MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coe1tmmul Structured version   Visualization version   GIF version

Theorem coe1tmmul 21358
Description: Coefficient vector of a polynomial multiplied on the left by a term. (Contributed by Stefan O'Rear, 29-Mar-2015.)
Hypotheses
Ref Expression
coe1tm.z 0 = (0g𝑅)
coe1tm.k 𝐾 = (Base‘𝑅)
coe1tm.p 𝑃 = (Poly1𝑅)
coe1tm.x 𝑋 = (var1𝑅)
coe1tm.m · = ( ·𝑠𝑃)
coe1tm.n 𝑁 = (mulGrp‘𝑃)
coe1tm.e = (.g𝑁)
coe1tmmul.b 𝐵 = (Base‘𝑃)
coe1tmmul.t = (.r𝑃)
coe1tmmul.u × = (.r𝑅)
coe1tmmul.a (𝜑𝐴𝐵)
coe1tmmul.r (𝜑𝑅 ∈ Ring)
coe1tmmul.c (𝜑𝐶𝐾)
coe1tmmul.d (𝜑𝐷 ∈ ℕ0)
Assertion
Ref Expression
coe1tmmul (𝜑 → (coe1‘((𝐶 · (𝐷 𝑋)) 𝐴)) = (𝑥 ∈ ℕ0 ↦ if(𝐷𝑥, (𝐶 × ((coe1𝐴)‘(𝑥𝐷))), 0 )))
Distinct variable groups:   𝑥, 0   𝑥,𝐶   𝑥,𝐷   𝑥,𝐾   𝑥,   𝑥,𝐴   𝑥,𝑁   𝑥,𝑃   𝑥,𝑋   𝜑,𝑥   𝑥,𝑅   𝑥, ·   𝑥, ×   𝑥,
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem coe1tmmul
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 coe1tmmul.r . . 3 (𝜑𝑅 ∈ Ring)
2 coe1tmmul.c . . . 4 (𝜑𝐶𝐾)
3 coe1tmmul.d . . . 4 (𝜑𝐷 ∈ ℕ0)
4 coe1tm.k . . . . 5 𝐾 = (Base‘𝑅)
5 coe1tm.p . . . . 5 𝑃 = (Poly1𝑅)
6 coe1tm.x . . . . 5 𝑋 = (var1𝑅)
7 coe1tm.m . . . . 5 · = ( ·𝑠𝑃)
8 coe1tm.n . . . . 5 𝑁 = (mulGrp‘𝑃)
9 coe1tm.e . . . . 5 = (.g𝑁)
10 coe1tmmul.b . . . . 5 𝐵 = (Base‘𝑃)
114, 5, 6, 7, 8, 9, 10ply1tmcl 21353 . . . 4 ((𝑅 ∈ Ring ∧ 𝐶𝐾𝐷 ∈ ℕ0) → (𝐶 · (𝐷 𝑋)) ∈ 𝐵)
121, 2, 3, 11syl3anc 1369 . . 3 (𝜑 → (𝐶 · (𝐷 𝑋)) ∈ 𝐵)
13 coe1tmmul.a . . 3 (𝜑𝐴𝐵)
14 coe1tmmul.t . . . 4 = (.r𝑃)
15 coe1tmmul.u . . . 4 × = (.r𝑅)
165, 14, 15, 10coe1mul 21351 . . 3 ((𝑅 ∈ Ring ∧ (𝐶 · (𝐷 𝑋)) ∈ 𝐵𝐴𝐵) → (coe1‘((𝐶 · (𝐷 𝑋)) 𝐴)) = (𝑥 ∈ ℕ0 ↦ (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ (((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) × ((coe1𝐴)‘(𝑥𝑦)))))))
171, 12, 13, 16syl3anc 1369 . 2 (𝜑 → (coe1‘((𝐶 · (𝐷 𝑋)) 𝐴)) = (𝑥 ∈ ℕ0 ↦ (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ (((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) × ((coe1𝐴)‘(𝑥𝑦)))))))
18 eqeq2 2750 . . . 4 ((𝐶 × ((coe1𝐴)‘(𝑥𝐷))) = if(𝐷𝑥, (𝐶 × ((coe1𝐴)‘(𝑥𝐷))), 0 ) → ((𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ (((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) × ((coe1𝐴)‘(𝑥𝑦))))) = (𝐶 × ((coe1𝐴)‘(𝑥𝐷))) ↔ (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ (((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) × ((coe1𝐴)‘(𝑥𝑦))))) = if(𝐷𝑥, (𝐶 × ((coe1𝐴)‘(𝑥𝐷))), 0 )))
