![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lpadmax | Structured version Visualization version GIF version |
Description: Length of a left-padded word, in the general case, expressed with an if statement. (Contributed by Thierry Arnoux, 7-Aug-2023.) |
Ref | Expression |
---|---|
lpadlen.1 | ⊢ (𝜑 → 𝐿 ∈ ℕ0) |
lpadlen.2 | ⊢ (𝜑 → 𝑊 ∈ Word 𝑆) |
lpadlen.3 | ⊢ (𝜑 → 𝐶 ∈ 𝑆) |
Ref | Expression |
---|---|
lpadmax | ⊢ (𝜑 → (♯‘((𝐶 leftpad 𝑊)‘𝐿)) = if(𝐿 ≤ (♯‘𝑊), (♯‘𝑊), 𝐿)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq2 2747 | . 2 ⊢ ((♯‘𝑊) = if(𝐿 ≤ (♯‘𝑊), (♯‘𝑊), 𝐿) → ((♯‘((𝐶 leftpad 𝑊)‘𝐿)) = (♯‘𝑊) ↔ (♯‘((𝐶 leftpad 𝑊)‘𝐿)) = if(𝐿 ≤ (♯‘𝑊), (♯‘𝑊), 𝐿))) | |
2 | eqeq2 2747 | . 2 ⊢ (𝐿 = if(𝐿 ≤ (♯‘𝑊), (♯‘𝑊), 𝐿) → ((♯‘((𝐶 leftpad 𝑊)‘𝐿)) = 𝐿 ↔ (♯‘((𝐶 leftpad 𝑊)‘𝐿)) = if(𝐿 ≤ (♯‘𝑊), (♯‘𝑊), 𝐿))) | |
3 | lpadlen.1 | . . . 4 ⊢ (𝜑 → 𝐿 ∈ ℕ0) | |
4 | 3 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐿 ≤ (♯‘𝑊)) → 𝐿 ∈ ℕ0) |
5 | lpadlen.2 | . . . 4 ⊢ (𝜑 → 𝑊 ∈ Word 𝑆) | |
6 | 5 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐿 ≤ (♯‘𝑊)) → 𝑊 ∈ Word 𝑆) |
7 | lpadlen.3 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑆) | |
8 | 7 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐿 ≤ (♯‘𝑊)) → 𝐶 ∈ 𝑆) |
9 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝐿 ≤ (♯‘𝑊)) → 𝐿 ≤ (♯‘𝑊)) | |
10 | 4, 6, 8, 9 | lpadlen1 34673 | . 2 ⊢ ((𝜑 ∧ 𝐿 ≤ (♯‘𝑊)) → (♯‘((𝐶 leftpad 𝑊)‘𝐿)) = (♯‘𝑊)) |
11 | 3 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝐿 ≤ (♯‘𝑊)) → 𝐿 ∈ ℕ0) |
12 | 5 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝐿 ≤ (♯‘𝑊)) → 𝑊 ∈ Word 𝑆) |
13 | 7 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝐿 ≤ (♯‘𝑊)) → 𝐶 ∈ 𝑆) |
14 | lencl 14568 | . . . . . . 7 ⊢ (𝑊 ∈ Word 𝑆 → (♯‘𝑊) ∈ ℕ0) | |
15 | 5, 14 | syl 17 | . . . . . 6 ⊢ (𝜑 → (♯‘𝑊) ∈ ℕ0) |
16 | 15 | nn0red 12586 | . . . . 5 ⊢ (𝜑 → (♯‘𝑊) ∈ ℝ) |
17 | 16 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐿 ≤ (♯‘𝑊)) → (♯‘𝑊) ∈ ℝ) |
18 | 11 | nn0red 12586 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐿 ≤ (♯‘𝑊)) → 𝐿 ∈ ℝ) |
19 | 3 | nn0red 12586 | . . . . . 6 ⊢ (𝜑 → 𝐿 ∈ ℝ) |
20 | 16, 19 | ltnled 11406 | . . . . 5 ⊢ (𝜑 → ((♯‘𝑊) < 𝐿 ↔ ¬ 𝐿 ≤ (♯‘𝑊))) |
21 | 20 | biimpar 477 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐿 ≤ (♯‘𝑊)) → (♯‘𝑊) < 𝐿) |
22 | 17, 18, 21 | ltled 11407 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝐿 ≤ (♯‘𝑊)) → (♯‘𝑊) ≤ 𝐿) |
23 | 11, 12, 13, 22 | lpadlen2 34675 | . 2 ⊢ ((𝜑 ∧ ¬ 𝐿 ≤ (♯‘𝑊)) → (♯‘((𝐶 leftpad 𝑊)‘𝐿)) = 𝐿) |
24 | 1, 2, 10, 23 | ifbothda 4569 | 1 ⊢ (𝜑 → (♯‘((𝐶 leftpad 𝑊)‘𝐿)) = if(𝐿 ≤ (♯‘𝑊), (♯‘𝑊), 𝐿)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ifcif 4531 class class class wbr 5148 ‘cfv 6563 (class class class)co 7431 ℝcr 11152 < clt 11293 ≤ cle 11294 ℕ0cn0 12524 ♯chash 14366 Word cword 14549 leftpad clpad 34668 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-oadd 8509 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-dju 9939 df-card 9977 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-n0 12525 df-z 12612 df-uz 12877 df-fz 13545 df-fzo 13692 df-hash 14367 df-word 14550 df-concat 14606 df-lpad 34669 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |