MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coe1tmmul Structured version   Visualization version   GIF version

Theorem coe1tmmul 22301
Description: Coefficient vector of a polynomial multiplied on the left by a term. (Contributed by Stefan O'Rear, 29-Mar-2015.)
Hypotheses
Ref Expression
coe1tm.z 0 = (0g𝑅)
coe1tm.k 𝐾 = (Base‘𝑅)
coe1tm.p 𝑃 = (Poly1𝑅)
coe1tm.x 𝑋 = (var1𝑅)
coe1tm.m · = ( ·𝑠𝑃)
coe1tm.n 𝑁 = (mulGrp‘𝑃)
coe1tm.e = (.g𝑁)
coe1tmmul.b 𝐵 = (Base‘𝑃)
coe1tmmul.t = (.r𝑃)
coe1tmmul.u × = (.r𝑅)
coe1tmmul.a (𝜑𝐴𝐵)
coe1tmmul.r (𝜑𝑅 ∈ Ring)
coe1tmmul.c (𝜑𝐶𝐾)
coe1tmmul.d (𝜑𝐷 ∈ ℕ0)
Assertion
Ref Expression
coe1tmmul (𝜑 → (coe1‘((𝐶 · (𝐷 𝑋)) 𝐴)) = (𝑥 ∈ ℕ0 ↦ if(𝐷𝑥, (𝐶 × ((coe1𝐴)‘(𝑥𝐷))), 0 )))
Distinct variable groups:   𝑥, 0   𝑥,𝐶   𝑥,𝐷   𝑥,𝐾   𝑥,   𝑥,𝐴   𝑥,𝑁   𝑥,𝑃   𝑥,𝑋   𝜑,𝑥   𝑥,𝑅   𝑥, ·   𝑥, ×   𝑥,
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem coe1tmmul
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 coe1tmmul.r . . 3 (𝜑𝑅 ∈ Ring)
2 coe1tmmul.c . . . 4 (𝜑𝐶𝐾)
3 coe1tmmul.d . . . 4 (𝜑𝐷 ∈ ℕ0)
4 coe1tm.k . . . . 5 𝐾 = (Base‘𝑅)
5 coe1tm.p . . . . 5 𝑃 = (Poly1𝑅)
6 coe1tm.x . . . . 5 𝑋 = (var1𝑅)
7 coe1tm.m . . . . 5 · = ( ·𝑠𝑃)
8 coe1tm.n . . . . 5 𝑁 = (mulGrp‘𝑃)
9 coe1tm.e . . . . 5 = (.g𝑁)
10 coe1tmmul.b . . . . 5 𝐵 = (Base‘𝑃)
114, 5, 6, 7, 8, 9, 10ply1tmcl 22296 . . . 4 ((𝑅 ∈ Ring ∧ 𝐶𝐾𝐷 ∈ ℕ0) → (𝐶 · (𝐷 𝑋)) ∈ 𝐵)
121, 2, 3, 11syl3anc 1371 . . 3 (𝜑 → (𝐶 · (𝐷 𝑋)) ∈ 𝐵)
13 coe1tmmul.a . . 3 (𝜑𝐴𝐵)
14 coe1tmmul.t . . . 4 = (.r𝑃)
15 coe1tmmul.u . . . 4 × = (.r𝑅)
165, 14, 15, 10coe1mul 22294 . . 3 ((𝑅 ∈ Ring ∧ (𝐶 · (𝐷 𝑋)) ∈ 𝐵𝐴𝐵) → (coe1‘((𝐶 · (𝐷 𝑋)) 𝐴)) = (𝑥 ∈ ℕ0 ↦ (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ (((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) × ((coe1𝐴)‘(𝑥𝑦)))))))
171, 12, 13, 16syl3anc 1371 . 2 (𝜑 → (coe1‘((𝐶 · (𝐷 𝑋)) 𝐴)) = (𝑥 ∈ ℕ0 ↦ (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ (((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) × ((coe1𝐴)‘(𝑥𝑦)))))))
18 eqeq2 2752 . . . 4 ((𝐶 × ((coe1𝐴)‘(𝑥𝐷))) = if(𝐷𝑥, (𝐶 × ((coe1𝐴)‘(𝑥𝐷))), 0 ) → ((𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ (((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) × ((coe1𝐴)‘(𝑥𝑦))))) = (𝐶 × ((coe1𝐴)‘(𝑥𝐷))) ↔ (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ (((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) × ((coe1𝐴)‘(𝑥𝑦))))) = if(𝐷𝑥, (𝐶 × ((coe1𝐴)‘(𝑥𝐷))), 0 )))