19 eqeq2 2750 . . . 4 ( 0 = if(𝐷𝑥, (𝐶 × ((coe1𝐴)‘(𝑥𝐷))), 0 ) → ((𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ (((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) × ((coe1𝐴)‘(𝑥𝑦))))) = 0 ↔ (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ (((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) × ((coe1𝐴)‘(𝑥𝑦))))) = if(𝐷𝑥, (𝐶 × ((coe1𝐴)‘(𝑥𝐷))), 0 )))
20 coe1tm.z . . . . . 6 0 = (0g𝑅)
211ad2antrr 722 . . . . . . 7 (((𝜑𝑥 ∈ ℕ0) ∧ 𝐷𝑥) → 𝑅 ∈ Ring)
22 ringmnd 19708 . . . . . . 7 (𝑅 ∈ Ring → 𝑅 ∈ Mnd)
2321, 22syl 17 . . . . . 6 (((𝜑𝑥 ∈ ℕ0) ∧ 𝐷𝑥) → 𝑅 ∈ Mnd)
24 ovexd 7290 . . . . . 6 (((𝜑𝑥 ∈ ℕ0) ∧ 𝐷𝑥) → (0...𝑥) ∈ V)
253ad2antrr 722 . . . . . . 7 (((𝜑𝑥 ∈ ℕ0) ∧ 𝐷𝑥) → 𝐷 ∈ ℕ0)
26 simpr 484 . . . . . . 7 (((𝜑𝑥 ∈ ℕ0) ∧ 𝐷𝑥) → 𝐷𝑥)
27 fznn0 13277 . . . . . . . 8 (𝑥 ∈ ℕ0 → (𝐷 ∈ (0...𝑥) ↔ (𝐷 ∈ ℕ0𝐷𝑥)))
2827ad2antlr 723 . . . . . . 7 (((𝜑𝑥 ∈ ℕ0) ∧ 𝐷𝑥) → (𝐷 ∈ (0...𝑥) ↔ (𝐷 ∈ ℕ0𝐷𝑥)))
2925, 26, 28mpbir2and 709 . . . . . 6 (((𝜑𝑥 ∈ ℕ0) ∧ 𝐷𝑥) → 𝐷 ∈ (0...𝑥))
301ad2antrr 722 . . . . . . . . 9 (((𝜑𝑥 ∈ ℕ0) ∧ 𝑦 ∈ (0...𝑥)) → 𝑅 ∈ Ring)
31 eqid 2738 . . . . . . . . . . . . 13 (coe1‘(𝐶 · (𝐷 𝑋))) = (coe1‘(𝐶 · (𝐷 𝑋)))
3231, 10, 5, 4coe1f 21292 . . . . . . . . . . . 12 ((𝐶 · (𝐷 𝑋)) ∈ 𝐵 → (coe1‘(𝐶 · (𝐷 𝑋))):ℕ0𝐾)
3312, 32syl 17 . . . . . . . . . . 11 (𝜑 → (coe1‘(𝐶 · (𝐷 𝑋))):ℕ0𝐾)
3433adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℕ0) → (coe1‘(𝐶 · (𝐷 𝑋))):ℕ0𝐾)
35 elfznn0 13278 . . . . . . . . . 10 (𝑦 ∈ (0...𝑥) → 𝑦 ∈ ℕ0)
36 ffvelrn 6941 . . . . . . . . . 10 (((coe1‘(𝐶 · (𝐷 𝑋))):ℕ0𝐾𝑦 ∈ ℕ0) → ((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) ∈ 𝐾)
3734, 35, 36syl2an 595 . . . . . . . . 9 (((𝜑𝑥 ∈ ℕ0) ∧ 𝑦 ∈ (0...𝑥)) → ((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) ∈ 𝐾)
38 eqid 2738 . . . . . . . . . . . . 13 (coe1𝐴) = (coe1𝐴)
3938, 10, 5, 4coe1f 21292 . . . . . . . . . . . 12 (𝐴𝐵 → (coe1𝐴):ℕ0𝐾)
4013, 39syl 17 . . . . . . . . . . 11 (𝜑 → (coe1𝐴):ℕ0𝐾)
4140adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℕ0) → (coe1𝐴):ℕ0𝐾)
42 fznn0sub 13217 . . . . . . . . . 10 (𝑦 ∈ (0...𝑥) → (𝑥𝑦) ∈ ℕ0)
43 ffvelrn 6941 . . . . . . . . . 10 (((coe1𝐴):ℕ0𝐾 ∧ (𝑥𝑦) ∈ ℕ0) → ((coe1𝐴)‘(𝑥𝑦)) ∈ 𝐾)
4441, 42, 43syl2an 595 . . . . . . . . 9 (((𝜑𝑥 ∈ ℕ0) ∧ 𝑦 ∈ (0...𝑥)) → ((coe1𝐴)‘(𝑥𝑦)) ∈ 𝐾)
