11216 ax-icn 11217 ax-addcl 11218 ax-addrcl 11219 ax-mulcl 11220 ax-mulrcl 11221 ax-mulcom 11222 ax-addass 11223 ax-mulass 11224 ax-distr 11225 ax-i2m1 11226 ax-1ne0 11227 ax-1rid 11228 ax-rnegex 11229 ax-rrecex 11230 ax-cnre 11231 ax-pre-lttri 11232 ax-pre-lttrn 11233 ax-pre-ltadd 11234 ax-pre-mulgt0 11235 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-int 4955 df-iun 5003 df-br 5154 df-opab 5216 df-mpt 5237 df-tr 5271 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6312 df-ord 6379 df-on 6380 df-lim 6381 df-suc 6382 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-fv 6562 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-om 7877 df-1st 8003 df-2nd 8004 df-frecs 8296 df-wrecs 8327 df-recs 8401 df-rdg 8440 df-1o 8496 df-oadd 8500 df-er 8734 df-en 8975 df-dom 8976 df-sdom 8977 df-fin 8978 df-dju 9944 df-card 9982 df-pnf 11300 df-mnf 11301 df-xr 11302 df-ltxr 11303 df-le 11304 df-sub 11496 df-neg 11497 df-nn 12265 df-n0 12525 df-z 12611 df-uz 12875 df-fz 13539 df-fzo 13682 df-hash 14348 df-word 14523 df-concat 14579 df-lpad 34521 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |