MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coe1tmmul Structured version   Visualization version   GIF version

Theorem coe1tmmul 22219
Description: Coefficient vector of a polynomial multiplied on the left by a term. (Contributed by Stefan O'Rear, 29-Mar-2015.)
Hypotheses
Ref Expression
coe1tm.z 0 = (0g𝑅)
coe1tm.k 𝐾 = (Base‘𝑅)
coe1tm.p 𝑃 = (Poly1𝑅)
coe1tm.x 𝑋 = (var1𝑅)
coe1tm.m · = ( ·𝑠𝑃)
coe1tm.n 𝑁 = (mulGrp‘𝑃)
coe1tm.e = (.g𝑁)
coe1tmmul.b 𝐵 = (Base‘𝑃)
coe1tmmul.t = (.r𝑃)
coe1tmmul.u × = (.r𝑅)
coe1tmmul.a (𝜑𝐴𝐵)
coe1tmmul.r (𝜑𝑅 ∈ Ring)
coe1tmmul.c (𝜑𝐶𝐾)
coe1tmmul.d (𝜑𝐷 ∈ ℕ0)
Assertion
Ref Expression
coe1tmmul (𝜑 → (coe1‘((𝐶 · (𝐷 𝑋)) 𝐴)) = (𝑥 ∈ ℕ0 ↦ if(𝐷𝑥, (𝐶 × ((coe1𝐴)‘(𝑥𝐷))), 0 )))
Distinct variable groups:   𝑥, 0   𝑥,𝐶   𝑥,𝐷   𝑥,𝐾   𝑥,   𝑥,𝐴   𝑥,𝑁   𝑥,𝑃   𝑥,𝑋   𝜑,𝑥   𝑥,𝑅   𝑥, ·   𝑥, ×   𝑥,
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem coe1tmmul
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 coe1tmmul.r . . 3 (𝜑𝑅 ∈ Ring)
2 coe1tmmul.c . . . 4 (𝜑𝐶𝐾)
3 coe1tmmul.d . . . 4 (𝜑𝐷 ∈ ℕ0)
4 coe1tm.k . . . . 5 𝐾 = (Base‘𝑅)
5 coe1tm.p . . . . 5 𝑃 = (Poly1𝑅)
6 coe1tm.x . . . . 5 𝑋 = (var1𝑅)
7 coe1tm.m . . . . 5 · = ( ·𝑠𝑃)
8 coe1tm.n . . . . 5 𝑁 = (mulGrp‘𝑃)
9 coe1tm.e . . . . 5 = (.g𝑁)
10 coe1tmmul.b . . . . 5 𝐵 = (Base‘𝑃)
114, 5, 6, 7, 8, 9, 10ply1tmcl 22214 . . . 4 ((𝑅 ∈ Ring ∧ 𝐶𝐾𝐷 ∈ ℕ0) → (𝐶 · (𝐷 𝑋)) ∈ 𝐵)
121, 2, 3, 11syl3anc 1373 . . 3 (𝜑 → (𝐶 · (𝐷 𝑋)) ∈ 𝐵)
13 coe1tmmul.a . . 3 (𝜑𝐴𝐵)
14 coe1tmmul.t . . . 4 = (.r𝑃)
15 coe1tmmul.u . . . 4 × = (.r𝑅)
165, 14, 15, 10coe1mul 22212 . . 3 ((𝑅 ∈ Ring ∧ (𝐶 · (𝐷 𝑋)) ∈ 𝐵𝐴𝐵) → (coe1‘((𝐶 · (𝐷 𝑋)) 𝐴)) = (𝑥 ∈ ℕ0 ↦ (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ (((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) × ((coe1𝐴)‘(𝑥𝑦)))))))
171, 12, 13, 16syl3anc 1373 . 2 (𝜑 → (coe1‘((𝐶 · (𝐷 𝑋)) 𝐴)) = (𝑥 ∈ ℕ0 ↦ (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ (((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) × ((coe1𝐴)‘(𝑥𝑦)))))))
18 eqeq2 2748 . . . 4 ((𝐶 × ((coe1𝐴)‘(𝑥𝐷))) = if(𝐷𝑥, (𝐶 × ((coe1𝐴)‘(𝑥𝐷))), 0 ) → ((𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ (((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) × ((coe1𝐴)‘(𝑥𝑦))))) = (𝐶 × ((coe1𝐴)‘(𝑥𝐷))) ↔ (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ (((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) × ((coe1𝐴)‘(𝑥𝑦))))) = if(𝐷𝑥, (𝐶 × ((coe1𝐴)‘(𝑥𝐷))), 0 )))