454, 15ringcl 19715 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ ((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) ∈ 𝐾 ∧ ((coe1𝐴)‘(𝑥𝑦)) ∈ 𝐾) → (((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) × ((coe1𝐴)‘(𝑥𝑦))) ∈ 𝐾)
4630, 37, 44, 45syl3anc 1369 . . . . . . . 8 (((𝜑𝑥 ∈ ℕ0) ∧ 𝑦 ∈ (0...𝑥)) → (((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) × ((coe1𝐴)‘(𝑥𝑦))) ∈ 𝐾)
4746fmpttd 6971 . . . . . . 7 ((𝜑𝑥 ∈ ℕ0) → (𝑦 ∈ (0...𝑥) ↦ (((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) × ((coe1𝐴)‘(𝑥𝑦)))):(0...𝑥)⟶𝐾)
4847adantr 480 . . . . . 6 (((𝜑𝑥 ∈ ℕ0) ∧ 𝐷𝑥) → (𝑦 ∈ (0...𝑥) ↦ (((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) × ((coe1𝐴)‘(𝑥𝑦)))):(0...𝑥)⟶𝐾)
491ad3antrrr 726 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℕ0) ∧ 𝐷𝑥) ∧ 𝑦 ∈ ((0...𝑥) ∖ {𝐷})) → 𝑅 ∈ Ring)
502ad3antrrr 726 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℕ0) ∧ 𝐷𝑥) ∧ 𝑦 ∈ ((0...𝑥) ∖ {𝐷})) → 𝐶𝐾)
513ad3antrrr 726 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℕ0) ∧ 𝐷𝑥) ∧ 𝑦 ∈ ((0...𝑥) ∖ {𝐷})) → 𝐷 ∈ ℕ0)
52 eldifi 4057 . . . . . . . . . . . 12 (𝑦 ∈ ((0...𝑥) ∖ {𝐷}) → 𝑦 ∈ (0...𝑥))
5352, 35syl 17 . . . . . . . . . . 11 (𝑦 ∈ ((0...𝑥) ∖ {𝐷}) → 𝑦 ∈ ℕ0)
5453adantl 481 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℕ0) ∧ 𝐷𝑥) ∧ 𝑦 ∈ ((0...𝑥) ∖ {𝐷})) → 𝑦 ∈ ℕ0)
55 eldifsni 4720 . . . . . . . . . . . 12 (𝑦 ∈ ((0...𝑥) ∖ {𝐷}) → 𝑦𝐷)
5655necomd 2998 . . . . . . . . . . 11 (𝑦 ∈ ((0...𝑥) ∖ {𝐷}) → 𝐷𝑦)
5756adantl 481 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℕ0) ∧ 𝐷𝑥) ∧ 𝑦 ∈ ((0...𝑥) ∖ {𝐷})) → 𝐷𝑦)
5820, 4, 5, 6, 7, 8, 9, 49, 50, 51, 54, 57coe1tmfv2 21356 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℕ0) ∧ 𝐷𝑥) ∧ 𝑦 ∈ ((0...𝑥) ∖ {𝐷})) → ((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) = 0 )
5958oveq1d 7270 . . . . . . . 8 ((((𝜑𝑥 ∈ ℕ0) ∧ 𝐷𝑥) ∧ 𝑦 ∈ ((0...𝑥) ∖ {𝐷})) → (((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) × ((coe1𝐴)‘(𝑥𝑦))) = ( 0 × ((coe1𝐴)‘(𝑥𝑦))))
604, 15, 20ringlz 19741 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ ((coe1𝐴)‘(𝑥𝑦)) ∈ 𝐾) → ( 0 × ((coe1𝐴)‘(𝑥𝑦))) = 0 )
6130, 44, 60syl2anc 583 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℕ0) ∧ 𝑦 ∈ (0...𝑥)) → ( 0 × ((coe1𝐴)‘(𝑥𝑦))) = 0 )
6252, 61sylan2 592 . . . . . . . . 9 (((𝜑𝑥 ∈ ℕ0) ∧ 𝑦 ∈ ((0...𝑥) ∖ {𝐷})) → ( 0 × ((coe1𝐴)‘(𝑥𝑦))) = 0 )
6362adantlr 711 . . . . . . . 8 ((((𝜑𝑥 ∈ ℕ0) ∧ 𝐷𝑥) ∧ 𝑦 ∈ ((0...𝑥) ∖ {𝐷})) → ( 0 × ((coe1𝐴)‘(𝑥𝑦))) = 0 )
