MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coe1tmmul Structured version   Visualization version   GIF version

Theorem coe1tmmul 22191
Description: Coefficient vector of a polynomial multiplied on the left by a term. (Contributed by Stefan O'Rear, 29-Mar-2015.)
Hypotheses
Ref Expression
coe1tm.z 0 = (0g𝑅)
coe1tm.k 𝐾 = (Base‘𝑅)
coe1tm.p 𝑃 = (Poly1𝑅)
coe1tm.x 𝑋 = (var1𝑅)
coe1tm.m · = ( ·𝑠𝑃)
coe1tm.n 𝑁 = (mulGrp‘𝑃)
coe1tm.e = (.g𝑁)
coe1tmmul.b 𝐵 = (Base‘𝑃)
coe1tmmul.t = (.r𝑃)
coe1tmmul.u × = (.r𝑅)
coe1tmmul.a (𝜑𝐴𝐵)
coe1tmmul.r (𝜑𝑅 ∈ Ring)
coe1tmmul.c (𝜑𝐶𝐾)
coe1tmmul.d (𝜑𝐷 ∈ ℕ0)
Assertion
Ref Expression
coe1tmmul (𝜑 → (coe1‘((𝐶 · (𝐷 𝑋)) 𝐴)) = (𝑥 ∈ ℕ0 ↦ if(𝐷𝑥, (𝐶 × ((coe1𝐴)‘(𝑥𝐷))), 0 )))
Distinct variable groups:   𝑥, 0   𝑥,𝐶   𝑥,𝐷   𝑥,𝐾   𝑥,   𝑥,𝐴   𝑥,𝑁   𝑥,𝑃   𝑥,𝑋   𝜑,𝑥   𝑥,𝑅   𝑥, ·   𝑥, ×   𝑥,
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem coe1tmmul
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 coe1tmmul.r . . 3 (𝜑𝑅 ∈ Ring)
2 coe1tmmul.c . . . 4 (𝜑𝐶𝐾)
3 coe1tmmul.d . . . 4 (𝜑𝐷 ∈ ℕ0)
4 coe1tm.k . . . . 5 𝐾 = (Base‘𝑅)
5 coe1tm.p . . . . 5 𝑃 = (Poly1𝑅)
6 coe1tm.x . . . . 5 𝑋 = (var1𝑅)
7 coe1tm.m . . . . 5 · = ( ·𝑠𝑃)
8 coe1tm.n . . . . 5 𝑁 = (mulGrp‘𝑃)
9 coe1tm.e . . . . 5 = (.g𝑁)
10 coe1tmmul.b . . . . 5 𝐵 = (Base‘𝑃)
114, 5, 6, 7, 8, 9, 10ply1tmcl 22186 . . . 4 ((𝑅 ∈ Ring ∧ 𝐶𝐾𝐷 ∈ ℕ0) → (𝐶 · (𝐷 𝑋)) ∈ 𝐵)
121, 2, 3, 11syl3anc 1373 . . 3 (𝜑 → (𝐶 · (𝐷 𝑋)) ∈ 𝐵)
13 coe1tmmul.a . . 3 (𝜑𝐴𝐵)
14 coe1tmmul.t . . . 4 = (.r𝑃)
15 coe1tmmul.u . . . 4 × = (.r𝑅)
165, 14, 15, 10coe1mul 22184 . . 3 ((𝑅 ∈ Ring ∧ (𝐶 · (𝐷 𝑋)) ∈ 𝐵𝐴𝐵) → (coe1‘((𝐶 · (𝐷 𝑋)) 𝐴)) = (𝑥 ∈ ℕ0 ↦ (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ (((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) × ((coe1𝐴)‘(𝑥𝑦)))))))
171, 12, 13, 16syl3anc 1373 . 2 (𝜑 → (coe1‘((𝐶 · (𝐷 𝑋)) 𝐴)) = (𝑥 ∈ ℕ0 ↦ (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ (((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) × ((coe1𝐴)‘(𝑥𝑦)))))))
18 eqeq2 2743 . . . 4 ((𝐶 × ((coe1𝐴)‘(𝑥𝐷))) = if(𝐷𝑥, (𝐶 × ((coe1𝐴)‘(𝑥𝐷))), 0 ) → ((𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ (((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) × ((coe1𝐴)‘(𝑥𝑦))))) = (𝐶 × ((coe1𝐴)‘(𝑥𝐷))) ↔ (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ (((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) × ((coe1𝐴)‘(𝑥𝑦))))) = if(𝐷𝑥, (𝐶 × ((coe1𝐴)‘(𝑥𝐷))), 0 )))
19 eqeq2 2743 . . . 4 ( 0 = if(𝐷𝑥, (𝐶 × ((coe1𝐴)‘(𝑥𝐷))), 0 ) → ((𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ (((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) × ((coe1𝐴)‘(𝑥𝑦))))) = 0 ↔ (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ (((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) × ((coe1𝐴)‘(𝑥𝑦))))) = if(𝐷𝑥, (𝐶 × ((coe1𝐴)‘(𝑥𝐷))), 0 )))
20 coe1tm.z . . . . . 6 0 = (0g𝑅)
211ad2antrr 726 . . . . . . 7 (((𝜑𝑥 ∈ ℕ0) ∧ 𝐷𝑥) → 𝑅 ∈ Ring)
22 ringmnd 20161 . . . . . . 7 (𝑅 ∈ Ring → 𝑅 ∈ Mnd)
2321, 22syl 17 . . . . . 6 (((𝜑𝑥 ∈ ℕ0) ∧ 𝐷𝑥) → 𝑅 ∈ Mnd)
24 ovexd 7381 . . . . . 6 (((𝜑𝑥 ∈ ℕ0) ∧ 𝐷𝑥) → (0...𝑥) ∈ V)
253ad2antrr 726 . . . . . . 7 (((𝜑𝑥 ∈ ℕ0) ∧ 𝐷𝑥) → 𝐷 ∈ ℕ0)
26 simpr 484 . . . . . . 7 (((𝜑𝑥 ∈ ℕ0) ∧ 𝐷𝑥) → 𝐷𝑥)
27 fznn0 13519 . . . . . . . 8 (𝑥 ∈ ℕ0 → (𝐷 ∈ (0...𝑥) ↔ (𝐷 ∈ ℕ0𝐷𝑥)))
2827ad2antlr 727 . . . . . . 7 (((𝜑𝑥 ∈ ℕ0) ∧ 𝐷𝑥) → (𝐷 ∈ (0...𝑥) ↔ (𝐷 ∈ ℕ0𝐷𝑥)))
2925, 26, 28mpbir2and 713 . . . . . 6 (((𝜑𝑥 ∈ ℕ0) ∧ 𝐷𝑥) → 𝐷 ∈ (0...𝑥))
301ad2antrr 726 . . . . . . . . 9 (((𝜑𝑥 ∈ ℕ0) ∧ 𝑦 ∈ (0...𝑥)) → 𝑅 ∈ Ring)
31 eqid 2731 . . . . . . . . . . . . 13 (coe1‘(𝐶 · (𝐷 𝑋))) = (coe1‘(𝐶 · (𝐷 𝑋)))
3231, 10, 5, 4coe1f 22124 . . . . . . . . . . . 12 ((𝐶 · (𝐷 𝑋)) ∈ 𝐵 → (coe1‘(𝐶 · (𝐷 𝑋))):ℕ0𝐾)
3312, 32syl 17 . . . . . . . . . . 11 (𝜑 → (coe1‘(𝐶 · (𝐷 𝑋))):ℕ0𝐾)
3433adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℕ0) → (coe1‘(𝐶 · (𝐷 𝑋))):ℕ0𝐾)
35 elfznn0 13520 . . . . . . . . . 10 (𝑦 ∈ (0...𝑥) → 𝑦 ∈ ℕ0)
36 ffvelcdm 7014 . . . . . . . . . 10 (((coe1‘(𝐶 · (𝐷 𝑋))):ℕ0𝐾𝑦 ∈ ℕ0) → ((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) ∈ 𝐾)
3734, 35, 36syl2an 596 . . . . . . . . 9 (((𝜑𝑥 ∈ ℕ0) ∧ 𝑦 ∈ (0...𝑥)) → ((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) ∈ 𝐾)
38 eqid 2731 . . . . . . . . . . . . 13 (coe1𝐴) = (coe1𝐴)
3938, 10, 5, 4coe1f 22124 . . . . . . . . . . . 12 (𝐴𝐵 → (coe1𝐴):ℕ0𝐾)
4013, 39syl 17 . . . . . . . . . . 11 (𝜑 → (coe1𝐴):ℕ0𝐾)
4140adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℕ0) → (coe1𝐴):ℕ0𝐾)
42 fznn0sub 13456 . . . . . . . . . 10 (𝑦 ∈ (0...𝑥) → (𝑥𝑦) ∈ ℕ0)
43 ffvelcdm 7014 . . . . . . . . . 10 (((coe1𝐴):ℕ0𝐾 ∧ (𝑥𝑦) ∈ ℕ0) → ((coe1𝐴)‘(𝑥𝑦)) ∈ 𝐾)
4441, 42, 43syl2an 596 . . . . . . . . 9 (((𝜑𝑥 ∈ ℕ0) ∧ 𝑦 ∈ (0...𝑥)) → ((coe1𝐴)‘(𝑥𝑦)) ∈ 𝐾)
454, 15ringcl 20168 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ ((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) ∈ 𝐾 ∧ ((coe1𝐴)‘(𝑥𝑦)) ∈ 𝐾) → (((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) × ((coe1𝐴)‘(𝑥𝑦))) ∈ 𝐾)
4630, 37, 44, 45syl3anc 1373 . . . . . . . 8 (((𝜑𝑥 ∈ ℕ0) ∧ 𝑦 ∈ (0...𝑥)) → (((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) × ((coe1𝐴)‘(𝑥𝑦))) ∈ 𝐾)
4746fmpttd 7048 . . . . . . 7 ((𝜑𝑥 ∈ ℕ0) → (𝑦 ∈ (0...𝑥) ↦ (((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) × ((coe1𝐴)‘(𝑥𝑦)))):(0...𝑥)⟶𝐾)
4847adantr 480 . . . . . 6 (((𝜑𝑥 ∈ ℕ0) ∧ 𝐷𝑥) → (𝑦 ∈ (0...𝑥) ↦ (((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) × ((coe1𝐴)‘(𝑥𝑦)))):(0...𝑥)⟶𝐾)
491ad3antrrr 730 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℕ0) ∧ 𝐷𝑥) ∧ 𝑦 ∈ ((0...𝑥) ∖ {𝐷})) → 𝑅 ∈ Ring)
502ad3antrrr 730 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℕ0) ∧ 𝐷𝑥) ∧ 𝑦 ∈ ((0...𝑥) ∖ {𝐷})) → 𝐶𝐾)
513ad3antrrr 730 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℕ0) ∧ 𝐷𝑥) ∧ 𝑦 ∈ ((0...𝑥) ∖ {𝐷})) → 𝐷 ∈ ℕ0)
52 eldifi 4078 . . . . . . . . . . . 12 (𝑦 ∈ ((0...𝑥) ∖ {𝐷}) → 𝑦 ∈ (0...𝑥))
5352, 35syl 17 . . . . . . . . . . 11 (𝑦 ∈ ((0...𝑥) ∖ {𝐷}) → 𝑦 ∈ ℕ0)
5453adantl 481 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℕ0) ∧ 𝐷𝑥) ∧ 𝑦 ∈ ((0...𝑥) ∖ {𝐷})) → 𝑦 ∈ ℕ0)
55 eldifsni 4739 . . . . . . . . . . . 12 (𝑦 ∈ ((0...𝑥) ∖ {𝐷}) → 𝑦𝐷)
5655necomd 2983 . . . . . . . . . . 11 (𝑦 ∈ ((0...𝑥) ∖ {𝐷}) → 𝐷𝑦)
5756adantl 481 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℕ0) ∧ 𝐷𝑥) ∧ 𝑦 ∈ ((0...𝑥) ∖ {𝐷})) → 𝐷𝑦)
5820, 4, 5, 6, 7, 8, 9, 49, 50, 51, 54, 57coe1tmfv2 22189 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℕ0) ∧ 𝐷𝑥) ∧ 𝑦 ∈ ((0...𝑥) ∖ {𝐷})) → ((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) = 0 )
5958oveq1d 7361 . . . . . . . 8 ((((𝜑𝑥 ∈ ℕ0) ∧ 𝐷𝑥) ∧ 𝑦 ∈ ((0...𝑥) ∖ {𝐷})) → (((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) × ((coe1𝐴)‘(𝑥𝑦))) = ( 0 × ((coe1𝐴)‘(𝑥𝑦))))
604, 15, 20ringlz 20211 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ ((coe1𝐴)‘(𝑥𝑦)) ∈ 𝐾) → ( 0 × ((coe1𝐴)‘(𝑥𝑦))) = 0 )
6130, 44, 60syl2anc 584 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℕ0) ∧ 𝑦 ∈ (0...𝑥)) → ( 0 × ((coe1𝐴)‘(𝑥𝑦))) = 0 )
6252, 61sylan2 593 . . . . . . . . 9 (((𝜑𝑥 ∈ ℕ0) ∧ 𝑦 ∈ ((0...𝑥) ∖ {𝐷})) → ( 0 × ((coe1𝐴)‘(𝑥𝑦))) = 0 )
6362adantlr 715 . . . . . . . 8 ((((𝜑𝑥 ∈ ℕ0) ∧ 𝐷𝑥) ∧ 𝑦 ∈ ((0...𝑥) ∖ {𝐷})) → ( 0 × ((coe1𝐴)‘(𝑥𝑦))) = 0 )
6459, 63eqtrd 2766 . . . . . . 7 ((((𝜑𝑥 ∈ ℕ0) ∧ 𝐷𝑥) ∧ 𝑦 ∈ ((0...𝑥) ∖ {𝐷})) → (((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) × ((coe1𝐴)‘(𝑥𝑦))) = 0 )
6564, 24suppss2 8130 . . . . . 6 (((𝜑𝑥 ∈ ℕ0) ∧ 𝐷𝑥) → ((𝑦 ∈ (0...𝑥) ↦ (((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) × ((coe1𝐴)‘(𝑥𝑦)))) supp 0 ) ⊆ {𝐷})
664, 20, 23, 24, 29, 48, 65gsumpt 19874 . . . . 5 (((𝜑𝑥 ∈ ℕ0) ∧ 𝐷𝑥) → (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ (((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) × ((coe1𝐴)‘(𝑥𝑦))))) = ((𝑦 ∈ (0...𝑥) ↦ (((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) × ((coe1𝐴)‘(𝑥𝑦))))‘𝐷))
67 fveq2 6822 . . . . . . . . 9 (𝑦 = 𝐷 → ((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) = ((coe1‘(𝐶 · (𝐷 𝑋)))‘𝐷))
68 oveq2 7354 . . . . . . . . . 10 (𝑦 = 𝐷 → (𝑥𝑦) = (𝑥𝐷))
6968fveq2d 6826 . . . . . . . . 9 (𝑦 = 𝐷 → ((coe1𝐴)‘(𝑥𝑦)) = ((coe1𝐴)‘(𝑥𝐷)))
7067, 69oveq12d 7364 . . . . . . . 8 (𝑦 = 𝐷 → (((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) × ((coe1𝐴)‘(𝑥𝑦))) = (((coe1‘(𝐶 · (𝐷 𝑋)))‘𝐷) × ((coe1𝐴)‘(𝑥𝐷))))
71 eqid 2731 . . . . . . . 8 (𝑦 ∈ (0...𝑥) ↦ (((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) × ((coe1𝐴)‘(𝑥𝑦)))) = (𝑦 ∈ (0...𝑥) ↦ (((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) × ((coe1𝐴)‘(𝑥𝑦))))
72 ovex 7379 . . . . . . . 8 (((coe1‘(𝐶 · (𝐷 𝑋)))‘𝐷) × ((coe1𝐴)‘(𝑥𝐷))) ∈ V
7370, 71, 72fvmpt 6929 . . . . . . 7 (𝐷 ∈ (0...𝑥) → ((𝑦 ∈ (0...𝑥) ↦ (((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) × ((coe1𝐴)‘(𝑥𝑦))))‘𝐷) = (((coe1‘(𝐶 · (𝐷 𝑋)))‘𝐷) × ((coe1𝐴)‘(𝑥𝐷))))
7429, 73syl 17 . . . . . 6 (((𝜑𝑥 ∈ ℕ0) ∧ 𝐷𝑥) → ((𝑦 ∈ (0...𝑥) ↦ (((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) × ((coe1𝐴)‘(𝑥𝑦))))‘𝐷) = (((coe1‘(𝐶 · (𝐷 𝑋)))‘𝐷) × ((coe1𝐴)‘(𝑥𝐷))))
7520, 4, 5, 6, 7, 8, 9coe1tmfv1 22188 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝐶𝐾𝐷 ∈ ℕ0) → ((coe1‘(𝐶 · (𝐷 𝑋)))‘𝐷) = 𝐶)
761, 2, 3, 75syl3anc 1373 . . . . . . . 8 (𝜑 → ((coe1‘(𝐶 · (𝐷 𝑋)))‘𝐷) = 𝐶)
7776ad2antrr 726 . . . . . . 7 (((𝜑𝑥 ∈ ℕ0) ∧ 𝐷𝑥) → ((coe1‘(𝐶 · (𝐷 𝑋)))‘𝐷) = 𝐶)
7877oveq1d 7361 . . . . . 6 (((𝜑𝑥 ∈ ℕ0) ∧ 𝐷𝑥) → (((coe1‘(𝐶 · (𝐷 𝑋)))‘𝐷) × ((coe1𝐴)‘(𝑥𝐷))) = (𝐶 × ((coe1𝐴)‘(𝑥𝐷))))
7974, 78eqtrd 2766 . . . . 5 (((𝜑𝑥 ∈ ℕ0) ∧ 𝐷𝑥) → ((𝑦 ∈ (0...𝑥) ↦ (((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) × ((coe1𝐴)‘(𝑥𝑦))))‘𝐷) = (𝐶 × ((coe1𝐴)‘(𝑥𝐷))))
8066, 79eqtrd 2766 . . . 4 (((𝜑𝑥 ∈ ℕ0) ∧ 𝐷𝑥) → (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ (((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) × ((coe1𝐴)‘(𝑥𝑦))))) = (𝐶 × ((coe1𝐴)‘(𝑥𝐷))))
