| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | coe1tmmul.r | . . 3
⊢ (𝜑 → 𝑅 ∈ Ring) | 
| 2 |  | coe1tmmul.c | . . . 4
⊢ (𝜑 → 𝐶 ∈ 𝐾) | 
| 3 |  | coe1tmmul.d | . . . 4
⊢ (𝜑 → 𝐷 ∈
ℕ0) | 
| 4 |  | coe1tm.k | . . . . 5
⊢ 𝐾 = (Base‘𝑅) | 
| 5 |  | coe1tm.p | . . . . 5
⊢ 𝑃 = (Poly1‘𝑅) | 
| 6 |  | coe1tm.x | . . . . 5
⊢ 𝑋 = (var1‘𝑅) | 
| 7 |  | coe1tm.m | . . . . 5
⊢  · = (
·𝑠 ‘𝑃) | 
| 8 |  | coe1tm.n | . . . . 5
⊢ 𝑁 = (mulGrp‘𝑃) | 
| 9 |  | coe1tm.e | . . . . 5
⊢  ↑ =
(.g‘𝑁) | 
| 10 |  | coe1tmmul.b | . . . . 5
⊢ 𝐵 = (Base‘𝑃) | 
| 11 | 4, 5, 6, 7, 8, 9, 10 | ply1tmcl 22276 | . . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0) → (𝐶 · (𝐷 ↑ 𝑋)) ∈ 𝐵) | 
| 12 | 1, 2, 3, 11 | syl3anc 1372 | . . 3
⊢ (𝜑 → (𝐶 · (𝐷 ↑ 𝑋)) ∈ 𝐵) | 
| 13 |  | coe1tmmul.a | . . 3
⊢ (𝜑 → 𝐴 ∈ 𝐵) | 
| 14 |  | coe1tmmul.t | . . . 4
⊢  ∙ =
(.r‘𝑃) | 
| 15 |  | coe1tmmul.u | . . . 4
⊢  × =
(.r‘𝑅) | 
| 16 | 5, 14, 15, 10 | coe1mul 22274 | . . 3
⊢ ((𝑅 ∈ Ring ∧ (𝐶 · (𝐷 ↑ 𝑋)) ∈ 𝐵 ∧ 𝐴 ∈ 𝐵) → (coe1‘((𝐶 · (𝐷 ↑ 𝑋)) ∙ 𝐴)) = (𝑥 ∈ ℕ0 ↦ (𝑅 Σg
(𝑦 ∈ (0...𝑥) ↦
(((coe1‘(𝐶
·
(𝐷 ↑ 𝑋)))‘𝑦) ×
((coe1‘𝐴)‘(𝑥 − 𝑦))))))) | 
| 17 | 1, 12, 13, 16 | syl3anc 1372 | . 2
⊢ (𝜑 →
(coe1‘((𝐶
·
(𝐷 ↑ 𝑋)) ∙ 𝐴)) = (𝑥 ∈ ℕ0 ↦ (𝑅 Σg
(𝑦 ∈ (0...𝑥) ↦
(((coe1‘(𝐶
·
(𝐷 ↑ 𝑋)))‘𝑦) ×
((coe1‘𝐴)‘(𝑥 − 𝑦))))))) | 
| 18 |  | eqeq2 2748 | . . . 4
⊢ ((𝐶 ×
((coe1‘𝐴)‘(𝑥 − 𝐷))) = if(𝐷 ≤ 𝑥, (𝐶 ×
((coe1‘𝐴)‘(𝑥 − 𝐷))), 0 ) → ((𝑅 Σg
(𝑦 ∈ (0...𝑥) ↦
(((coe1‘(𝐶
·
(𝐷 ↑ 𝑋)))‘𝑦) ×
((coe1‘𝐴)‘(𝑥 − 𝑦))))) = (𝐶 ×
((coe1‘𝐴)‘(𝑥 − 𝐷))) ↔ (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ (((coe1‘(𝐶 · (𝐷 ↑ 𝑋)))‘𝑦) ×
((coe1‘𝐴)‘(𝑥 − 𝑦))))) = if(𝐷 ≤ 𝑥, (𝐶 ×
((coe1‘𝐴)‘(𝑥 − 𝐷))), 0 ))) | 
| 19 |  | eqeq2 2748 | . . . 4
⊢ ( 0 = if(𝐷 ≤ 𝑥, (𝐶 ×
((coe1‘𝐴)‘(𝑥 − 𝐷))), 0 ) → ((𝑅 Σg
(𝑦 ∈ (0...𝑥) ↦
(((coe1‘(𝐶
·
(𝐷 ↑ 𝑋)))‘𝑦) ×
((coe1‘𝐴)‘(𝑥 − 𝑦))))) = 0 ↔ (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ (((coe1‘(𝐶 · (𝐷 ↑ 𝑋)))‘𝑦) ×
((coe1‘𝐴)‘(𝑥 − 𝑦))))) = if(𝐷 ≤ 𝑥, (𝐶 ×
((coe1‘𝐴)‘(𝑥 − 𝐷))), 0 ))) | 