6459, 63eqtrd 2778 . . . . . . 7 ((((𝜑𝑥 ∈ ℕ0) ∧ 𝐷𝑥) ∧ 𝑦 ∈ ((0...𝑥) ∖ {𝐷})) → (((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) × ((coe1𝐴)‘(𝑥𝑦))) = 0 )
6564, 24suppss2 7987 . . . . . 6 (((𝜑𝑥 ∈ ℕ0) ∧ 𝐷𝑥) → ((𝑦 ∈ (0...𝑥) ↦ (((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) × ((coe1𝐴)‘(𝑥𝑦)))) supp 0 ) ⊆ {𝐷})
664, 20, 23, 24, 29, 48, 65gsumpt 19478 . . . . 5 (((𝜑𝑥 ∈ ℕ0) ∧ 𝐷𝑥) → (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ (((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) × ((coe1𝐴)‘(𝑥𝑦))))) = ((𝑦 ∈ (0...𝑥) ↦ (((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) × ((coe1𝐴)‘(𝑥𝑦))))‘𝐷))
67 fveq2 6756 . . . . . . . . 9 (𝑦 = 𝐷 → ((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) = ((coe1‘(𝐶 · (𝐷 𝑋)))‘𝐷))
68 oveq2 7263 . . . . . . . . . 10 (𝑦 = 𝐷 → (𝑥𝑦) = (𝑥𝐷))
6968fveq2d 6760 . . . . . . . . 9 (𝑦 = 𝐷 → ((coe1𝐴)‘(𝑥𝑦)) = ((coe1𝐴)‘(𝑥𝐷)))
7067, 69oveq12d 7273 . . . . . . . 8 (𝑦 = 𝐷 → (((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) × ((coe1𝐴)‘(𝑥𝑦))) = (((coe1‘(𝐶 · (𝐷 𝑋)))‘𝐷) × ((coe1𝐴)‘(𝑥𝐷))))
71 eqid 2738 . . . . . . . 8 (𝑦 ∈ (0...𝑥) ↦ (((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) × ((coe1𝐴)‘(𝑥𝑦)))) = (𝑦 ∈ (0...𝑥) ↦ (((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) × ((coe1𝐴)‘(𝑥𝑦))))
72 ovex 7288 . . . . . . . 8 (((coe1‘(𝐶 · (𝐷 𝑋)))‘𝐷) × ((coe1𝐴)‘(𝑥𝐷))) ∈ V
7370, 71, 72fvmpt 6857 . . . . . . 7 (𝐷 ∈ (0...𝑥) → ((𝑦 ∈ (0...𝑥) ↦ (((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) × ((coe1𝐴)‘(𝑥𝑦))))‘𝐷) = (((coe1‘(𝐶 · (𝐷 𝑋)))‘𝐷) × ((coe1𝐴)‘(𝑥𝐷))))
7429, 73syl 17 . . . . . 6 (((𝜑𝑥 ∈ ℕ0) ∧ 𝐷𝑥) → ((𝑦 ∈ (0...𝑥) ↦ (((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) × ((coe1𝐴)‘(𝑥𝑦))))‘𝐷) = (((coe1‘(𝐶 · (𝐷 𝑋)))‘𝐷) × ((coe1𝐴)‘(𝑥𝐷))))
7520, 4, 5, 6, 7, 8, 9coe1tmfv1 21355 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝐶𝐾𝐷 ∈ ℕ0) → ((coe1‘(𝐶 · (𝐷 𝑋)))‘𝐷) = 𝐶)
761, 2, 3, 75syl3anc 1369 . . . . . . . 8 (𝜑 → ((coe1‘(𝐶 · (𝐷 𝑋)))‘𝐷) = 𝐶)
7776ad2antrr 722 . . . . . . 7 (((𝜑𝑥 ∈ ℕ0) ∧ 𝐷𝑥) → ((coe1‘(𝐶 · (𝐷 𝑋)))‘𝐷) = 𝐶)
7877oveq1d 7270 . . . . . 6 (((𝜑𝑥 ∈ ℕ0) ∧ 𝐷𝑥) → (((coe1‘(𝐶 · (𝐷 𝑋)))‘𝐷) × ((coe1𝐴)‘(𝑥𝐷))) = (𝐶 × ((coe1𝐴)‘(𝑥𝐷))))
7974, 78eqtrd 2778 . . . . 5 (((𝜑𝑥 ∈ ℕ0) ∧ 𝐷𝑥) → ((𝑦 ∈ (0...𝑥) ↦ (((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) × ((coe1𝐴)‘(𝑥𝑦))))‘𝐷) = (𝐶 × ((coe1𝐴)‘(𝑥𝐷))))
