Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lpadmax Structured version   Visualization version   GIF version

Theorem lpadmax 33026
Description: Length of a left-padded word, in the general case, expressed with an if statement. (Contributed by Thierry Arnoux, 7-Aug-2023.)
Hypotheses
Ref Expression
lpadlen.1 (𝜑𝐿 ∈ ℕ0)
lpadlen.2 (𝜑𝑊 ∈ Word 𝑆)
lpadlen.3 (𝜑𝐶𝑆)
Assertion
Ref Expression
lpadmax (𝜑 → (♯‘((𝐶 leftpad 𝑊)‘𝐿)) = if(𝐿 ≤ (♯‘𝑊), (♯‘𝑊), 𝐿))

Proof of Theorem lpadmax
StepHypRef Expression
1 eqeq2 2749 . 2 ((♯‘𝑊) = if(𝐿 ≤ (♯‘𝑊), (♯‘𝑊), 𝐿) → ((♯‘((𝐶 leftpad 𝑊)‘𝐿)) = (♯‘𝑊) ↔ (♯‘((𝐶 leftpad 𝑊)‘𝐿)) = if(𝐿 ≤ (♯‘𝑊), (♯‘𝑊), 𝐿)))
2 eqeq2 2749 . 2 (𝐿 = if(𝐿 ≤ (♯‘𝑊), (♯‘𝑊), 𝐿) → ((♯‘((𝐶 leftpad 𝑊)‘𝐿)) = 𝐿 ↔ (♯‘((𝐶 leftpad 𝑊)‘𝐿)) = if(𝐿 ≤ (♯‘𝑊), (♯‘𝑊), 𝐿)))
3 lpadlen.1 . . . 4 (𝜑𝐿 ∈ ℕ0)
43adantr 482 . . 3 ((𝜑𝐿 ≤ (♯‘𝑊)) → 𝐿 ∈ ℕ0)
5 lpadlen.2 . . . 4 (𝜑𝑊 ∈ Word 𝑆)
65adantr 482 . . 3 ((𝜑𝐿 ≤ (♯‘𝑊)) → 𝑊 ∈ Word 𝑆)
7 lpadlen.3 . . . 4 (𝜑𝐶𝑆)
87adantr 482 . . 3 ((𝜑𝐿 ≤ (♯‘𝑊)) → 𝐶𝑆)
9 simpr 486 . . 3 ((𝜑𝐿 ≤ (♯‘𝑊)) → 𝐿 ≤ (♯‘𝑊))
104, 6, 8, 9lpadlen1 33023 . 2 ((𝜑𝐿 ≤ (♯‘𝑊)) → (♯‘((𝐶 leftpad 𝑊)‘𝐿)) = (♯‘𝑊))
113adantr 482 . . 3 ((𝜑 ∧ ¬ 𝐿 ≤ (♯‘𝑊)) → 𝐿 ∈ ℕ0)
125adantr 482 . . 3 ((𝜑 ∧ ¬ 𝐿 ≤ (♯‘𝑊)) → 𝑊 ∈ Word 𝑆)
137adantr 482 . . 3 ((𝜑 ∧ ¬ 𝐿 ≤ (♯‘𝑊)) → 𝐶𝑆)
14 lencl 14345 . . . . . . 7 (𝑊 ∈ Word 𝑆 → (♯‘𝑊) ∈ ℕ0)
155, 14syl 17 . . . . . 6 (𝜑 → (♯‘𝑊) ∈ ℕ0)
1615nn0red 12404 . . . . 5 (𝜑 → (♯‘𝑊) ∈ ℝ)
1716adantr 482 . . . 4 ((𝜑 ∧ ¬ 𝐿 ≤ (♯‘𝑊)) → (♯‘𝑊) ∈ ℝ)
1811nn0red 12404 . . . 4 ((𝜑 ∧ ¬ 𝐿 ≤ (♯‘𝑊)) → 𝐿 ∈ ℝ)
193nn0red 12404 . . . . . 6 (𝜑𝐿 ∈ ℝ)
2016, 19ltnled 11232 . . . . 5 (𝜑 → ((♯‘𝑊) < 𝐿 ↔ ¬ 𝐿 ≤ (♯‘𝑊)))
2120biimpar 479 . . . 4 ((𝜑 ∧ ¬ 𝐿 ≤ (♯‘𝑊)) → (♯‘𝑊) < 𝐿)
2217, 18, 21ltled 11233 . . 3 ((𝜑 ∧ ¬ 𝐿 ≤ (♯‘𝑊)) → (♯‘𝑊) ≤ 𝐿)
2311, 12, 13, 22lpadlen2 33025 . 2 ((𝜑 ∧ ¬ 𝐿 ≤ (♯‘𝑊)) → (♯‘((𝐶 leftpad 𝑊)‘𝐿)) = 𝐿)
241, 2, 10, 23ifbothda 4519 1 (𝜑 → (♯‘((𝐶 leftpad 𝑊)‘𝐿)) = if(𝐿 ≤ (♯‘𝑊), (♯‘𝑊), 𝐿))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 397   = wceq 1541  wcel 2106  ifcif 4481   class class class wbr 5100  cfv 6488  (class class class)co 7346  cr 10980   < clt 11119  cle 11120  0cn0 12343  chash 14154  Word cword 14326   leftpad clpad 33018
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-rep 5237  ax-sep 5251  ax-nul 5258  ax-pow 5315  ax-pr 5379  ax-un 7659  ax-cnex 11037  ax-resscn 11038  ax-1cn 11039  ax-icn 11040  ax-addcl 11041  ax-addrcl 11042  ax-mulcl 11043  ax-mulrcl 11044  ax-mulcom 11045  ax-addass 11046  ax-mulass 11047  ax-distr 11048  ax-i2m1 11049  ax-1ne0 11050  ax-1rid 11051  ax-rnegex 11052  ax-rrecex 11053  ax-cnre 11054  ax-pre-lttri 11055  ax-pre-lttrn 11056  ax-pre-ltadd 11057  ax-pre-mulgt0 11058
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3352  df-rab 3406  df-v 3445  df-sbc 3735  df-csb 3851  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3924  df-nul 4278  df-if 4482  df-pw 4557  df-sn 4582  df-pr 4584  df-op 4588  df-uni 4861  df-int 4903  df-iun 4951  df-br 5101  df-opab 5163  df-mpt 5184  df-tr 5218  df-id 5525  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5582  df-we 5584  df-xp 5633  df-rel 5634  df-cnv 5635  df-co 5636  df-dm 5637  df-rn 5638  df-res 5639  df-ima 5640  df-pred 6246  df-ord 6313  df-on 6314  df-lim 6315  df-suc 6316  df-iota 6440  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-riota 7302  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7790  df-1st 7908  df-2nd 7909  df-frecs 8176  df-wrecs 8207  df-recs 8281  df-rdg 8320  df-1o 8376  df-oadd 8380  df-er 8578  df-en 8814  df-dom 8815  df-sdom 8816  df-fin 8817  df-dju 9767  df-card 9805  df-pnf 11121  df-mnf 11122  df-xr 11123  df-ltxr 11124  df-le 11125  df-sub 11317  df-neg 11318  df-nn 12084  df-n0 12344  df-z 12430  df-uz 12693  df-fz 13350  df-fzo 13493  df-hash 14155  df-word 14327  df-concat 14383  df-lpad 33019
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator