MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imadd Structured version   Visualization version   GIF version

Theorem imadd 15026
Description: Imaginary part distributes over addition. (Contributed by NM, 18-Mar-2005.) (Revised by Mario Carneiro, 14-Jul-2014.)
Assertion
Ref Expression
imadd ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ (โ„‘โ€˜(๐ด + ๐ต)) = ((โ„‘โ€˜๐ด) + (โ„‘โ€˜๐ต)))

Proof of Theorem imadd
StepHypRef Expression
1 recl 15002 . . . . . . 7 (๐ด โˆˆ โ„‚ โ†’ (โ„œโ€˜๐ด) โˆˆ โ„)
21adantr 482 . . . . . 6 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ (โ„œโ€˜๐ด) โˆˆ โ„)
32recnd 11190 . . . . 5 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ (โ„œโ€˜๐ด) โˆˆ โ„‚)
4 ax-icn 11117 . . . . . 6 i โˆˆ โ„‚
5 imcl 15003 . . . . . . . 8 (๐ด โˆˆ โ„‚ โ†’ (โ„‘โ€˜๐ด) โˆˆ โ„)
65adantr 482 . . . . . . 7 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ (โ„‘โ€˜๐ด) โˆˆ โ„)
76recnd 11190 . . . . . 6 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ (โ„‘โ€˜๐ด) โˆˆ โ„‚)
8 mulcl 11142 . . . . . 6 ((i โˆˆ โ„‚ โˆง (โ„‘โ€˜๐ด) โˆˆ โ„‚) โ†’ (i ยท (โ„‘โ€˜๐ด)) โˆˆ โ„‚)
94, 7, 8sylancr 588 . . . . 5 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ (i ยท (โ„‘โ€˜๐ด)) โˆˆ โ„‚)
10 recl 15002 . . . . . . 7 (๐ต โˆˆ โ„‚ โ†’ (โ„œโ€˜๐ต) โˆˆ โ„)
1110adantl 483 . . . . . 6 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ (โ„œโ€˜๐ต) โˆˆ โ„)
1211recnd 11190 . . . . 5 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ (โ„œโ€˜๐ต) โˆˆ โ„‚)
13 imcl 15003 . . . . . . . 8 (๐ต โˆˆ โ„‚ โ†’ (โ„‘โ€˜๐ต) โˆˆ โ„)
1413adantl 483 . . . . . . 7 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ (โ„‘โ€˜๐ต) โˆˆ โ„)
1514recnd 11190 . . . . . 6 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ (โ„‘โ€˜๐ต) โˆˆ โ„‚)
16 mulcl 11142 . . . . . 6 ((i โˆˆ โ„‚ โˆง (โ„‘โ€˜๐ต) โˆˆ โ„‚) โ†’ (i ยท (โ„‘โ€˜๐ต)) โˆˆ โ„‚)
174, 15, 16sylancr 588 . . . . 5 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ (i ยท (โ„‘โ€˜๐ต)) โˆˆ โ„‚)
183, 9, 12, 17add4d 11390 . . . 4 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ (((โ„œโ€˜๐ด) + (i ยท (โ„‘โ€˜๐ด))) + ((โ„œโ€˜๐ต) + (i ยท (โ„‘โ€˜๐ต)))) = (((โ„œโ€˜๐ด) + (โ„œโ€˜๐ต)) + ((i ยท (โ„‘โ€˜๐ด)) + (i ยท (โ„‘โ€˜๐ต)))))
19 replim 15008 . . . . 5 (๐ด โˆˆ โ„‚ โ†’ ๐ด = ((โ„œโ€˜๐ด) + (i ยท (โ„‘โ€˜๐ด))))
20 replim 15008 . . . . 5 (๐ต โˆˆ โ„‚ โ†’ ๐ต = ((โ„œโ€˜๐ต) + (i ยท (โ„‘โ€˜๐ต))))
2119, 20oveqan12d 7381 . . . 4 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ (๐ด + ๐ต) = (((โ„œโ€˜๐ด) + (i ยท (โ„‘โ€˜๐ด))) + ((โ„œโ€˜๐ต) + (i ยท (โ„‘โ€˜๐ต)))))
224a1i 11 . . . . . 6 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ i โˆˆ โ„‚)
