MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coe1tmmul Structured version   Visualization version   GIF version

Theorem coe1tmmul 21006
Description: Coefficient vector of a polynomial multiplied on the left by a term. (Contributed by Stefan O'Rear, 29-Mar-2015.)
Hypotheses
Ref Expression
coe1tm.z 0 = (0g𝑅)
coe1tm.k 𝐾 = (Base‘𝑅)
coe1tm.p 𝑃 = (Poly1𝑅)
coe1tm.x 𝑋 = (var1𝑅)
coe1tm.m · = ( ·𝑠𝑃)
coe1tm.n 𝑁 = (mulGrp‘𝑃)
coe1tm.e = (.g𝑁)
coe1tmmul.b 𝐵 = (Base‘𝑃)
coe1tmmul.t = (.r𝑃)
coe1tmmul.u × = (.r𝑅)
coe1tmmul.a (𝜑𝐴𝐵)
coe1tmmul.r (𝜑𝑅 ∈ Ring)
coe1tmmul.c (𝜑𝐶𝐾)
coe1tmmul.d (𝜑𝐷 ∈ ℕ0)
Assertion
Ref Expression
coe1tmmul (𝜑 → (coe1‘((𝐶 · (𝐷 𝑋)) 𝐴)) = (𝑥 ∈ ℕ0 ↦ if(𝐷𝑥, (𝐶 × ((coe1𝐴)‘(𝑥𝐷))), 0 )))
Distinct variable groups:   𝑥, 0   𝑥,𝐶   𝑥,𝐷   𝑥,𝐾   𝑥,   𝑥,𝐴   𝑥,𝑁   𝑥,𝑃   𝑥,𝑋   𝜑,𝑥   𝑥,𝑅   𝑥, ·   𝑥, ×   𝑥,
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem coe1tmmul
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 coe1tmmul.r . . 3 (𝜑𝑅 ∈ Ring)
2 coe1tmmul.c . . . 4 (𝜑𝐶𝐾)
3 coe1tmmul.d . . . 4 (𝜑𝐷 ∈ ℕ0)
4 coe1tm.k . . . . 5 𝐾 = (Base‘𝑅)
5 coe1tm.p . . . . 5 𝑃 = (Poly1𝑅)
6 coe1tm.x . . . . 5 𝑋 = (var1𝑅)
7 coe1tm.m . . . . 5 · = ( ·𝑠𝑃)
8 coe1tm.n . . . . 5 𝑁 = (mulGrp‘𝑃)
9 coe1tm.e . . . . 5 = (.g𝑁)
10 coe1tmmul.b . . . . 5 𝐵 = (Base‘𝑃)
114, 5, 6, 7, 8, 9, 10ply1tmcl 21001 . . . 4 ((𝑅 ∈ Ring ∧ 𝐶𝐾𝐷 ∈ ℕ0) → (𝐶 · (𝐷 𝑋)) ∈ 𝐵)
121, 2, 3, 11syl3anc 1368 . . 3 (𝜑 → (𝐶 · (𝐷 𝑋)) ∈ 𝐵)
13 coe1tmmul.a . . 3 (𝜑𝐴𝐵)
14 coe1tmmul.t . . . 4 = (.r𝑃)
15 coe1tmmul.u . . . 4 × = (.r𝑅)
165, 14, 15, 10coe1mul 20999 . . 3 ((𝑅 ∈ Ring ∧ (𝐶 · (𝐷 𝑋)) ∈ 𝐵𝐴𝐵) → (coe1‘((𝐶 · (𝐷 𝑋)) 𝐴)) = (𝑥 ∈ ℕ0 ↦ (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ (((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) × ((coe1𝐴)‘(𝑥𝑦)))))))
171, 12, 13, 16syl3anc 1368 . 2 (𝜑 → (coe1‘((𝐶 · (𝐷 𝑋)) 𝐴)) = (𝑥 ∈ ℕ0 ↦ (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ (((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) × ((coe1𝐴)‘(𝑥𝑦)))))))
18 eqeq2 2770 . . . 4 ((𝐶 × ((coe1𝐴)‘(𝑥𝐷))) = if(𝐷𝑥, (𝐶 × ((coe1𝐴)‘(𝑥𝐷))), 0 ) → ((𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ (((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) × ((coe1𝐴)‘(𝑥𝑦))))) = (𝐶 × ((coe1𝐴)‘(𝑥𝐷))) ↔ (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ (((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) × ((coe1𝐴)‘(𝑥𝑦))))) = if(𝐷𝑥, (𝐶 × ((coe1𝐴)‘(𝑥𝐷))), 0 )))
19 eqeq2 2770 . . . 4 ( 0 = if(𝐷𝑥, (𝐶 × ((coe1𝐴)‘(𝑥𝐷))), 0 ) → ((𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ (((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) × ((coe1𝐴)‘(𝑥𝑦))))) = 0 ↔ (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ (((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) × ((coe1𝐴)‘(𝑥𝑦))))) = if(𝐷𝑥, (𝐶 × ((coe1𝐴)‘(𝑥𝐷))), 0 )))
20 coe1tm.z . . . . . 6 0 = (0g𝑅)
211ad2antrr 725 . . . . . . 7 (((𝜑𝑥 ∈ ℕ0) ∧ 𝐷𝑥) → 𝑅 ∈ Ring)
22 ringmnd 19380 . . . . . . 7 (𝑅 ∈ Ring → 𝑅 ∈ Mnd)
2321, 22syl 17 . . . . . 6 (((𝜑𝑥 ∈ ℕ0) ∧ 𝐷𝑥) → 𝑅 ∈ Mnd)
24 ovexd 7190 . . . . . 6 (((𝜑𝑥 ∈ ℕ0) ∧ 𝐷𝑥) → (0...𝑥) ∈ V)
253ad2antrr 725 . . . . . . 7 (((𝜑𝑥 ∈ ℕ0) ∧ 𝐷𝑥) → 𝐷 ∈ ℕ0)
26 simpr 488 . . . . . . 7 (((𝜑𝑥 ∈ ℕ0) ∧ 𝐷𝑥) → 𝐷𝑥)
27 fznn0 13053 . . . . . . . 8 (𝑥 ∈ ℕ0 → (𝐷 ∈ (0...𝑥) ↔ (𝐷 ∈ ℕ0𝐷𝑥)))
2827ad2antlr 726 . . . . . . 7 (((𝜑𝑥 ∈ ℕ0) ∧ 𝐷𝑥) → (𝐷 ∈ (0...𝑥) ↔ (𝐷 ∈ ℕ0𝐷𝑥)))
2925, 26, 28mpbir2and 712 . . . . . 6 (((𝜑𝑥 ∈ ℕ0) ∧ 𝐷𝑥) → 𝐷 ∈ (0...𝑥))
301ad2antrr 725 . . . . . . . . 9 (((𝜑𝑥 ∈ ℕ0) ∧ 𝑦 ∈ (0...𝑥)) → 𝑅 ∈ Ring)
31 eqid 2758 . . . . . . . . . . . . 13 (coe1‘(𝐶 · (𝐷 𝑋))) = (coe1‘(𝐶 · (𝐷 𝑋)))
3231, 10, 5, 4coe1f 20940 . . . . . . . . . . . 12 ((𝐶 · (𝐷 𝑋)) ∈ 𝐵 → (coe1‘(𝐶 · (𝐷 𝑋))):ℕ0𝐾)
3312, 32syl 17 . . . . . . . . . . 11 (𝜑 → (coe1‘(𝐶 · (𝐷 𝑋))):ℕ0𝐾)
3433adantr 484 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℕ0) → (coe1‘(𝐶 · (𝐷 𝑋))):ℕ0𝐾)
35 elfznn0 13054 . . . . . . . . . 10 (𝑦 ∈ (0...𝑥) → 𝑦 ∈ ℕ0)
36 ffvelrn 6845 . . . . . . . . . 10 (((coe1‘(𝐶 · (𝐷 𝑋))):ℕ0𝐾𝑦 ∈ ℕ0) → ((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) ∈ 𝐾)
3734, 35, 36syl2an 598 . . . . . . . . 9 (((𝜑𝑥 ∈ ℕ0) ∧ 𝑦 ∈ (0...𝑥)) → ((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) ∈ 𝐾)
38 eqid 2758 . . . . . . . . . . . . 13 (coe1𝐴) = (coe1𝐴)
3938, 10, 5, 4coe1f 20940 . . . . . . . . . . . 12 (𝐴𝐵 → (coe1𝐴):ℕ0𝐾)
4013, 39syl 17 . . . . . . . . . . 11 (𝜑 → (coe1𝐴):ℕ0𝐾)
4140adantr 484 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℕ0) → (coe1𝐴):ℕ0𝐾)
42 fznn0sub 12993 . . . . . . . . . 10 (𝑦 ∈ (0...𝑥) → (𝑥𝑦) ∈ ℕ0)
43 ffvelrn 6845 . . . . . . . . . 10 (((coe1𝐴):ℕ0𝐾 ∧ (𝑥𝑦) ∈ ℕ0) → ((coe1𝐴)‘(𝑥𝑦)) ∈ 𝐾)
4441, 42, 43syl2an 598 . . . . . . . . 9 (((𝜑𝑥 ∈ ℕ0) ∧ 𝑦 ∈ (0...𝑥)) → ((coe1𝐴)‘(𝑥𝑦)) ∈ 𝐾)
454, 15ringcl 19387 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ ((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) ∈ 𝐾 ∧ ((coe1𝐴)‘(𝑥𝑦)) ∈ 𝐾) → (((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) × ((coe1𝐴)‘(𝑥𝑦))) ∈ 𝐾)
4630, 37, 44, 45syl3anc 1368 . . . . . . . 8 (((𝜑𝑥 ∈ ℕ0) ∧ 𝑦 ∈ (0...𝑥)) → (((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) × ((coe1𝐴)‘(𝑥𝑦))) ∈ 𝐾)
4746fmpttd 6875 . . . . . . 7 ((𝜑𝑥 ∈ ℕ0) → (𝑦 ∈ (0...𝑥) ↦ (((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) × ((coe1𝐴)‘(𝑥𝑦)))):(0...𝑥)⟶𝐾)
4847adantr 484 . . . . . 6 (((𝜑𝑥 ∈ ℕ0) ∧ 𝐷𝑥) → (𝑦 ∈ (0...𝑥) ↦ (((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) × ((coe1𝐴)‘(𝑥𝑦)))):(0...𝑥)⟶𝐾)
491ad3antrrr 729 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℕ0) ∧ 𝐷𝑥) ∧ 𝑦 ∈ ((0...𝑥) ∖ {𝐷})) → 𝑅 ∈ Ring)
502ad3antrrr 729 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℕ0) ∧ 𝐷𝑥) ∧ 𝑦 ∈ ((0...𝑥) ∖ {𝐷})) → 𝐶𝐾)
513ad3antrrr 729 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℕ0) ∧ 𝐷𝑥) ∧ 𝑦 ∈ ((0...𝑥) ∖ {𝐷})) → 𝐷 ∈ ℕ0)
52 eldifi 4034 . . . . . . . . . . . 12 (𝑦 ∈ ((0...𝑥) ∖ {𝐷}) → 𝑦 ∈ (0...𝑥))
5352, 35syl 17 . . . . . . . . . . 11 (𝑦 ∈ ((0...𝑥) ∖ {𝐷}) → 𝑦 ∈ ℕ0)
5453adantl 485 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℕ0) ∧ 𝐷𝑥) ∧ 𝑦 ∈ ((0...𝑥) ∖ {𝐷})) → 𝑦 ∈ ℕ0)
55 eldifsni 4683 . . . . . . . . . . . 12 (𝑦 ∈ ((0...𝑥) ∖ {𝐷}) → 𝑦𝐷)
5655necomd 3006 . . . . . . . . . . 11 (𝑦 ∈ ((0...𝑥) ∖ {𝐷}) → 𝐷𝑦)
5756adantl 485 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℕ0) ∧ 𝐷𝑥) ∧ 𝑦 ∈ ((0...𝑥) ∖ {𝐷})) → 𝐷𝑦)
5820, 4, 5, 6, 7, 8, 9, 49, 50, 51, 54, 57coe1tmfv2 21004 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℕ0) ∧ 𝐷𝑥) ∧ 𝑦 ∈ ((0...𝑥) ∖ {𝐷})) → ((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) = 0 )
5958oveq1d 7170 . . . . . . . 8 ((((𝜑𝑥 ∈ ℕ0) ∧ 𝐷𝑥) ∧ 𝑦 ∈ ((0...𝑥) ∖ {𝐷})) → (((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) × ((coe1𝐴)‘(𝑥𝑦))) = ( 0 × ((coe1𝐴)‘(𝑥𝑦))))
604, 15, 20ringlz 19413 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ ((coe1𝐴)‘(𝑥𝑦)) ∈ 𝐾) → ( 0 × ((coe1𝐴)‘(𝑥𝑦))) = 0 )
6130, 44, 60syl2anc 587 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℕ0) ∧ 𝑦 ∈ (0...𝑥)) → ( 0 × ((coe1𝐴)‘(𝑥𝑦))) = 0 )
6252, 61sylan2 595 . . . . . . . . 9 (((𝜑𝑥 ∈ ℕ0) ∧ 𝑦 ∈ ((0...𝑥) ∖ {𝐷})) → ( 0 × ((coe1𝐴)‘(𝑥𝑦))) = 0 )
6362adantlr 714 . . . . . . . 8 ((((𝜑𝑥 ∈ ℕ0) ∧ 𝐷𝑥) ∧ 𝑦 ∈ ((0...𝑥) ∖ {𝐷})) → ( 0 × ((coe1𝐴)‘(𝑥𝑦))) = 0 )
6459, 63eqtrd 2793 . . . . . . 7 ((((𝜑𝑥 ∈ ℕ0) ∧ 𝐷𝑥) ∧ 𝑦 ∈ ((0...𝑥) ∖ {𝐷})) → (((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) × ((coe1𝐴)‘(𝑥𝑦))) = 0 )
6564, 24suppss2 7879 . . . . . 6 (((𝜑𝑥 ∈ ℕ0) ∧ 𝐷𝑥) → ((𝑦 ∈ (0...𝑥) ↦ (((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) × ((coe1𝐴)‘(𝑥𝑦)))) supp 0 ) ⊆ {𝐷})
664, 20, 23, 24, 29, 48, 65gsumpt 19155 . . . . 5 (((𝜑𝑥 ∈ ℕ0) ∧ 𝐷𝑥) → (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ (((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) × ((coe1𝐴)‘(𝑥𝑦))))) = ((𝑦 ∈ (0...𝑥) ↦ (((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) × ((coe1𝐴)‘(𝑥𝑦))))‘𝐷))
67 fveq2 6662 . . . . . . . . 9 (𝑦 = 𝐷 → ((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) = ((coe1‘(𝐶 · (𝐷 𝑋)))‘𝐷))
68 oveq2 7163 . . . . . . . . . 10 (𝑦 = 𝐷 → (𝑥𝑦) = (𝑥𝐷))
6968fveq2d 6666 . . . . . . . . 9 (𝑦 = 𝐷 → ((coe1𝐴)‘(𝑥𝑦)) = ((coe1𝐴)‘(𝑥𝐷)))
7067, 69oveq12d 7173 . . . . . . . 8 (𝑦 = 𝐷 → (((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) × ((coe1𝐴)‘(𝑥𝑦))) = (((coe1‘(𝐶 · (𝐷 𝑋)))‘𝐷) × ((coe1𝐴)‘(𝑥𝐷))))
71 eqid 2758 . . . . . . . 8 (𝑦 ∈ (0...𝑥) ↦ (((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) × ((coe1𝐴)‘(𝑥𝑦)))) = (𝑦 ∈ (0...𝑥) ↦ (((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) × ((coe1𝐴)‘(𝑥𝑦))))
72 ovex 7188 . . . . . . . 8 (((coe1‘(𝐶 · (𝐷 𝑋)))‘𝐷) × ((coe1𝐴)‘(𝑥𝐷))) ∈ V
7370, 71, 72fvmpt 6763 . . . . . . 7 (𝐷 ∈ (0...𝑥) → ((𝑦 ∈ (0...𝑥) ↦ (((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) × ((coe1𝐴)‘(𝑥𝑦))))‘𝐷) = (((coe1‘(𝐶 · (𝐷 𝑋)))‘𝐷) × ((coe1𝐴)‘(𝑥𝐷))))
7429, 73syl 17 . . . . . 6 (((𝜑𝑥 ∈ ℕ0) ∧ 𝐷𝑥) → ((𝑦 ∈ (0...𝑥) ↦ (((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) × ((coe1𝐴)‘(𝑥𝑦))))‘𝐷) = (((coe1‘(𝐶 · (𝐷 𝑋)))‘𝐷) × ((coe1𝐴)‘(𝑥𝐷))))
7520, 4, 5, 6, 7, 8, 9coe1tmfv1 21003 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝐶𝐾𝐷 ∈ ℕ0) → ((coe1‘(𝐶 · (𝐷 𝑋)))‘𝐷) = 𝐶)
761, 2, 3, 75syl3anc 1368 . . . . . . . 8 (𝜑 → ((coe1‘(𝐶 · (𝐷 𝑋)))‘𝐷) = 𝐶)