| 20 |  | coe1tm.z | . . . . . 6
⊢  0 =
(0g‘𝑅) | 
| 21 | 1 | ad2antrr 726 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ℕ0) ∧ 𝐷 ≤ 𝑥) → 𝑅 ∈ Ring) | 
| 22 |  | ringmnd 20241 | . . . . . . 7
⊢ (𝑅 ∈ Ring → 𝑅 ∈ Mnd) | 
| 23 | 21, 22 | syl 17 | . . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ ℕ0) ∧ 𝐷 ≤ 𝑥) → 𝑅 ∈ Mnd) | 
| 24 |  | ovexd 7467 | . . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ ℕ0) ∧ 𝐷 ≤ 𝑥) → (0...𝑥) ∈ V) | 
| 25 | 3 | ad2antrr 726 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ℕ0) ∧ 𝐷 ≤ 𝑥) → 𝐷 ∈
ℕ0) | 
| 26 |  | simpr 484 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ℕ0) ∧ 𝐷 ≤ 𝑥) → 𝐷 ≤ 𝑥) | 
| 27 |  | fznn0 13660 | . . . . . . . 8
⊢ (𝑥 ∈ ℕ0
→ (𝐷 ∈ (0...𝑥) ↔ (𝐷 ∈ ℕ0 ∧ 𝐷 ≤ 𝑥))) | 
| 28 | 27 | ad2antlr 727 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ℕ0) ∧ 𝐷 ≤ 𝑥) → (𝐷 ∈ (0...𝑥) ↔ (𝐷 ∈ ℕ0 ∧ 𝐷 ≤ 𝑥))) | 
| 29 | 25, 26, 28 | mpbir2and 713 | . . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ ℕ0) ∧ 𝐷 ≤ 𝑥) → 𝐷 ∈ (0...𝑥)) | 
| 30 | 1 | ad2antrr 726 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℕ0) ∧ 𝑦 ∈ (0...𝑥)) → 𝑅 ∈ Ring) | 
| 31 |  | eqid 2736 | . . . . . . . . . . . . 13
⊢
(coe1‘(𝐶 · (𝐷 ↑ 𝑋))) = (coe1‘(𝐶 · (𝐷 ↑ 𝑋))) | 
| 32 | 31, 10, 5, 4 | coe1f 22214 | . . . . . . . . . . . 12
⊢ ((𝐶 · (𝐷 ↑ 𝑋)) ∈ 𝐵 → (coe1‘(𝐶 · (𝐷 ↑ 𝑋))):ℕ0⟶𝐾) | 
| 33 | 12, 32 | syl 17 | . . . . . . . . . . 11
⊢ (𝜑 →
(coe1‘(𝐶
·
(𝐷 ↑ 𝑋))):ℕ0⟶𝐾) | 
| 34 | 33 | adantr 480 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ ℕ0) →
(coe1‘(𝐶
·
(𝐷 ↑ 𝑋))):ℕ0⟶𝐾) | 
| 35 |  | elfznn0 13661 | . . . . . . . . . 10
⊢ (𝑦 ∈ (0...𝑥) → 𝑦 ∈ ℕ0) | 
| 36 |  | ffvelcdm 7100 | . . . . . . . . . 10
⊢
(((coe1‘(𝐶 · (𝐷 ↑ 𝑋))):ℕ0⟶𝐾 ∧ 𝑦 ∈ ℕ0) →
((coe1‘(𝐶
·
(𝐷 ↑ 𝑋)))‘𝑦) ∈ 𝐾) | 
| 37 | 34, 35, 36 | syl2an 596 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℕ0) ∧ 𝑦 ∈ (0...𝑥)) → ((coe1‘(𝐶 · (𝐷 ↑ 𝑋)))‘𝑦) ∈ 𝐾) | 
| 38 |  | eqid 2736 | . . . . . . . . . . . . 13
⊢
(coe1‘𝐴) = (coe1‘𝐴) | 
| 39 | 38, 10, 5, 4 | coe1f 22214 | . . . . . . . . . . . 12
⊢ (𝐴 ∈ 𝐵 → (coe1‘𝐴):ℕ0⟶𝐾) | 
| 40 | 13, 39 | syl 17 | . . . . . . . . . . 11
⊢ (𝜑 →
(coe1‘𝐴):ℕ0⟶𝐾) | 
| 41 | 40 | adantr 480 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ ℕ0) →
(coe1‘𝐴):ℕ0⟶𝐾) | 
| 42 |  | fznn0sub 13597 | . . . . . . . . . 10
⊢ (𝑦 ∈ (0...𝑥) → (𝑥 − 𝑦) ∈
ℕ0) | 
| 43 |  | ffvelcdm 7100 | . . . . . . . . . 10
⊢
(((coe1‘𝐴):ℕ0⟶𝐾 ∧ (𝑥 − 𝑦) ∈ ℕ0) →
((coe1‘𝐴)‘(𝑥 − 𝑦)) ∈ 𝐾) | 
| 44 | 41, 42, 43 | syl2an 596 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℕ0) ∧ 𝑦 ∈ (0...𝑥)) → ((coe1‘𝐴)‘(𝑥 − 𝑦)) ∈ 𝐾) | 
| 45 | 4, 15 | ringcl 20248 | . . . . . . . . 9
⊢ ((𝑅 ∈ Ring ∧
((coe1‘(𝐶
·
(𝐷 ↑ 𝑋)))‘𝑦) ∈ 𝐾 ∧ ((coe1‘𝐴)‘(𝑥 − 𝑦)) ∈ 𝐾) → (((coe1‘(𝐶 · (𝐷 ↑ 𝑋)))‘𝑦) ×
((coe1‘𝐴)‘(𝑥 − 𝑦))) ∈ 𝐾) | 
| 46 | 30, 37, 44, 45 | syl3anc 1372 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℕ0) ∧ 𝑦 ∈ (0...𝑥)) → (((coe1‘(𝐶 · (𝐷 ↑ 𝑋)))‘𝑦) ×
((coe1‘𝐴)‘(𝑥 − 𝑦))) ∈ 𝐾) | 
| 47 | 46 | fmpttd 7134 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ℕ0) → (𝑦 ∈ (0...𝑥) ↦ (((coe1‘(𝐶 · (𝐷 ↑ 𝑋)))‘𝑦) ×
((coe1‘𝐴)‘(𝑥 − 𝑦)))):(0...𝑥)⟶𝐾) | 
| 48 | 47 | adantr 480 | . . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ ℕ0) ∧ 𝐷 ≤ 𝑥) → (𝑦 ∈ (0...𝑥) ↦ (((coe1‘(𝐶 · (𝐷 ↑ 𝑋)))‘𝑦) ×
((coe1‘𝐴)‘(𝑥 − 𝑦)))):(0...𝑥)⟶𝐾) | 
| 49 | 1 | ad3antrrr 730 | . . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ ℕ0) ∧ 𝐷 ≤ 𝑥) ∧ 𝑦 ∈ ((0...𝑥) ∖ {𝐷})) → 𝑅 ∈ Ring) | 
| 50 | 2 | ad3antrrr 730 | . . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ ℕ0) ∧ 𝐷 ≤ 𝑥) ∧ 𝑦 ∈ ((0...𝑥) ∖ {𝐷})) → 𝐶 ∈ 𝐾) | 
| 51 | 3 | ad3antrrr 730 | . . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ ℕ0) ∧ 𝐷 ≤ 𝑥) ∧ 𝑦 ∈ ((0...𝑥) ∖ {𝐷})) → 𝐷 ∈
ℕ0) | 
| 52 |  | eldifi 4130 | . . . . . . . . . . . 12
⊢ (𝑦 ∈ ((0...𝑥) ∖ {𝐷}) → 𝑦 ∈ (0...𝑥)) | 
| 53 | 52, 35 | syl 17 | . . . . . . . . . . 11
⊢ (𝑦 ∈ ((0...𝑥) ∖ {𝐷}) → 𝑦 ∈ ℕ0) | 
| 54 | 53 | adantl 481 | . . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ ℕ0) ∧ 𝐷 ≤ 𝑥) ∧ 𝑦 ∈ ((0...𝑥) ∖ {𝐷})) → 𝑦 ∈ ℕ0) | 
| 55 |  | eldifsni 4789 | . . . . . . . . . . . 12
⊢ (𝑦 ∈ ((0...𝑥) ∖ {𝐷}) → 𝑦 ≠ 𝐷) | 
| 56 | 55 | necomd 2995 | . . . . . . . . . . 11
⊢ (𝑦 ∈ ((0...𝑥) ∖ {𝐷}) → 𝐷 ≠ 𝑦) | 
| 57 | 56 | adantl 481 | . . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ ℕ0) ∧ 𝐷 ≤ 𝑥) ∧ 𝑦 ∈ ((0...𝑥) ∖ {𝐷})) → 𝐷 ≠ 𝑦) | 
| 58 | 20, 4, 5, 6, 7, 8, 9, 49, 50, 51, 54, 57 | coe1tmfv2 22279 | . . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ ℕ0) ∧ 𝐷 ≤ 𝑥) ∧ 𝑦 ∈ ((0...𝑥) ∖ {𝐷})) → ((coe1‘(𝐶 · (𝐷 ↑ 𝑋)))‘𝑦) = 0 ) | 
| 59 | 58 | oveq1d 7447 | . . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ ℕ0) ∧ 𝐷 ≤ 𝑥) ∧ 𝑦 ∈ ((0...𝑥) ∖ {𝐷})) → (((coe1‘(𝐶 · (𝐷 ↑ 𝑋)))‘𝑦) ×
((coe1‘𝐴)‘(𝑥 − 𝑦))) = ( 0 ×
((coe1‘𝐴)‘(𝑥 − 𝑦)))) | 
| 60 | 4, 15, 20 | ringlz 20291 | . . . . . . . . . . 11
⊢ ((𝑅 ∈ Ring ∧
((coe1‘𝐴)‘(𝑥 − 𝑦)) ∈ 𝐾) → ( 0 ×
((coe1‘𝐴)‘(𝑥 − 𝑦))) = 0 ) | 
| 61 | 30, 44, 60 | syl2anc 584 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℕ0) ∧ 𝑦 ∈ (0...𝑥)) → ( 0 ×
((coe1‘𝐴)‘(𝑥 − 𝑦))) = 0 ) | 
| 62 | 52, 61 | sylan2 593 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℕ0) ∧ 𝑦 ∈ ((0...𝑥) ∖ {𝐷})) → ( 0 ×
((coe1‘𝐴)‘(𝑥 − 𝑦))) = 0 ) | 
| 63 | 62 | adantlr 715 | . . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ ℕ0) ∧ 𝐷 ≤ 𝑥) ∧ 𝑦 ∈ ((0...𝑥) ∖ {𝐷})) → ( 0 ×
((coe1‘𝐴)‘(𝑥 − 𝑦))) = 0 ) | 
| 64 | 59, 63 | eqtrd 2776 | . . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ ℕ0) ∧ 𝐷 ≤ 𝑥) ∧ 𝑦 ∈ ((0...𝑥) ∖ {𝐷})) → (((coe1‘(𝐶 · (𝐷 ↑ 𝑋)))‘𝑦) ×
((coe1‘𝐴)‘(𝑥 − 𝑦))) = 0 ) | 
| 65 | 64, 24 | suppss2 8226 | . . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ ℕ0) ∧ 𝐷 ≤ 𝑥) → ((𝑦 ∈ (0...𝑥) ↦ (((coe1‘(𝐶 · (𝐷 ↑ 𝑋)))‘𝑦) ×
((coe1‘𝐴)‘(𝑥 − 𝑦)))) supp 0 ) ⊆ {𝐷}) | 
| 66 | 4, 20, 23, 24, 29, 48, 65 | gsumpt 19981 | . . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ ℕ0) ∧ 𝐷 ≤ 𝑥) → (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ (((coe1‘(𝐶 · (𝐷 ↑ 𝑋)))‘𝑦) ×
((coe1‘𝐴)‘(𝑥 − 𝑦))))) = ((𝑦 ∈ (0...𝑥) ↦ (((coe1‘(𝐶 · (𝐷 ↑ 𝑋)))‘𝑦) ×
((coe1‘𝐴)‘(𝑥 − 𝑦))))‘𝐷)) | 
| 67 |  | fveq2 6905 | . . . . . . . . 9
⊢ (𝑦 = 𝐷 → ((coe1‘(𝐶 · (𝐷 ↑ 𝑋)))‘𝑦) = ((coe1‘(𝐶 · (𝐷 ↑ 𝑋)))‘𝐷)) | 
| 68 |  | oveq2 7440 | . . . . . . . . . 10
⊢ (𝑦 = 𝐷 → (𝑥 − 𝑦) = (𝑥 − 𝐷)) | 
| 69 | 68 | fveq2d 6909 | . . . . . . . . 9
⊢ (𝑦 = 𝐷 → ((coe1‘𝐴)‘(𝑥 − 𝑦)) = ((coe1‘𝐴)‘(𝑥 − 𝐷))) | 
| 70 | 67, 69 | oveq12d 7450 | . . . . . . . 8
⊢ (𝑦 = 𝐷 → (((coe1‘(𝐶 · (𝐷 ↑ 𝑋)))‘𝑦) ×
((coe1‘𝐴)‘(𝑥 − 𝑦))) = (((coe1‘(𝐶 · (𝐷 ↑ 𝑋)))‘𝐷) ×
((coe1‘𝐴)‘(𝑥 − 𝐷)))) | 
| 71 |  | eqid 2736 | . . . . . . . 8
⊢ (𝑦 ∈ (0...𝑥) ↦ (((coe1‘(𝐶 · (𝐷 ↑ 𝑋)))‘𝑦) ×
((coe1‘𝐴)‘(𝑥 − 𝑦)))) = (𝑦 ∈ (0...𝑥) ↦ (((coe1‘(𝐶 · (𝐷 ↑ 𝑋)))‘𝑦) ×
((coe1‘𝐴)‘(𝑥 − 𝑦)))) | 
| 72 |  | ovex 7465 | . . . . . . . 8
⊢
(((coe1‘(𝐶 · (𝐷 ↑ 𝑋)))‘𝐷) ×
((coe1‘𝐴)‘(𝑥 − 𝐷))) ∈ V | 
| 73 | 70, 71, 72 | fvmpt 7015 | . . . . . . 7
⊢ (𝐷 ∈ (0...𝑥) → ((𝑦 ∈ (0...𝑥) ↦ (((coe1‘(𝐶 · (𝐷 ↑ 𝑋)))‘𝑦) ×
((coe1‘𝐴)‘(𝑥 − 𝑦))))‘𝐷) = (((coe1‘(𝐶 · (𝐷 ↑ 𝑋)))‘𝐷) ×
((coe1‘𝐴)‘(𝑥 − 𝐷)))) | 
| 74 | 29, 73 | syl 17 | . . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ ℕ0) ∧ 𝐷 ≤ 𝑥) → ((𝑦 ∈ (0...𝑥) ↦ (((coe1‘(𝐶 · (𝐷 ↑ 𝑋)))‘𝑦) ×
((coe1‘𝐴)‘(𝑥 − 𝑦))))‘𝐷) = (((coe1‘(𝐶 · (𝐷 ↑ 𝑋)))‘𝐷) ×
((coe1‘𝐴)‘(𝑥 − 𝐷)))) | 
| 75 | 20, 4, 5, 6, 7, 8, 9 | coe1tmfv1 22278 | . . . . . . . . 9
⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0) →
((coe1‘(𝐶
·
(𝐷 ↑ 𝑋)))‘𝐷) = 𝐶) | 
| 76 | 1, 2, 3, 75 | syl3anc 1372 | . . . . . . . 8
⊢ (𝜑 →
((coe1‘(𝐶
·
(𝐷 ↑ 𝑋)))‘𝐷) = 𝐶) | 
| 77 | 76 | ad2antrr 726 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ℕ0) ∧ 𝐷 ≤ 𝑥) → ((coe1‘(𝐶 · (𝐷 ↑ 𝑋)))‘𝐷) = 𝐶) | 
| 78 | 77 | oveq1d 7447 | . . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ ℕ0) ∧ 𝐷 ≤ 𝑥) → (((coe1‘(𝐶 · (𝐷 ↑ 𝑋)))‘𝐷) ×
((coe1‘𝐴)‘(𝑥 − 𝐷))) = (𝐶 ×
((coe1‘𝐴)‘(𝑥 − 𝐷)))) | 
| 79 | 74, 78 | eqtrd 2776 | . . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ ℕ0) ∧ 𝐷 ≤ 𝑥) → ((𝑦 ∈ (0...𝑥) ↦ (((coe1‘(𝐶 · (𝐷 ↑ 𝑋)))‘𝑦) ×
((coe1‘𝐴)‘(𝑥 − 𝑦))))‘𝐷) = (𝐶 ×
((coe1‘𝐴)‘(𝑥 − 𝐷)))) | 
| 80 | 66, 79 | eqtrd 2776 | . . . 4
⊢ (((𝜑 ∧ 𝑥 ∈ ℕ0) ∧ 𝐷 ≤ 𝑥) → (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ (((coe1‘(𝐶 · (𝐷 ↑ 𝑋)))‘𝑦) ×
((coe1‘𝐴)‘(𝑥 − 𝑦))))) = (𝐶 ×
((coe1‘𝐴)‘(𝑥 − 𝐷)))) | 
| 81 | 1 | ad3antrrr 730 | . . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ ℕ0) ∧ ¬
𝐷 ≤ 𝑥) ∧ 𝑦 ∈ (0...𝑥)) → 𝑅 ∈ Ring) | 
| 82 | 2 | ad3antrrr 730 | . . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ ℕ0) ∧ ¬
𝐷 ≤ 𝑥) ∧ 𝑦 ∈ (0...𝑥)) → 𝐶 ∈ 𝐾) | 
| 83 | 3 | ad3antrrr 730 | . . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ ℕ0) ∧ ¬
𝐷 ≤ 𝑥) ∧ 𝑦 ∈ (0...𝑥)) → 𝐷 ∈
ℕ0) | 
| 84 | 35 | adantl 481 | . . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ ℕ0) ∧ ¬
𝐷 ≤ 𝑥) ∧ 𝑦 ∈ (0...𝑥)) → 𝑦 ∈ ℕ0) | 
| 85 |  | elfzle2 13569 | . . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ (0...𝑥) → 𝑦 ≤ 𝑥) | 
| 86 | 85 | adantl 481 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ ℕ0) ∧ 𝑦 ∈ (0...𝑥)) → 𝑦 ≤ 𝑥) | 
| 87 |  | breq1 5145 | . . . . . . . . . . . . . 14
⊢ (𝐷 = 𝑦 → (𝐷 ≤ 𝑥 ↔ 𝑦 ≤ 𝑥)) | 
| 88 | 86, 87 | syl5ibrcom 247 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ ℕ0) ∧ 𝑦 ∈ (0...𝑥)) → (𝐷 = 𝑦 → 𝐷 ≤ 𝑥)) | 
| 89 | 88 | necon3bd 2953 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ℕ0) ∧ 𝑦 ∈ (0...𝑥)) → (¬ 𝐷 ≤ 𝑥 → 𝐷 ≠ 𝑦)) | 
| 90 | 89 | imp 406 | . . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ ℕ0) ∧ 𝑦 ∈ (0...𝑥)) ∧ ¬ 𝐷 ≤ 𝑥) → 𝐷 ≠ 𝑦) | 
| 91 | 90 | an32s 652 | . . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ ℕ0) ∧ ¬
𝐷 ≤ 𝑥) ∧ 𝑦 ∈ (0...𝑥)) → 𝐷 ≠ 𝑦) | 
| 92 | 20, 4, 5, 6, 7, 8, 9, 81, 82, 83, 84, 91 | coe1tmfv2 22279 | . . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ ℕ0) ∧ ¬
𝐷 ≤ 𝑥) ∧ 𝑦 ∈ (0...𝑥)) → ((coe1‘(𝐶 · (𝐷 ↑ 𝑋)))‘𝑦) = 0 ) | 
| 93 | 92 | oveq1d 7447 | . . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ ℕ0) ∧ ¬
𝐷 ≤ 𝑥) ∧ 𝑦 ∈ (0...𝑥)) → (((coe1‘(𝐶 · (𝐷 ↑ 𝑋)))‘𝑦) ×
((coe1‘𝐴)‘(𝑥 − 𝑦))) = ( 0 ×
((coe1‘𝐴)‘(𝑥 − 𝑦)))) | 
| 94 | 61 | adantlr 715 | . . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ ℕ0) ∧ ¬