19 eqeq2 2748 . . . 4 ( 0 = if(𝐷𝑥, (𝐶 × ((coe1𝐴)‘(𝑥𝐷))), 0 ) → ((𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ (((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) × ((coe1𝐴)‘(𝑥𝑦))))) = 0 ↔ (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ (((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) × ((coe1𝐴)‘(𝑥𝑦))))) = if(𝐷𝑥, (𝐶 × ((coe1𝐴)‘(𝑥𝐷))), 0 )))
20 coe1tm.z . . . . . 6 0 = (0g𝑅)
211ad2antrr 726 . . . . . . 7 (((𝜑𝑥 ∈ ℕ0) ∧ 𝐷𝑥) → 𝑅 ∈ Ring)
22 ringmnd 20208 . . . . . . 7 (𝑅 ∈ Ring → 𝑅 ∈ Mnd)
2321, 22syl 17 . . . . . 6 (((𝜑𝑥 ∈ ℕ0) ∧ 𝐷𝑥) → 𝑅 ∈ Mnd)
24 ovexd 7445 . . . . . 6 (((𝜑𝑥 ∈ ℕ0) ∧ 𝐷𝑥) → (0...𝑥) ∈ V)
253ad2antrr 726 . . . . . . 7 (((𝜑𝑥 ∈ ℕ0) ∧ 𝐷𝑥) → 𝐷 ∈ ℕ0)
26 simpr 484 . . . . . . 7 (((𝜑𝑥 ∈ ℕ0) ∧ 𝐷𝑥) → 𝐷𝑥)
27 fznn0 13641 . . . . . . . 8 (𝑥 ∈ ℕ0 → (𝐷 ∈ (0...𝑥) ↔ (𝐷 ∈ ℕ0𝐷𝑥)))
2827ad2antlr 727 . . . . . . 7 (((𝜑𝑥 ∈ ℕ0) ∧ 𝐷𝑥) → (𝐷 ∈ (0...𝑥) ↔ (𝐷 ∈ ℕ0𝐷𝑥)))
2925, 26, 28mpbir2and 713 . . . . . 6 (((𝜑𝑥 ∈ ℕ0) ∧ 𝐷𝑥) → 𝐷 ∈ (0...𝑥))
301ad2antrr 726 . . . . . . . . 9 (((𝜑𝑥 ∈ ℕ0) ∧ 𝑦 ∈ (0...𝑥)) → 𝑅 ∈ Ring)
31 eqid 2736 . . . . . . . . . . . . 13 (coe1‘(𝐶 · (𝐷 𝑋))) = (coe1‘(𝐶 · (𝐷 𝑋)))
3231, 10, 5, 4coe1f 22152 . . . . . . . . . . . 12 ((𝐶 · (𝐷 𝑋)) ∈ 𝐵 → (coe1‘(𝐶 · (𝐷 𝑋))):ℕ0𝐾)
3312, 32syl 17 . . . . . . . . . . 11 (𝜑 → (coe1‘(𝐶 · (𝐷 𝑋))):ℕ0𝐾)
3433adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℕ0) → (coe1‘(𝐶 · (𝐷 𝑋))):ℕ0𝐾)
35 elfznn0 13642 . . . . . . . . . 10 (𝑦 ∈ (0...𝑥) → 𝑦 ∈ ℕ0)
36 ffvelcdm 7076 . . . . . . . . . 10 (((coe1‘(𝐶 · (𝐷 𝑋))):ℕ0𝐾𝑦 ∈ ℕ0) → ((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) ∈ 𝐾)
3734, 35, 36syl2an 596 . . . . . . . . 9 (((𝜑𝑥 ∈ ℕ0) ∧ 𝑦 ∈ (0...𝑥)) → ((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) ∈ 𝐾)
38 eqid 2736 . . . . . . . . . . . . 13 (coe1𝐴) = (coe1𝐴)
3938, 10, 5, 4coe1f 22152 . . . . . . . . . . . 12 (𝐴𝐵 → (coe1𝐴):ℕ0𝐾)
4013, 39syl 17 . . . . . . . . . . 11 (𝜑 → (coe1𝐴):ℕ0𝐾)
4140adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℕ0) → (coe1𝐴):ℕ0𝐾)
42 fznn0sub 13578 . . . . . . . . . 10 (𝑦 ∈ (0...𝑥) → (𝑥𝑦) ∈ ℕ0)
43 ffvelcdm 7076 . . . . . . . . . 10 (((coe1𝐴):ℕ0𝐾 ∧ (𝑥𝑦) ∈ ℕ0) → ((coe1𝐴)‘(𝑥𝑦)) ∈ 𝐾)
4441, 42, 43syl2an 596 . . . . . . . . 9 (((𝜑𝑥 ∈ ℕ0) ∧ 𝑦 ∈ (0...𝑥)) → ((coe1𝐴)‘(𝑥𝑦)) ∈ 𝐾)
454, 15ringcl 20215 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ ((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) ∈ 𝐾 ∧ ((coe1𝐴)‘(𝑥𝑦)) ∈ 𝐾) → (((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) × ((coe1𝐴)‘(𝑥𝑦))) ∈ 𝐾)
4630, 37, 44, 45syl3anc 1373 . . . . . . . 8 (((𝜑𝑥 ∈ ℕ0) ∧ 𝑦 ∈ (0...𝑥)) → (((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) × ((coe1𝐴)‘(𝑥𝑦))) ∈ 𝐾)
4746fmpttd 7110 . . . . . . 7 ((𝜑𝑥 ∈ ℕ0) → (𝑦 ∈ (0...𝑥) ↦ (((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) × ((coe1𝐴)‘(𝑥𝑦)))):(0...𝑥)⟶𝐾)
4847adantr 480 . . . . . 6 (((𝜑𝑥 ∈ ℕ0) ∧ 𝐷𝑥) → (𝑦 ∈ (0...𝑥) ↦ (((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) × ((coe1𝐴)‘(𝑥𝑦)))):(0...𝑥)⟶𝐾)
491ad3antrrr 730 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℕ0) ∧ 𝐷𝑥) ∧ 𝑦 ∈ ((0...𝑥) ∖ {𝐷})) → 𝑅 ∈ Ring)
502ad3antrrr 730 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℕ0) ∧ 𝐷𝑥) ∧ 𝑦 ∈ ((0...𝑥) ∖ {𝐷})) → 𝐶𝐾)
513ad3antrrr 730 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℕ0) ∧ 𝐷𝑥) ∧ 𝑦 ∈ ((0...𝑥) ∖ {𝐷})) → 𝐷 ∈ ℕ0)
52 eldifi 4111 . . . . . . . . . . . 12 (𝑦 ∈ ((0...𝑥) ∖ {𝐷}) → 𝑦 ∈ (0...𝑥))
5352, 35syl 17 . . . . . . . . . . 11 (𝑦 ∈ ((0...𝑥) ∖ {𝐷}) → 𝑦 ∈ ℕ0)
5453adantl 481 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℕ0) ∧ 𝐷𝑥) ∧ 𝑦 ∈ ((0...𝑥) ∖ {𝐷})) → 𝑦 ∈ ℕ0)
55 eldifsni 4771 . . . . . . . . . . . 12 (𝑦 ∈ ((0...𝑥) ∖ {𝐷}) → 𝑦𝐷)
5655necomd 2988 . . . . . . . . . . 11 (𝑦 ∈ ((0...𝑥) ∖ {𝐷}) → 𝐷𝑦)
5756adantl 481 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℕ0) ∧ 𝐷𝑥) ∧ 𝑦 ∈ ((0...𝑥) ∖ {𝐷})) → 𝐷𝑦)
5820, 4, 5, 6, 7, 8, 9, 49, 50, 51, 54, 57coe1tmfv2 22217 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℕ0) ∧ 𝐷𝑥) ∧ 𝑦 ∈ ((0...𝑥) ∖ {𝐷})) → ((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) = 0 )
5958oveq1d 7425 . . . . . . . 8 ((((𝜑𝑥 ∈ ℕ0) ∧ 𝐷𝑥) ∧ 𝑦 ∈ ((0...𝑥) ∖ {𝐷})) → (((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) × ((coe1𝐴)‘(𝑥𝑦))) = ( 0 × ((coe1𝐴)‘(𝑥𝑦))))
604, 15, 20ringlz 20258 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ ((coe1𝐴)‘(𝑥𝑦)) ∈ 𝐾) → ( 0 × ((coe1𝐴)‘(𝑥𝑦))) = 0 )
6130, 44, 60syl2anc 584 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℕ0) ∧ 𝑦 ∈ (0...𝑥)) → ( 0 × ((coe1𝐴)‘(𝑥𝑦))) = 0 )
6252, 61sylan2 593 . . . . . . . . 9 (((𝜑𝑥 ∈ ℕ0) ∧ 𝑦 ∈ ((0...𝑥) ∖ {𝐷})) → ( 0 × ((coe1𝐴)‘(𝑥𝑦))) = 0 )
6362adantlr 715 . . . . . . . 8 ((((𝜑𝑥 ∈ ℕ0) ∧ 𝐷𝑥) ∧ 𝑦 ∈ ((0...𝑥) ∖ {𝐷})) → ( 0 × ((coe1𝐴)‘(𝑥𝑦))) = 0 )
6459, 63eqtrd 2771 . . . . . . 7 ((((𝜑𝑥 ∈ ℕ0) ∧ 𝐷𝑥) ∧ 𝑦 ∈ ((0...𝑥) ∖ {𝐷})) → (((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) × ((coe1𝐴)‘(𝑥𝑦))) = 0 )
6564, 24suppss2 8204 . . . . . 6 (((𝜑𝑥 ∈ ℕ0) ∧ 𝐷𝑥) → ((𝑦 ∈ (0...𝑥) ↦ (((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) × ((coe1𝐴)‘(𝑥𝑦)))) supp 0 ) ⊆ {𝐷})