811ad3antrrr 730 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℕ0) ∧ ¬ 𝐷𝑥) ∧ 𝑦 ∈ (0...𝑥)) → 𝑅 ∈ Ring)
822ad3antrrr 730 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℕ0) ∧ ¬ 𝐷𝑥) ∧ 𝑦 ∈ (0...𝑥)) → 𝐶𝐾)
833ad3antrrr 730 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℕ0) ∧ ¬ 𝐷𝑥) ∧ 𝑦 ∈ (0...𝑥)) → 𝐷 ∈ ℕ0)
8435adantl 481 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℕ0) ∧ ¬ 𝐷𝑥) ∧ 𝑦 ∈ (0...𝑥)) → 𝑦 ∈ ℕ0)
85 elfzle2 13428 . . . . . . . . . . . . . . 15 (𝑦 ∈ (0...𝑥) → 𝑦𝑥)
8685adantl 481 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℕ0) ∧ 𝑦 ∈ (0...𝑥)) → 𝑦𝑥)
87 breq1 5092 . . . . . . . . . . . . . 14 (𝐷 = 𝑦 → (𝐷𝑥𝑦𝑥))
8886, 87syl5ibrcom 247 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℕ0) ∧ 𝑦 ∈ (0...𝑥)) → (𝐷 = 𝑦𝐷𝑥))
8988necon3bd 2942 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℕ0) ∧ 𝑦 ∈ (0...𝑥)) → (¬ 𝐷𝑥𝐷𝑦))
9089imp 406 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℕ0) ∧ 𝑦 ∈ (0...𝑥)) ∧ ¬ 𝐷𝑥) → 𝐷𝑦)
9190an32s 652 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℕ0) ∧ ¬ 𝐷𝑥) ∧ 𝑦 ∈ (0...𝑥)) → 𝐷𝑦)
9220, 4, 5, 6, 7, 8, 9, 81, 82, 83, 84, 91coe1tmfv2 22189 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℕ0) ∧ ¬ 𝐷𝑥) ∧ 𝑦 ∈ (0...𝑥)) → ((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) = 0 )
9392oveq1d 7361 . . . . . . . 8 ((((𝜑𝑥 ∈ ℕ0) ∧ ¬ 𝐷𝑥) ∧ 𝑦 ∈ (0...𝑥)) → (((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) × ((coe1𝐴)‘(𝑥𝑦))) = ( 0 × ((coe1𝐴)‘(𝑥𝑦))))
9461adantlr 715 . . . . . . . 8 ((((𝜑𝑥 ∈ ℕ0) ∧ ¬ 𝐷𝑥) ∧ 𝑦 ∈ (0...𝑥)) → ( 0 × ((coe1𝐴)‘(𝑥𝑦))) = 0 )
9593, 94eqtrd 2766 . . . . . . 7 ((((𝜑𝑥 ∈ ℕ0) ∧ ¬ 𝐷𝑥) ∧ 𝑦 ∈ (0...𝑥)) → (((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) × ((coe1𝐴)‘(𝑥𝑦))) = 0 )
9695mpteq2dva 5182 . . . . . 6 (((𝜑𝑥 ∈ ℕ0) ∧ ¬ 𝐷𝑥) → (𝑦 ∈ (0...𝑥) ↦ (((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) × ((coe1𝐴)‘(𝑥𝑦)))) = (𝑦 ∈ (0...𝑥) ↦ 0 ))
9796oveq2d 7362 . . . . 5 (((𝜑𝑥 ∈ ℕ0) ∧ ¬ 𝐷𝑥) → (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ (((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) × ((coe1𝐴)‘(𝑥𝑦))))) = (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ 0 )))
981, 22syl 17 . . . . . . 7 (𝜑𝑅 ∈ Mnd)
9998ad2antrr 726 . . . . . 6 (((𝜑𝑥 ∈ ℕ0) ∧ ¬ 𝐷𝑥) → 𝑅 ∈ Mnd)
100 ovexd 7381 . . . . . 6 (((𝜑𝑥 ∈ ℕ0) ∧ ¬ 𝐷𝑥) → (0...𝑥) ∈ V)
10120gsumz 18744 . . . . . 6 ((𝑅 ∈ Mnd ∧ (0...𝑥) ∈ V) → (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ 0 )) = 0 )