19 eqeq2 2752 . . . 4 ( 0 = if(𝐷𝑥, (𝐶 × ((coe1𝐴)‘(𝑥𝐷))), 0 ) → ((𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ (((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) × ((coe1𝐴)‘(𝑥𝑦))))) = 0 ↔ (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ (((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) × ((coe1𝐴)‘(𝑥𝑦))))) = if(𝐷𝑥, (𝐶 × ((coe1𝐴)‘(𝑥𝐷))), 0 )))
20 coe1tm.z . . . . . 6 0 = (0g𝑅)
211ad2antrr 725 . . . . . . 7 (((𝜑𝑥 ∈ ℕ0) ∧ 𝐷𝑥) → 𝑅 ∈ Ring)
22 ringmnd 20270 . . . . . . 7 (𝑅 ∈ Ring → 𝑅 ∈ Mnd)
2321, 22syl 17 . . . . . 6 (((𝜑𝑥 ∈ ℕ0) ∧ 𝐷𝑥) → 𝑅 ∈ Mnd)
24 ovexd 7483 . . . . . 6 (((𝜑𝑥 ∈ ℕ0) ∧ 𝐷𝑥) → (0...𝑥) ∈ V)
253ad2antrr 725 . . . . . . 7 (((𝜑𝑥 ∈ ℕ0) ∧ 𝐷𝑥) → 𝐷 ∈ ℕ0)
26 simpr 484 . . . . . . 7 (((𝜑𝑥 ∈ ℕ0) ∧ 𝐷𝑥) → 𝐷𝑥)
27 fznn0 13676 . . . . . . . 8 (𝑥 ∈ ℕ0 → (𝐷 ∈ (0...𝑥) ↔ (𝐷 ∈ ℕ0𝐷𝑥)))
2827ad2antlr 726 . . . . . . 7 (((𝜑𝑥 ∈ ℕ0) ∧ 𝐷𝑥) → (𝐷 ∈ (0...𝑥) ↔ (𝐷 ∈ ℕ0𝐷𝑥)))
2925, 26, 28mpbir2and 712 . . . . . 6 (((𝜑𝑥 ∈ ℕ0) ∧ 𝐷𝑥) → 𝐷 ∈ (0...𝑥))
301ad2antrr 725 . . . . . . . . 9 (((𝜑𝑥 ∈ ℕ0) ∧ 𝑦 ∈ (0...𝑥)) → 𝑅 ∈ Ring)
31 eqid 2740 . . . . . . . . . . . . 13 (coe1‘(𝐶 · (𝐷 𝑋))) = (coe1‘(𝐶 · (𝐷 𝑋)))
3231, 10, 5, 4coe1f 22234 . . . . . . . . . . . 12 ((𝐶 · (𝐷 𝑋)) ∈ 𝐵 → (coe1‘(𝐶 · (𝐷 𝑋))):ℕ0𝐾)
3312, 32syl 17 . . . . . . . . . . 11 (𝜑 → (coe1‘(𝐶 · (𝐷 𝑋))):ℕ0𝐾)
3433adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℕ0) → (coe1‘(𝐶 · (𝐷 𝑋))):ℕ0𝐾)
35 elfznn0 13677 . . . . . . . . . 10 (𝑦 ∈ (0...𝑥) → 𝑦 ∈ ℕ0)
36 ffvelcdm 7115 . . . . . . . . . 10 (((coe1‘(𝐶 · (𝐷 𝑋))):ℕ0𝐾𝑦 ∈ ℕ0) → ((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) ∈ 𝐾)
3734, 35, 36syl2an 595 . . . . . . . . 9 (((𝜑𝑥 ∈ ℕ0) ∧ 𝑦 ∈ (0...𝑥)) → ((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) ∈ 𝐾)
38 eqid 2740 . . . . . . . . . . . . 13 (coe1𝐴) = (coe1𝐴)
3938, 10, 5, 4coe1f 22234 . . . . . . . . . . . 12 (𝐴𝐵 → (coe1𝐴):ℕ0𝐾)
4013, 39syl 17 . . . . . . . . . . 11 (𝜑 → (coe1𝐴):ℕ0𝐾)
4140adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℕ0) → (coe1𝐴):ℕ0𝐾)
42 fznn0sub 13616 . . . . . . . . . 10 (𝑦 ∈ (0...𝑥) → (𝑥𝑦) ∈ ℕ0)
43 ffvelcdm 7115 . . . . . . . . . 10 (((coe1𝐴):ℕ0𝐾 ∧ (𝑥𝑦) ∈ ℕ0) → ((coe1𝐴)‘(𝑥𝑦)) ∈ 𝐾)
4441, 42, 43syl2an 595 . . . . . . . . 9 (((𝜑𝑥 ∈ ℕ0) ∧ 𝑦 ∈ (0...𝑥)) → ((coe1𝐴)‘(𝑥𝑦)) ∈ 𝐾)