7776ad2antrr 725 . . . . . . 7 (((𝜑𝑥 ∈ ℕ0) ∧ 𝐷𝑥) → ((coe1‘(𝐶 · (𝐷 𝑋)))‘𝐷) = 𝐶)
7877oveq1d 7170 . . . . . 6 (((𝜑𝑥 ∈ ℕ0) ∧ 𝐷𝑥) → (((coe1‘(𝐶 · (𝐷 𝑋)))‘𝐷) × ((coe1𝐴)‘(𝑥𝐷))) = (𝐶 × ((coe1𝐴)‘(𝑥𝐷))))
7974, 78eqtrd 2793 . . . . 5 (((𝜑𝑥 ∈ ℕ0) ∧ 𝐷𝑥) → ((𝑦 ∈ (0...𝑥) ↦ (((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) × ((coe1𝐴)‘(𝑥𝑦))))‘𝐷) = (𝐶 × ((coe1𝐴)‘(𝑥𝐷))))
8066, 79eqtrd 2793 . . . 4 (((𝜑𝑥 ∈ ℕ0) ∧ 𝐷𝑥) → (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ (((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) × ((coe1𝐴)‘(𝑥𝑦))))) = (𝐶 × ((coe1𝐴)‘(𝑥𝐷))))
811ad3antrrr 729 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℕ0) ∧ ¬ 𝐷𝑥) ∧ 𝑦 ∈ (0...𝑥)) → 𝑅 ∈ Ring)
822ad3antrrr 729 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℕ0) ∧ ¬ 𝐷𝑥) ∧ 𝑦 ∈ (0...𝑥)) → 𝐶𝐾)
833ad3antrrr 729 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℕ0) ∧ ¬ 𝐷𝑥) ∧ 𝑦 ∈ (0...𝑥)) → 𝐷 ∈ ℕ0)
8435adantl 485 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℕ0) ∧ ¬ 𝐷𝑥) ∧ 𝑦 ∈ (0...𝑥)) → 𝑦 ∈ ℕ0)
85 elfzle2 12965 . . . . . . . . . . . . . . 15 (𝑦 ∈ (0...𝑥) → 𝑦𝑥)
8685adantl 485 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℕ0) ∧ 𝑦 ∈ (0...𝑥)) → 𝑦𝑥)
87 breq1 5038 . . . . . . . . . . . . . 14 (𝐷 = 𝑦 → (𝐷𝑥𝑦𝑥))
8886, 87syl5ibrcom 250 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℕ0) ∧ 𝑦 ∈ (0...𝑥)) → (𝐷 = 𝑦𝐷𝑥))
8988necon3bd 2965 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℕ0) ∧ 𝑦 ∈ (0...𝑥)) → (¬ 𝐷𝑥𝐷𝑦))
9089imp 410 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℕ0) ∧ 𝑦 ∈ (0...𝑥)) ∧ ¬ 𝐷𝑥) → 𝐷𝑦)
9190an32s 651 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℕ0) ∧ ¬ 𝐷𝑥) ∧ 𝑦 ∈ (0...𝑥)) → 𝐷𝑦)
9220, 4, 5, 6, 7, 8, 9, 81, 82, 83, 84, 91coe1tmfv2 21004 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℕ0) ∧ ¬ 𝐷𝑥) ∧ 𝑦 ∈ (0...𝑥)) → ((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) = 0 )
9392oveq1d 7170 . . . . . . . 8 ((((𝜑𝑥 ∈ ℕ0) ∧ ¬ 𝐷𝑥) ∧ 𝑦 ∈ (0...𝑥)) → (((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) × ((coe1𝐴)‘(𝑥𝑦))) = ( 0 × ((coe1𝐴)‘(𝑥𝑦))))
9461adantlr 714 . . . . . . . 8 ((((𝜑𝑥 ∈ ℕ0) ∧ ¬ 𝐷𝑥) ∧ 𝑦 ∈ (0...𝑥)) → ( 0 × ((coe1𝐴)‘(𝑥𝑦))) = 0 )
9593, 94eqtrd 2793 . . . . . . 7 ((((𝜑𝑥 ∈ ℕ0) ∧ ¬ 𝐷𝑥) ∧ 𝑦 ∈ (0...𝑥)) → (((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) × ((coe1𝐴)‘(𝑥𝑦))) = 0 )
