MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imsub Structured version   Visualization version   GIF version

Theorem imsub 15077
Description: Imaginary part distributes over subtraction. (Contributed by NM, 18-Mar-2005.)
Assertion
Ref Expression
imsub ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℑ‘(𝐴𝐵)) = ((ℑ‘𝐴) − (ℑ‘𝐵)))

Proof of Theorem imsub
StepHypRef Expression
1 negcl 11397 . . . 4 (𝐵 ∈ ℂ → -𝐵 ∈ ℂ)
2 imadd 15076 . . . 4 ((𝐴 ∈ ℂ ∧ -𝐵 ∈ ℂ) → (ℑ‘(𝐴 + -𝐵)) = ((ℑ‘𝐴) + (ℑ‘-𝐵)))
31, 2sylan2 593 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℑ‘(𝐴 + -𝐵)) = ((ℑ‘𝐴) + (ℑ‘-𝐵)))
4 imneg 15075 . . . . 5 (𝐵 ∈ ℂ → (ℑ‘-𝐵) = -(ℑ‘𝐵))
54adantl 481 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℑ‘-𝐵) = -(ℑ‘𝐵))
65oveq2d 7385 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℑ‘𝐴) + (ℑ‘-𝐵)) = ((ℑ‘𝐴) + -(ℑ‘𝐵)))
73, 6eqtrd 2764 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℑ‘(𝐴 + -𝐵)) = ((ℑ‘𝐴) + -(ℑ‘𝐵)))
8 negsub 11446 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + -𝐵) = (𝐴𝐵))
98fveq2d 6844 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℑ‘(𝐴 + -𝐵)) = (ℑ‘(𝐴𝐵)))
10 imcl 15053 . . . 4 (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℝ)
1110recnd 11178 . . 3 (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℂ)
12 imcl 15053 . . . 4 (𝐵 ∈ ℂ → (ℑ‘𝐵) ∈ ℝ)
1312recnd 11178 . . 3 (𝐵 ∈ ℂ → (ℑ‘𝐵) ∈ ℂ)
14 negsub 11446 . . 3 (((ℑ‘𝐴) ∈ ℂ ∧ (ℑ‘𝐵) ∈ ℂ) → ((ℑ‘𝐴) + -(ℑ‘𝐵)) = ((ℑ‘𝐴) − (ℑ‘𝐵)))
1511, 13, 14syl2an 596 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℑ‘𝐴) + -(ℑ‘𝐵)) = ((ℑ‘𝐴) − (ℑ‘𝐵)))
167, 9, 153eqtr3d 2772 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℑ‘(𝐴𝐵)) = ((ℑ‘𝐴) − (ℑ‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cfv 6499  (class class class)co 7369  cc 11042   + caddc 11047  cmin 11381  -cneg 11382  cim 15040
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-cj 15041  df-re 15042  df-im 15043
This theorem is referenced by:  imsubd  15159  imcn2  15544  caucvgr  15618  tanregt0  26424  logneg2  26500  logcnlem4  26530  atancj  26796  atanlogaddlem  26799  atanlogsublem  26801
  Copyright terms: Public domain W3C validator