454, 15ringcl 20277 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ ((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) ∈ 𝐾 ∧ ((coe1𝐴)‘(𝑥𝑦)) ∈ 𝐾) → (((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) × ((coe1𝐴)‘(𝑥𝑦))) ∈ 𝐾)
4630, 37, 44, 45syl3anc 1371 . . . . . . . 8 (((𝜑𝑥 ∈ ℕ0) ∧ 𝑦 ∈ (0...𝑥)) → (((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) × ((coe1𝐴)‘(𝑥𝑦))) ∈ 𝐾)
4746fmpttd 7149 . . . . . . 7 ((𝜑𝑥 ∈ ℕ0) → (𝑦 ∈ (0...𝑥) ↦ (((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) × ((coe1𝐴)‘(𝑥𝑦)))):(0...𝑥)⟶𝐾)
4847adantr 480 . . . . . 6 (((𝜑𝑥 ∈ ℕ0) ∧ 𝐷𝑥) → (𝑦 ∈ (0...𝑥) ↦ (((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) × ((coe1𝐴)‘(𝑥𝑦)))):(0...𝑥)⟶𝐾)
491ad3antrrr 729 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℕ0) ∧ 𝐷𝑥) ∧ 𝑦 ∈ ((0...𝑥) ∖ {𝐷})) → 𝑅 ∈ Ring)
502ad3antrrr 729 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℕ0) ∧ 𝐷𝑥) ∧ 𝑦 ∈ ((0...𝑥) ∖ {𝐷})) → 𝐶𝐾)
513ad3antrrr 729 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℕ0) ∧ 𝐷𝑥) ∧ 𝑦 ∈ ((0...𝑥) ∖ {𝐷})) → 𝐷 ∈ ℕ0)
52 eldifi 4154 . . . . . . . . . . . 12 (𝑦 ∈ ((0...𝑥) ∖ {𝐷}) → 𝑦 ∈ (0...𝑥))
5352, 35syl 17 . . . . . . . . . . 11 (𝑦 ∈ ((0...𝑥) ∖ {𝐷}) → 𝑦 ∈ ℕ0)
5453adantl 481 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℕ0) ∧ 𝐷𝑥) ∧ 𝑦 ∈ ((0...𝑥) ∖ {𝐷})) → 𝑦 ∈ ℕ0)
55 eldifsni 4815 . . . . . . . . . . . 12 (𝑦 ∈ ((0...𝑥) ∖ {𝐷}) → 𝑦𝐷)
5655necomd 3002 . . . . . . . . . . 11 (𝑦 ∈ ((0...𝑥) ∖ {𝐷}) → 𝐷𝑦)
5756adantl 481 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℕ0) ∧ 𝐷𝑥) ∧ 𝑦 ∈ ((0...𝑥) ∖ {𝐷})) → 𝐷𝑦)
5820, 4, 5, 6, 7, 8, 9, 49, 50, 51, 54, 57coe1tmfv2 22299 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℕ0) ∧ 𝐷𝑥) ∧ 𝑦 ∈ ((0...𝑥) ∖ {𝐷})) → ((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) = 0 )
5958oveq1d 7463 . . . . . . . 8 ((((𝜑𝑥 ∈ ℕ0) ∧ 𝐷𝑥) ∧ 𝑦 ∈ ((0...𝑥) ∖ {𝐷})) → (((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) × ((coe1𝐴)‘(𝑥𝑦))) = ( 0 × ((coe1𝐴)‘(𝑥𝑦))))
604, 15, 20ringlz 20316 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ ((coe1𝐴)‘(𝑥𝑦)) ∈ 𝐾) → ( 0 × ((coe1𝐴)‘(𝑥𝑦))) = 0 )
6130, 44, 60syl2anc 583 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℕ0) ∧ 𝑦 ∈ (0...𝑥)) → ( 0 × ((coe1𝐴)‘(𝑥𝑦))) = 0 )
6252, 61sylan2 592 . . . . . . . . 9 (((𝜑𝑥 ∈ ℕ0) ∧ 𝑦 ∈ ((0...𝑥) ∖ {𝐷})) → ( 0 × ((coe1𝐴)‘(𝑥𝑦))) = 0 )
6362adantlr 714 . . . . . . . 8 ((((𝜑𝑥 ∈ ℕ0) ∧ 𝐷𝑥) ∧ 𝑦 ∈ ((0...𝑥) ∖ {𝐷})) → ( 0 × ((coe1𝐴)‘(𝑥𝑦))) = 0 )