8066, 79eqtrd 2778 . . . 4 (((𝜑𝑥 ∈ ℕ0) ∧ 𝐷𝑥) → (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ (((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) × ((coe1𝐴)‘(𝑥𝑦))))) = (𝐶 × ((coe1𝐴)‘(𝑥𝐷))))
811ad3antrrr 726 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℕ0) ∧ ¬ 𝐷𝑥) ∧ 𝑦 ∈ (0...𝑥)) → 𝑅 ∈ Ring)
822ad3antrrr 726 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℕ0) ∧ ¬ 𝐷𝑥) ∧ 𝑦 ∈ (0...𝑥)) → 𝐶𝐾)
833ad3antrrr 726 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℕ0) ∧ ¬ 𝐷𝑥) ∧ 𝑦 ∈ (0...𝑥)) → 𝐷 ∈ ℕ0)
8435adantl 481 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℕ0) ∧ ¬ 𝐷𝑥) ∧ 𝑦 ∈ (0...𝑥)) → 𝑦 ∈ ℕ0)
85 elfzle2 13189 . . . . . . . . . . . . . . 15 (𝑦 ∈ (0...𝑥) → 𝑦𝑥)
8685adantl 481 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℕ0) ∧ 𝑦 ∈ (0...𝑥)) → 𝑦𝑥)
87 breq1 5073 . . . . . . . . . . . . . 14 (𝐷 = 𝑦 → (𝐷𝑥𝑦𝑥))
8886, 87syl5ibrcom 246 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℕ0) ∧ 𝑦 ∈ (0...𝑥)) → (𝐷 = 𝑦𝐷𝑥))
8988necon3bd 2956 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℕ0) ∧ 𝑦 ∈ (0...𝑥)) → (¬ 𝐷𝑥𝐷𝑦))
9089imp 406 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℕ0) ∧ 𝑦 ∈ (0...𝑥)) ∧ ¬ 𝐷𝑥) → 𝐷𝑦)
9190an32s 648 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℕ0) ∧ ¬ 𝐷𝑥) ∧ 𝑦 ∈ (0...𝑥)) → 𝐷𝑦)
9220, 4, 5, 6, 7, 8, 9, 81, 82, 83, 84, 91coe1tmfv2 21356 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℕ0) ∧ ¬ 𝐷𝑥) ∧ 𝑦 ∈ (0...𝑥)) → ((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) = 0 )
9392oveq1d 7270 . . . . . . . 8 ((((𝜑𝑥 ∈ ℕ0) ∧ ¬ 𝐷𝑥) ∧ 𝑦 ∈ (0...𝑥)) → (((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) × ((coe1𝐴)‘(𝑥𝑦))) = ( 0 × ((coe1𝐴)‘(𝑥𝑦))))
9461adantlr 711 . . . . . . . 8 ((((𝜑𝑥 ∈ ℕ0) ∧ ¬ 𝐷𝑥) ∧ 𝑦 ∈ (0...𝑥)) → ( 0 × ((coe1𝐴)‘(𝑥𝑦))) = 0 )
9593, 94eqtrd 2778 . . . . . . 7 ((((𝜑𝑥 ∈ ℕ0) ∧ ¬ 𝐷𝑥) ∧ 𝑦 ∈ (0...𝑥)) → (((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) × ((coe1𝐴)‘(𝑥𝑦))) = 0 )
9695mpteq2dva 5170 . . . . . 6 (((𝜑𝑥 ∈ ℕ0) ∧ ¬ 𝐷𝑥) → (𝑦 ∈ (0...𝑥) ↦ (((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) × ((coe1𝐴)‘(𝑥𝑦)))) = (𝑦 ∈ (0...𝑥) ↦ 0 ))
9796oveq2d 7271 . . . . 5 (((𝜑𝑥 ∈ ℕ0) ∧ ¬ 𝐷𝑥) → (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ (((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) × ((coe1𝐴)‘(𝑥𝑦))))) = (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ 0 )))
981, 22syl 17 . . . . . . 7 (𝜑𝑅 ∈ Mnd)
9998ad2antrr 722 . . . . . 6 (((𝜑𝑥 ∈ ℕ0) ∧ ¬ 𝐷𝑥) → 𝑅 ∈ Mnd)