664, 20, 23, 24, 29, 48, 65gsumpt 19948 . . . . 5 (((𝜑𝑥 ∈ ℕ0) ∧ 𝐷𝑥) → (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ (((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) × ((coe1𝐴)‘(𝑥𝑦))))) = ((𝑦 ∈ (0...𝑥) ↦ (((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) × ((coe1𝐴)‘(𝑥𝑦))))‘𝐷))
67 fveq2 6881 . . . . . . . . 9 (𝑦 = 𝐷 → ((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) = ((coe1‘(𝐶 · (𝐷 𝑋)))‘𝐷))
68 oveq2 7418 . . . . . . . . . 10 (𝑦 = 𝐷 → (𝑥𝑦) = (𝑥𝐷))
6968fveq2d 6885 . . . . . . . . 9 (𝑦 = 𝐷 → ((coe1𝐴)‘(𝑥𝑦)) = ((coe1𝐴)‘(𝑥𝐷)))
7067, 69oveq12d 7428 . . . . . . . 8 (𝑦 = 𝐷 → (((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) × ((coe1𝐴)‘(𝑥𝑦))) = (((coe1‘(𝐶 · (𝐷 𝑋)))‘𝐷) × ((coe1𝐴)‘(𝑥𝐷))))
71 eqid 2736 . . . . . . . 8 (𝑦 ∈ (0...𝑥) ↦ (((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) × ((coe1𝐴)‘(𝑥𝑦)))) = (𝑦 ∈ (0...𝑥) ↦ (((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) × ((coe1𝐴)‘(𝑥𝑦))))
72 ovex 7443 . . . . . . . 8 (((coe1‘(𝐶 · (𝐷 𝑋)))‘𝐷) × ((coe1𝐴)‘(𝑥𝐷))) ∈ V
7370, 71, 72fvmpt 6991 . . . . . . 7 (𝐷 ∈ (0...𝑥) → ((𝑦 ∈ (0...𝑥) ↦ (((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) × ((coe1𝐴)‘(𝑥𝑦))))‘𝐷) = (((coe1‘(𝐶 · (𝐷 𝑋)))‘𝐷) × ((coe1𝐴)‘(𝑥𝐷))))
7429, 73syl 17 . . . . . 6 (((𝜑𝑥 ∈ ℕ0) ∧ 𝐷𝑥) → ((𝑦 ∈ (0...𝑥) ↦ (((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) × ((coe1𝐴)‘(𝑥𝑦))))‘𝐷) = (((coe1‘(𝐶 · (𝐷 𝑋)))‘𝐷) × ((coe1𝐴)‘(𝑥𝐷))))
7520, 4, 5, 6, 7, 8, 9coe1tmfv1 22216 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝐶𝐾𝐷 ∈ ℕ0) → ((coe1‘(𝐶 · (𝐷 𝑋)))‘𝐷) = 𝐶)
761, 2, 3, 75syl3anc 1373 . . . . . . . 8 (𝜑 → ((coe1‘(𝐶 · (𝐷 𝑋)))‘𝐷) = 𝐶)
7776ad2antrr 726 . . . . . . 7 (((𝜑𝑥 ∈ ℕ0) ∧ 𝐷𝑥) → ((coe1‘(𝐶 · (𝐷 𝑋)))‘𝐷) = 𝐶)
7877oveq1d 7425 . . . . . 6 (((𝜑𝑥 ∈ ℕ0) ∧ 𝐷𝑥) → (((coe1‘(𝐶 · (𝐷 𝑋)))‘𝐷) × ((coe1𝐴)‘(𝑥𝐷))) = (𝐶 × ((coe1𝐴)‘(𝑥𝐷))))
7974, 78eqtrd 2771 . . . . 5 (((𝜑𝑥 ∈ ℕ0) ∧ 𝐷𝑥) → ((𝑦 ∈ (0...𝑥) ↦ (((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) × ((coe1𝐴)‘(𝑥𝑦))))‘𝐷) = (𝐶 × ((coe1𝐴)‘(𝑥𝐷))))
8066, 79eqtrd 2771 . . . 4 (((𝜑𝑥 ∈ ℕ0) ∧ 𝐷𝑥) → (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ (((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) × ((coe1𝐴)‘(𝑥𝑦))))) = (𝐶 × ((coe1𝐴)‘(𝑥𝐷))))
811ad3antrrr 730 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℕ0) ∧ ¬ 𝐷𝑥) ∧ 𝑦 ∈ (0...𝑥)) → 𝑅 ∈ Ring)
822ad3antrrr 730 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℕ0) ∧ ¬ 𝐷𝑥) ∧ 𝑦 ∈ (0...𝑥)) → 𝐶𝐾)