𝐷 ≤ 𝑥) ∧ 𝑦 ∈ (0...𝑥)) → ( 0 ×
((coe1‘𝐴)‘(𝑥 − 𝑦))) = 0 ) | 
| 95 | 93, 94 | eqtrd 2776 | . . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ ℕ0) ∧ ¬
𝐷 ≤ 𝑥) ∧ 𝑦 ∈ (0...𝑥)) → (((coe1‘(𝐶 · (𝐷 ↑ 𝑋)))‘𝑦) ×
((coe1‘𝐴)‘(𝑥 − 𝑦))) = 0 ) | 
| 96 | 95 | mpteq2dva 5241 | . . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ ℕ0) ∧ ¬
𝐷 ≤ 𝑥) → (𝑦 ∈ (0...𝑥) ↦ (((coe1‘(𝐶 · (𝐷 ↑ 𝑋)))‘𝑦) ×
((coe1‘𝐴)‘(𝑥 − 𝑦)))) = (𝑦 ∈ (0...𝑥) ↦ 0 )) | 
| 97 | 96 | oveq2d 7448 | . . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ ℕ0) ∧ ¬
𝐷 ≤ 𝑥) → (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ (((coe1‘(𝐶 · (𝐷 ↑ 𝑋)))‘𝑦) ×
((coe1‘𝐴)‘(𝑥 − 𝑦))))) = (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ 0 ))) | 
| 98 | 1, 22 | syl 17 | . . . . . . 7
⊢ (𝜑 → 𝑅 ∈ Mnd) | 
| 99 | 98 | ad2antrr 726 | . . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ ℕ0) ∧ ¬
𝐷 ≤ 𝑥) → 𝑅 ∈ Mnd) | 
| 100 |  | ovexd 7467 | . . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ ℕ0) ∧ ¬
𝐷 ≤ 𝑥) → (0...𝑥) ∈ V) | 
| 101 | 20 | gsumz 18850 | . . . . . 6
⊢ ((𝑅 ∈ Mnd ∧ (0...𝑥) ∈ V) → (𝑅 Σg
(𝑦 ∈ (0...𝑥) ↦ 0 )) = 0 ) | 
| 102 | 99, 100, 101 | syl2anc 584 | . . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ ℕ0) ∧ ¬
𝐷 ≤ 𝑥) → (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ 0 )) = 0 ) | 
| 103 | 97, 102 | eqtrd 2776 | . . . 4
⊢ (((𝜑 ∧ 𝑥 ∈ ℕ0) ∧ ¬
𝐷 ≤ 𝑥) → (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ (((coe1‘(𝐶 · (𝐷 ↑ 𝑋)))‘𝑦) ×
((coe1‘𝐴)‘(𝑥 − 𝑦))))) = 0 ) | 
| 104 | 18, 19, 80, 103 | ifbothda 4563 | . . 3
⊢ ((𝜑 ∧ 𝑥 ∈ ℕ0) → (𝑅 Σg
(𝑦 ∈ (0...𝑥) ↦
(((coe1‘(𝐶
·
(𝐷 ↑ 𝑋)))‘𝑦) ×
((coe1‘𝐴)‘(𝑥 − 𝑦))))) = if(𝐷 ≤ 𝑥, (𝐶 ×
((coe1‘𝐴)‘(𝑥 − 𝐷))), 0 )) | 
| 105 | 104 | mpteq2dva 5241 | . 2
⊢ (𝜑 → (𝑥 ∈ ℕ0 ↦ (𝑅 Σg
(𝑦 ∈ (0...𝑥) ↦
(((coe1‘(𝐶
·
(𝐷 ↑ 𝑋)))‘𝑦) ×
((coe1‘𝐴)‘(𝑥 − 𝑦)))))) = (𝑥 ∈ ℕ0 ↦ if(𝐷 ≤ 𝑥, (𝐶 ×
((coe1‘𝐴)‘(𝑥 − 𝐷))), 0 ))) | 
| 106 | 17, 105 | eqtrd 2776 | 1
⊢ (𝜑 →
(coe1‘((𝐶
·
(𝐷 ↑ 𝑋)) ∙ 𝐴)) = (𝑥 ∈ ℕ0 ↦ if(𝐷 ≤ 𝑥, (𝐶 ×
((coe1‘𝐴)‘(𝑥 − 𝐷))), 0 ))) |