9695mpteq2dva 5130 . . . . . 6 (((𝜑𝑥 ∈ ℕ0) ∧ ¬ 𝐷𝑥) → (𝑦 ∈ (0...𝑥) ↦ (((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) × ((coe1𝐴)‘(𝑥𝑦)))) = (𝑦 ∈ (0...𝑥) ↦ 0 ))
9796oveq2d 7171 . . . . 5 (((𝜑𝑥 ∈ ℕ0) ∧ ¬ 𝐷𝑥) → (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ (((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) × ((coe1𝐴)‘(𝑥𝑦))))) = (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ 0 )))
981, 22syl 17 . . . . . . 7 (𝜑𝑅 ∈ Mnd)
9998ad2antrr 725 . . . . . 6 (((𝜑𝑥 ∈ ℕ0) ∧ ¬ 𝐷𝑥) → 𝑅 ∈ Mnd)
100 ovexd 7190 . . . . . 6 (((𝜑𝑥 ∈ ℕ0) ∧ ¬ 𝐷𝑥) → (0...𝑥) ∈ V)
10120gsumz 18071 . . . . . 6 ((𝑅 ∈ Mnd ∧ (0...𝑥) ∈ V) → (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ 0 )) = 0 )
10299, 100, 101syl2anc 587 . . . . 5 (((𝜑𝑥 ∈ ℕ0) ∧ ¬ 𝐷𝑥) → (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ 0 )) = 0 )
10397, 102eqtrd 2793 . . . 4 (((𝜑𝑥 ∈ ℕ0) ∧ ¬ 𝐷𝑥) → (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ (((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) × ((coe1𝐴)‘(𝑥𝑦))))) = 0 )
10418, 19, 80, 103ifbothda 4461 . . 3 ((𝜑𝑥 ∈ ℕ0) → (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ (((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) × ((coe1𝐴)‘(𝑥𝑦))))) = if(𝐷𝑥, (𝐶 × ((coe1𝐴)‘(𝑥𝐷))), 0 ))
105104mpteq2dva 5130 . 2 (𝜑 → (𝑥 ∈ ℕ0 ↦ (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ (((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) × ((coe1𝐴)‘(𝑥𝑦)))))) = (𝑥 ∈ ℕ0 ↦ if(𝐷𝑥, (𝐶 × ((coe1𝐴)‘(𝑥𝐷))), 0 )))
10617, 105eqtrd 2793 1 (𝜑 → (coe1‘((𝐶 · (𝐷 𝑋)) 𝐴)) = (𝑥 ∈ ℕ0 ↦ if(𝐷𝑥, (𝐶 × ((coe1𝐴)‘(𝑥𝐷))), 0 )))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wne 2951  Vcvv 3409  cdif 3857  ifcif 4423  {csn 4525   class class class wbr 5035  cmpt 5115  wf 6335  cfv 6339  (class class class)co 7155  0cc0 10580  cle 10719  cmin 10913  0cn0 11939  ...cfz 12944  Basecbs 16546  .rcmulr 16629   ·𝑠 cvsca 16632  0gc0g 16776   Σg cgsu 16777  Mndcmnd 17982  .gcmg 18296  mulGrpcmgp 19312  Ringcrg 19370  var1cv1 20905  Poly1cpl1 20906  coe1cco1 20907