6459, 63eqtrd 2780 . . . . . . 7 ((((𝜑𝑥 ∈ ℕ0) ∧ 𝐷𝑥) ∧ 𝑦 ∈ ((0...𝑥) ∖ {𝐷})) → (((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) × ((coe1𝐴)‘(𝑥𝑦))) = 0 )
6564, 24suppss2 8241 . . . . . 6 (((𝜑𝑥 ∈ ℕ0) ∧ 𝐷𝑥) → ((𝑦 ∈ (0...𝑥) ↦ (((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) × ((coe1𝐴)‘(𝑥𝑦)))) supp 0 ) ⊆ {𝐷})
664, 20, 23, 24, 29, 48, 65gsumpt 20004 . . . . 5 (((𝜑𝑥 ∈ ℕ0) ∧ 𝐷𝑥) → (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ (((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) × ((coe1𝐴)‘(𝑥𝑦))))) = ((𝑦 ∈ (0...𝑥) ↦ (((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) × ((coe1𝐴)‘(𝑥𝑦))))‘𝐷))
67 fveq2 6920 . . . . . . . . 9 (𝑦 = 𝐷 → ((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) = ((coe1‘(𝐶 · (𝐷 𝑋)))‘𝐷))
68 oveq2 7456 . . . . . . . . . 10 (𝑦 = 𝐷 → (𝑥𝑦) = (𝑥𝐷))
6968fveq2d 6924 . . . . . . . . 9 (𝑦 = 𝐷 → ((coe1𝐴)‘(𝑥𝑦)) = ((coe1𝐴)‘(𝑥𝐷)))
7067, 69oveq12d 7466 . . . . . . . 8 (𝑦 = 𝐷 → (((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) × ((coe1𝐴)‘(𝑥𝑦))) = (((coe1‘(𝐶 · (𝐷 𝑋)))‘𝐷) × ((coe1𝐴)‘(𝑥𝐷))))
71 eqid 2740 . . . . . . . 8 (𝑦 ∈ (0...𝑥) ↦ (((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) × ((coe1𝐴)‘(𝑥𝑦)))) = (𝑦 ∈ (0...𝑥) ↦ (((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) × ((coe1𝐴)‘(𝑥𝑦))))
72 ovex 7481 . . . . . . . 8 (((coe1‘(𝐶 · (𝐷 𝑋)))‘𝐷) × ((coe1𝐴)‘(𝑥𝐷))) ∈ V
7370, 71, 72fvmpt 7029 . . . . . . 7 (𝐷 ∈ (0...𝑥) → ((𝑦 ∈ (0...𝑥) ↦ (((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) × ((coe1𝐴)‘(𝑥𝑦))))‘𝐷) = (((coe1‘(𝐶 · (𝐷 𝑋)))‘𝐷) × ((coe1𝐴)‘(𝑥𝐷))))
7429, 73syl 17 . . . . . 6 (((𝜑𝑥 ∈ ℕ0) ∧ 𝐷𝑥) → ((𝑦 ∈ (0...𝑥) ↦ (((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) × ((coe1𝐴)‘(𝑥𝑦))))‘𝐷) = (((coe1‘(𝐶 · (𝐷 𝑋)))‘𝐷) × ((coe1𝐴)‘(𝑥𝐷))))
7520, 4, 5, 6, 7, 8, 9coe1tmfv1 22298 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝐶𝐾𝐷 ∈ ℕ0) → ((coe1‘(𝐶 · (𝐷 𝑋)))‘𝐷) = 𝐶)
761, 2, 3, 75syl3anc 1371 . . . . . . . 8 (𝜑 → ((coe1‘(𝐶 · (𝐷 𝑋)))‘𝐷) = 𝐶)
7776ad2antrr 725 . . . . . . 7 (((𝜑𝑥 ∈ ℕ0) ∧ 𝐷𝑥) → ((coe1‘(𝐶 · (𝐷 𝑋)))‘𝐷) = 𝐶)
7877oveq1d 7463 . . . . . 6 (((𝜑𝑥 ∈ ℕ0) ∧ 𝐷𝑥) → (((coe1‘(𝐶 · (𝐷 𝑋)))‘𝐷) × ((coe1𝐴)‘(𝑥𝐷))) = (𝐶 × ((coe1𝐴)‘(𝑥𝐷))))
7974, 78eqtrd 2780 . . . . 5 (((𝜑𝑥 ∈ ℕ0) ∧ 𝐷𝑥) → ((𝑦 ∈ (0...𝑥) ↦ (((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) × ((coe1𝐴)‘(𝑥𝑦))))‘𝐷) = (𝐶 × ((coe1𝐴)‘(𝑥𝐷))))