833ad3antrrr 730 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℕ0) ∧ ¬ 𝐷𝑥) ∧ 𝑦 ∈ (0...𝑥)) → 𝐷 ∈ ℕ0)
8435adantl 481 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℕ0) ∧ ¬ 𝐷𝑥) ∧ 𝑦 ∈ (0...𝑥)) → 𝑦 ∈ ℕ0)
85 elfzle2 13550 . . . . . . . . . . . . . . 15 (𝑦 ∈ (0...𝑥) → 𝑦𝑥)
8685adantl 481 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℕ0) ∧ 𝑦 ∈ (0...𝑥)) → 𝑦𝑥)
87 breq1 5127 . . . . . . . . . . . . . 14 (𝐷 = 𝑦 → (𝐷𝑥𝑦𝑥))
8886, 87syl5ibrcom 247 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℕ0) ∧ 𝑦 ∈ (0...𝑥)) → (𝐷 = 𝑦𝐷𝑥))
8988necon3bd 2947 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℕ0) ∧ 𝑦 ∈ (0...𝑥)) → (¬ 𝐷𝑥𝐷𝑦))
9089imp 406 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℕ0) ∧ 𝑦 ∈ (0...𝑥)) ∧ ¬ 𝐷𝑥) → 𝐷𝑦)
9190an32s 652 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℕ0) ∧ ¬ 𝐷𝑥) ∧ 𝑦 ∈ (0...𝑥)) → 𝐷𝑦)
9220, 4, 5, 6, 7, 8, 9, 81, 82, 83, 84, 91coe1tmfv2 22217 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℕ0) ∧ ¬ 𝐷𝑥) ∧ 𝑦 ∈ (0...𝑥)) → ((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) = 0 )
9392oveq1d 7425 . . . . . . . 8 ((((𝜑𝑥 ∈ ℕ0) ∧ ¬ 𝐷𝑥) ∧ 𝑦 ∈ (0...𝑥)) → (((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) × ((coe1𝐴)‘(𝑥𝑦))) = ( 0 × ((coe1𝐴)‘(𝑥𝑦))))
9461adantlr 715 . . . . . . . 8 ((((𝜑𝑥 ∈ ℕ0) ∧ ¬ 𝐷𝑥) ∧ 𝑦 ∈ (0...𝑥)) → ( 0 × ((coe1𝐴)‘(𝑥𝑦))) = 0 )
9593, 94eqtrd 2771 . . . . . . 7 ((((𝜑𝑥 ∈ ℕ0) ∧ ¬ 𝐷𝑥) ∧ 𝑦 ∈ (0...𝑥)) → (((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) × ((coe1𝐴)‘(𝑥𝑦))) = 0 )
9695mpteq2dva 5219 . . . . . 6 (((𝜑𝑥 ∈ ℕ0) ∧ ¬ 𝐷𝑥) → (𝑦 ∈ (0...𝑥) ↦ (((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) × ((coe1𝐴)‘(𝑥𝑦)))) = (𝑦 ∈ (0...𝑥) ↦ 0 ))
9796oveq2d 7426 . . . . 5 (((𝜑𝑥 ∈ ℕ0) ∧ ¬ 𝐷𝑥) → (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ (((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) × ((coe1𝐴)‘(𝑥𝑦))))) = (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ 0 )))
981, 22syl 17 . . . . . . 7 (𝜑𝑅 ∈ Mnd)
9998ad2antrr 726 . . . . . 6 (((𝜑𝑥 ∈ ℕ0) ∧ ¬ 𝐷𝑥) → 𝑅 ∈ Mnd)
100 ovexd 7445 . . . . . 6 (((𝜑𝑥 ∈ ℕ0) ∧ ¬ 𝐷𝑥) → (0...𝑥) ∈ V)
10120gsumz 18819 . . . . . 6 ((𝑅 ∈ Mnd ∧ (0...𝑥) ∈ V) → (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ 0 )) = 0 )
10299, 100, 101syl2anc 584 . . . . 5 (((𝜑𝑥 ∈ ℕ0) ∧ ¬ 𝐷𝑥) → (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ 0 )) = 0 )
10397, 102eqtrd 2771 . . . 4 (((𝜑𝑥 ∈ ℕ0) ∧ ¬ 𝐷𝑥) → (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ (((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) × ((coe1𝐴)‘(𝑥𝑦))))) = 0 )