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5159  ax-sep 5172  ax-nul 5179  ax-pow 5237  ax-pr 5301  ax-un 7464  ax-cnex 10636  ax-resscn 10637  ax-1cn 10638  ax-icn 10639  ax-addcl 10640  ax-addrcl 10641  ax-mulcl 10642  ax-mulrcl 10643  ax-mulcom 10644  ax-addass 10645  ax-mulass 10646  ax-distr 10647  ax-i2m1 10648  ax-1ne0 10649  ax-1rid 10650  ax-rnegex 10651  ax-rrecex 10652  ax-cnre 10653  ax-pre-lttri 10654  ax-pre-lttrn 10655  ax-pre-ltadd 10656  ax-pre-mulgt0 10657
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-int 4842  df-iun 4888  df-iin 4889  df-br 5036  df-opab 5098  df-mpt 5116  df-tr 5142  df-id 5433  df-eprel 5438  df-po 5446  df-so 5447  df-fr 5486  df-se 5487  df-we 5488  df-xp 5533  df-rel 5534  df-cnv 5535  df-co 5536  df-dm 5537  df-rn 5538  df-res 5539  df-ima 5540  df-pred 6130  df-ord 6176  df-on 6177  df-lim 6178  df-suc 6179  df-iota 6298  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-isom 6348  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-of 7410  df-ofr 7411  df-om 7585  df-1st 7698  df-2nd 7699  df-supp 7841  df-wrecs 7962  df-recs 8023  df-rdg 8061  df-1o 8117  df-er 8304  df-map 8423  df-pm 8424  df-ixp 8485  df-en 8533  df-dom 8534  df-sdom 8535  df-fin 8536  df-fsupp 8872  df-oi 9012  df-card 9406  df-pnf 10720  df-mnf 10721  df-xr 10722  df-ltxr 10723  df-le 10724  df-sub 10915  df-neg 10916  df-nn 11680  df-2 11742  df-3 11743  df-4 11744  df-5 11745  df-6 11746  df-7 11747  df-8 11748  df-9 11749  df-n0 11940  df-z 12026  df-dec 12143  df-uz 12288  df-fz 12945  df-fzo 13088  df-seq 13424  df-hash 13746  df-struct 16548  df-ndx 16549  df-slot 16550  df-base 16552  df-sets 16553  df-ress 16554  df-plusg 16641  df-mulr 16642  df-sca 16644  df-vsca 16645  df-tset 16647  df-ple 16648  df-0g 16778  df-gsum 16779  df-mre 16920  df-mrc 16921  df-acs 16923  df-mgm 17923  df-sgrp 17972  df-mnd 17983  df-mhm 18027  df-submnd 18028  df-grp 18177  df-minusg 18178  df-sbg 18179  df-mulg 18297  df-subg 18348  df-ghm 18428  df-cntz 18519  df-cmn 18980  df-abl 18981  df-mgp 19313  df-ur 19325  df-ring 19372  df-subrg 19606  df-lmod 19709  df-lss 19777  df-psr 20676  df-mvr 20677  df-mpl 20678  df-opsr 20680  df-psr1 20909  df-vr1 20910  df-ply1 20911  df-coe1 20912
This theorem is referenced by:  coe1pwmul  21008  coe1sclmul  21011
  Copyright terms: Public domain W3C validator