100 ovexd 7290 . . . . . 6 (((𝜑𝑥 ∈ ℕ0) ∧ ¬ 𝐷𝑥) → (0...𝑥) ∈ V)
10120gsumz 18389 . . . . . 6 ((𝑅 ∈ Mnd ∧ (0...𝑥) ∈ V) → (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ 0 )) = 0 )
10299, 100, 101syl2anc 583 . . . . 5 (((𝜑𝑥 ∈ ℕ0) ∧ ¬ 𝐷𝑥) → (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ 0 )) = 0 )
10397, 102eqtrd 2778 . . . 4 (((𝜑𝑥 ∈ ℕ0) ∧ ¬ 𝐷𝑥) → (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ (((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) × ((coe1𝐴)‘(𝑥𝑦))))) = 0 )
10418, 19, 80, 103ifbothda 4494 . . 3 ((𝜑𝑥 ∈ ℕ0) → (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ (((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) × ((coe1𝐴)‘(𝑥𝑦))))) = if(𝐷𝑥, (𝐶 × ((coe1𝐴)‘(𝑥𝐷))), 0 ))
105104mpteq2dva 5170 . 2 (𝜑 → (𝑥 ∈ ℕ0 ↦ (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ (((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) × ((coe1𝐴)‘(𝑥𝑦)))))) = (𝑥 ∈ ℕ0 ↦ if(𝐷𝑥, (𝐶 × ((coe1𝐴)‘(𝑥𝐷))), 0 )))
10617, 105eqtrd 2778 1 (𝜑 → (coe1‘((𝐶 · (𝐷 𝑋)) 𝐴)) = (𝑥 ∈ ℕ0 ↦ if(𝐷𝑥, (𝐶 × ((coe1𝐴)‘(𝑥𝐷))), 0 )))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wne 2942  Vcvv 3422  cdif 3880  ifcif 4456  {csn 4558   class class class wbr 5070  cmpt 5153  wf 6414  cfv 6418  (class class class)co 7255  0cc0 10802  cle 10941  cmin 11135  0cn0 12163  ...cfz 13168  Basecbs 16840  .rcmulr 16889   ·𝑠 cvsca 16892  0gc0g 17067   Σg cgsu 17068  Mndcmnd 18300  .gcmg 18615  mulGrpcmgp 19635  Ringcrg 19698  var1cv1 21257  Poly1cpl1 21258  coe1cco1 21259
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-ofr 7512  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-fz 13169  df-fzo 13312  df-seq 13650  df-hash 13973  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-sca 16904  df-vsca 16905  df-tset 16907  df-ple 16908  df-0g 17069  df-gsum 17070  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-mhm 18345  df-submnd 18346  df-grp 18495  df-minusg 18496  df-sbg 18497  df-mulg 18616  df-subg 18667  df-ghm 18747  df-cntz 18838  df-cmn 19303  df-abl 19304  df-mgp 19636  df-ur 19653  df-ring 19700  df-subrg 19937  df-lmod 20040  df-lss 20109  df-psr 21022  df-mvr 21023  df-mpl 21024  df-opsr 21026  df-psr1 21261  df-vr1 21262  df-ply1 21263  df-coe1 21264
This theorem is referenced by:  coe1pwmul  21360  coe1sclmul  21363
  Copyright terms: Public domain W3C validator