10418, 19, 80, 103ifbothda 4544 . . 3 ((𝜑𝑥 ∈ ℕ0) → (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ (((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) × ((coe1𝐴)‘(𝑥𝑦))))) = if(𝐷𝑥, (𝐶 × ((coe1𝐴)‘(𝑥𝐷))), 0 ))
105104mpteq2dva 5219 . 2 (𝜑 → (𝑥 ∈ ℕ0 ↦ (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ (((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) × ((coe1𝐴)‘(𝑥𝑦)))))) = (𝑥 ∈ ℕ0 ↦ if(𝐷𝑥, (𝐶 × ((coe1𝐴)‘(𝑥𝐷))), 0 )))
10617, 105eqtrd 2771 1 (𝜑 → (coe1‘((𝐶 · (𝐷 𝑋)) 𝐴)) = (𝑥 ∈ ℕ0 ↦ if(𝐷𝑥, (𝐶 × ((coe1𝐴)‘(𝑥𝐷))), 0 )))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2933  Vcvv 3464  cdif 3928  ifcif 4505  {csn 4606   class class class wbr 5124  cmpt 5206  wf 6532  cfv 6536  (class class class)co 7410  0cc0 11134  cle 11275  cmin 11471  0cn0 12506  ...cfz 13529  Basecbs 17233  .rcmulr 17277   ·𝑠 cvsca 17280  0gc0g 17458   Σg cgsu 17459  Mndcmnd 18717  .gcmg 19055  mulGrpcmgp 20105  Ringcrg 20198  var1cv1 22116  Poly1cpl1 22117  coe1cco1 22118
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-iin 4975  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-of 7676  df-ofr 7677  df-om 7867  df-1st 7993  df-2nd 7994  df-supp 8165  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-er 8724  df-map 8847  df-pm 8848  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9379  df-sup 9459  df-oi 9529  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-z 12594  df-dec 12714  df-uz 12858  df-fz 13530  df-fzo 13677  df-seq 14025  df-hash 14354  df-struct 17171  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-mulr 17290  df-sca 17292  df-vsca 17293  df-ip 17294  df-tset 17295  df-ple 17296  df-ds 17298  df-hom 17300  df-cco 17301  df-0g 17460  df-gsum 17461  df-prds 17466  df-pws 17468  df-mre 17603  df-mrc 17604  df-acs 17606  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-mhm 18766  df-submnd 18767  df-grp 18924  df-minusg 18925  df-sbg 18926  df-mulg 19056  df-subg 19111  df-ghm 19201  df-cntz 19305  df-cmn 19768  df-abl 19769  df-mgp 20106  df-rng 20118  df-ur 20147  df-ring 20200  df-subrng 20511  df-subrg 20535  df-lmod 20824  df-lss 20894  df-psr 21874  df-mvr 21875  df-mpl 21876  df-opsr 21878  df-psr1 22120  df-vr1 22121  df-ply1 22122  df-coe1 22123
This theorem is referenced by:  coe1pwmul  22221  coe1sclmul  22224
  Copyright terms: Public domain W3C validator