8066, 79eqtrd 2780 . . . 4 (((𝜑𝑥 ∈ ℕ0) ∧ 𝐷𝑥) → (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ (((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) × ((coe1𝐴)‘(𝑥𝑦))))) = (𝐶 × ((coe1𝐴)‘(𝑥𝐷))))
811ad3antrrr 729 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℕ0) ∧ ¬ 𝐷𝑥) ∧ 𝑦 ∈ (0...𝑥)) → 𝑅 ∈ Ring)
822ad3antrrr 729 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℕ0) ∧ ¬ 𝐷𝑥) ∧ 𝑦 ∈ (0...𝑥)) → 𝐶𝐾)
833ad3antrrr 729 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℕ0) ∧ ¬ 𝐷𝑥) ∧ 𝑦 ∈ (0...𝑥)) → 𝐷 ∈ ℕ0)
8435adantl 481 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℕ0) ∧ ¬ 𝐷𝑥) ∧ 𝑦 ∈ (0...𝑥)) → 𝑦 ∈ ℕ0)
85 elfzle2 13588 . . . . . . . . . . . . . . 15 (𝑦 ∈ (0...𝑥) → 𝑦𝑥)
8685adantl 481 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℕ0) ∧ 𝑦 ∈ (0...𝑥)) → 𝑦𝑥)
87 breq1 5169 . . . . . . . . . . . . . 14 (𝐷 = 𝑦 → (𝐷𝑥𝑦𝑥))
8886, 87syl5ibrcom 247 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℕ0) ∧ 𝑦 ∈ (0...𝑥)) → (𝐷 = 𝑦𝐷𝑥))
8988necon3bd 2960 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℕ0) ∧ 𝑦 ∈ (0...𝑥)) → (¬ 𝐷𝑥𝐷𝑦))
9089imp 406 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℕ0) ∧ 𝑦 ∈ (0...𝑥)) ∧ ¬ 𝐷𝑥) → 𝐷𝑦)
9190an32s 651 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℕ0) ∧ ¬ 𝐷𝑥) ∧ 𝑦 ∈ (0...𝑥)) → 𝐷𝑦)
9220, 4, 5, 6, 7, 8, 9, 81, 82, 83, 84, 91coe1tmfv2 22299 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℕ0) ∧ ¬ 𝐷𝑥) ∧ 𝑦 ∈ (0...𝑥)) → ((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) = 0 )
9392oveq1d 7463 . . . . . . . 8 ((((𝜑𝑥 ∈ ℕ0) ∧ ¬ 𝐷𝑥) ∧ 𝑦 ∈ (0...𝑥)) → (((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) × ((coe1𝐴)‘(𝑥𝑦))) = ( 0 × ((coe1𝐴)‘(𝑥𝑦))))
9461adantlr 714 . . . . . . . 8 ((((𝜑𝑥 ∈ ℕ0) ∧ ¬ 𝐷𝑥) ∧ 𝑦 ∈ (0...𝑥)) → ( 0 × ((coe1𝐴)‘(𝑥𝑦))) = 0 )
9593, 94eqtrd 2780 . . . . . . 7 ((((𝜑𝑥 ∈ ℕ0) ∧ ¬ 𝐷𝑥) ∧ 𝑦 ∈ (0...𝑥)) → (((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) × ((coe1𝐴)‘(𝑥𝑦))) = 0 )
9695mpteq2dva 5266 . . . . . 6 (((𝜑𝑥 ∈ ℕ0) ∧ ¬ 𝐷𝑥) → (𝑦 ∈ (0...𝑥) ↦ (((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) × ((coe1𝐴)‘(𝑥𝑦)))) = (𝑦 ∈ (0...𝑥) ↦ 0 ))
9796oveq2d 7464 . . . . 5 (((𝜑𝑥 ∈ ℕ0) ∧ ¬ 𝐷𝑥) → (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ (((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) × ((coe1𝐴)‘(𝑥𝑦))))) = (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ 0 )))
981, 22syl 17 . . . . . . 7 (𝜑𝑅 ∈ Mnd)
9998ad2antrr 725 . . . . . 6 (((𝜑𝑥 ∈ ℕ0) ∧ ¬ 𝐷𝑥) → 𝑅 ∈ Mnd)