10299, 100, 101syl2anc 584 . . . . 5 (((𝜑𝑥 ∈ ℕ0) ∧ ¬ 𝐷𝑥) → (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ 0 )) = 0 )
10397, 102eqtrd 2766 . . . 4 (((𝜑𝑥 ∈ ℕ0) ∧ ¬ 𝐷𝑥) → (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ (((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) × ((coe1𝐴)‘(𝑥𝑦))))) = 0 )
10418, 19, 80, 103ifbothda 4511 . . 3 ((𝜑𝑥 ∈ ℕ0) → (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ (((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) × ((coe1𝐴)‘(𝑥𝑦))))) = if(𝐷𝑥, (𝐶 × ((coe1𝐴)‘(𝑥𝐷))), 0 ))
105104mpteq2dva 5182 . 2 (𝜑 → (𝑥 ∈ ℕ0 ↦ (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ (((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) × ((coe1𝐴)‘(𝑥𝑦)))))) = (𝑥 ∈ ℕ0 ↦ if(𝐷𝑥, (𝐶 × ((coe1𝐴)‘(𝑥𝐷))), 0 )))
10617, 105eqtrd 2766 1 (𝜑 → (coe1‘((𝐶 · (𝐷 𝑋)) 𝐴)) = (𝑥 ∈ ℕ0 ↦ if(𝐷𝑥, (𝐶 × ((coe1𝐴)‘(𝑥𝐷))), 0 )))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wne 2928  Vcvv 3436  cdif 3894  ifcif 4472  {csn 4573   class class class wbr 5089  cmpt 5170  wf 6477  cfv 6481  (class class class)co 7346  0cc0 11006  cle 11147  cmin 11344  0cn0 12381  ...cfz 13407  Basecbs 17120  .rcmulr 17162   ·𝑠 cvsca 17165  0gc0g 17343   Σg cgsu 17344  Mndcmnd 18642  .gcmg 18980  mulGrpcmgp 20058  Ringcrg 20151  var1cv1 22088  Poly1cpl1 22089  coe1cco1 22090
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-ofr 7611  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-pm 8753  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-sup 9326  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-fz 13408  df-fzo 13555  df-seq 13909  df-hash 14238  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-hom 17185  df-cco 17186  df-0g 17345  df-gsum 17346  df-prds 17351  df-pws 17353  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-mhm 18691  df-submnd 18692  df-grp 18849  df-minusg 18850  df-sbg 18851  df-mulg 18981  df-subg 19036  df-ghm 19125  df-cntz 19229  df-cmn 19694  df-abl 19695  df-mgp 20059  df-rng 20071  df-ur 20100  df-ring 20153  df-subrng 20461  df-subrg 20485  df-lmod 20795  df-lss 20865  df-psr 21846  df-mvr 21847  df-mpl 21848  df-opsr 21850  df-psr1 22092  df-vr1 22093  df-ply1 22094  df-coe1 22095
This theorem is referenced by:  coe1pwmul  22193  coe1sclmul  22196
  Copyright terms: Public domain W3C validator