100 ovexd 7483 . . . . . 6 (((𝜑𝑥 ∈ ℕ0) ∧ ¬ 𝐷𝑥) → (0...𝑥) ∈ V)
10120gsumz 18871 . . . . . 6 ((𝑅 ∈ Mnd ∧ (0...𝑥) ∈ V) → (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ 0 )) = 0 )
10299, 100, 101syl2anc 583 . . . . 5 (((𝜑𝑥 ∈ ℕ0) ∧ ¬ 𝐷𝑥) → (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ 0 )) = 0 )
10397, 102eqtrd 2780 . . . 4 (((𝜑𝑥 ∈ ℕ0) ∧ ¬ 𝐷𝑥) → (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ (((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) × ((coe1𝐴)‘(𝑥𝑦))))) = 0 )
10418, 19, 80, 103ifbothda 4586 . . 3 ((𝜑𝑥 ∈ ℕ0) → (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ (((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) × ((coe1𝐴)‘(𝑥𝑦))))) = if(𝐷𝑥, (𝐶 × ((coe1𝐴)‘(𝑥𝐷))), 0 ))
105104mpteq2dva 5266 . 2 (𝜑 → (𝑥 ∈ ℕ0 ↦ (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ (((coe1‘(𝐶 · (𝐷 𝑋)))‘𝑦) × ((coe1𝐴)‘(𝑥𝑦)))))) = (𝑥 ∈ ℕ0 ↦ if(𝐷𝑥, (𝐶 × ((coe1𝐴)‘(𝑥𝐷))), 0 )))
10617, 105eqtrd 2780 1 (𝜑 → (coe1‘((𝐶 · (𝐷 𝑋)) 𝐴)) = (𝑥 ∈ ℕ0 ↦ if(𝐷𝑥, (𝐶 × ((coe1𝐴)‘(𝑥𝐷))), 0 )))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wne 2946  Vcvv 3488  cdif 3973  ifcif 4548  {csn 4648   class class class wbr 5166  cmpt 5249  wf 6569  cfv 6573  (class class class)co 7448  0cc0 11184  cle 11325  cmin 11520  0cn0 12553  ...cfz 13567  Basecbs 17258  .rcmulr 17312   ·𝑠 cvsca 17315  0gc0g 17499   Σg cgsu 17500  Mndcmnd 18772  .gcmg 19107  mulGrpcmgp 20161  Ringcrg 20260  var1cv1 22198  Poly1cpl1 22199  coe1cco1 22200
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-ofr 7715  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-sup 9511  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-fz 13568  df-fzo 13712  df-seq 14053  df-hash 14380  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-hom 17335  df-cco 17336  df-0g 17501  df-gsum 17502  df-prds 17507  df-pws 17509  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-mhm 18818  df-submnd 18819  df-grp 18976  df-minusg 18977  df-sbg 18978  df-mulg 19108  df-subg 19163  df-ghm 19253  df-cntz 19357  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-subrng 20572  df-subrg 20597  df-lmod 20882  df-lss 20953  df-psr 21952  df-mvr 21953  df-mpl 21954  df-opsr 21956  df-psr1 22202  df-vr1 22203  df-ply1 22204  df-coe1 22205
This theorem is referenced by:  coe1pwmul  22303  coe1sclmul  22306
  Copyright terms: Public domain W3C validator