2322, 7, 15adddid 11186 . . . . 5 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ (i ยท ((โ„‘โ€˜๐ด) + (โ„‘โ€˜๐ต))) = ((i ยท (โ„‘โ€˜๐ด)) + (i ยท (โ„‘โ€˜๐ต))))
2423oveq2d 7378 . . . 4 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ (((โ„œโ€˜๐ด) + (โ„œโ€˜๐ต)) + (i ยท ((โ„‘โ€˜๐ด) + (โ„‘โ€˜๐ต)))) = (((โ„œโ€˜๐ด) + (โ„œโ€˜๐ต)) + ((i ยท (โ„‘โ€˜๐ด)) + (i ยท (โ„‘โ€˜๐ต)))))
2518, 21, 243eqtr4d 2787 . . 3 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ (๐ด + ๐ต) = (((โ„œโ€˜๐ด) + (โ„œโ€˜๐ต)) + (i ยท ((โ„‘โ€˜๐ด) + (โ„‘โ€˜๐ต)))))
2625fveq2d 6851 . 2 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ (โ„‘โ€˜(๐ด + ๐ต)) = (โ„‘โ€˜(((โ„œโ€˜๐ด) + (โ„œโ€˜๐ต)) + (i ยท ((โ„‘โ€˜๐ด) + (โ„‘โ€˜๐ต))))))
27 readdcl 11141 . . . 4 (((โ„œโ€˜๐ด) โˆˆ โ„ โˆง (โ„œโ€˜๐ต) โˆˆ โ„) โ†’ ((โ„œโ€˜๐ด) + (โ„œโ€˜๐ต)) โˆˆ โ„)
281, 10, 27syl2an 597 . . 3 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ ((โ„œโ€˜๐ด) + (โ„œโ€˜๐ต)) โˆˆ โ„)
29 readdcl 11141 . . . 4 (((โ„‘โ€˜๐ด) โˆˆ โ„ โˆง (โ„‘โ€˜๐ต) โˆˆ โ„) โ†’ ((โ„‘โ€˜๐ด) + (โ„‘โ€˜๐ต)) โˆˆ โ„)
305, 13, 29syl2an 597 . . 3 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ ((โ„‘โ€˜๐ด) + (โ„‘โ€˜๐ต)) โˆˆ โ„)
31 crim 15007 . . 3 ((((โ„œโ€˜๐ด) + (โ„œโ€˜๐ต)) โˆˆ โ„ โˆง ((โ„‘โ€˜๐ด) + (โ„‘โ€˜๐ต)) โˆˆ โ„) โ†’ (โ„‘โ€˜(((โ„œโ€˜๐ด) + (โ„œโ€˜๐ต)) + (i ยท ((โ„‘โ€˜๐ด) + (โ„‘โ€˜๐ต))))) = ((โ„‘โ€˜๐ด) + (โ„‘โ€˜๐ต)))
3228, 30, 31syl2anc 585 . 2 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ (โ„‘โ€˜(((โ„œโ€˜๐ด) + (โ„œโ€˜๐ต)) + (i ยท ((โ„‘โ€˜๐ด) + (โ„‘โ€˜๐ต))))) = ((โ„‘โ€˜๐ด) + (โ„‘โ€˜๐ต)))
3326, 32eqtrd 2777 1 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ (โ„‘โ€˜(๐ด + ๐ต)) = ((โ„‘โ€˜๐ด) + (โ„‘โ€˜๐ต)))
Colors of variables: wff setvar class
Syntax hints:   โ†’ wi 4   โˆง wa 397   = wceq 1542   โˆˆ wcel 2107  โ€˜cfv 6501  (class class class)co 7362  โ„‚cc 11056  โ„cr 11057  ici 11060   + caddc 11061   ยท cmul 11063  โ„œcre 14989  โ„‘cim 14990
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-resscn 11115  ax-1cn 11116  ax-icn 11117  ax-addcl 11118  ax-addrcl 11119  ax-mulcl 11120  ax-mulrcl 11121  ax-mulcom 11122  ax-addass 11123  ax-mulass 11124  ax-distr 11125  ax-i2m1 11126  ax-1ne0 11127  ax-1rid 11128  ax-rnegex 11129  ax-rrecex 11130  ax-cnre 11131  ax-pre-lttri 11132  ax-pre-lttrn 11133  ax-pre-ltadd 11134  ax-pre-mulgt0 11135
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3066  df-rex 3075  df-rmo 3356  df-reu 3357  df-rab 3411  df-v 3450  df-sbc 3745  df-csb 3861  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-br 5111  df-opab 5173  df-mpt 5194  df-id 5536  df-po 5550  df-so 5551  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-riota 7318  df-ov 7365  df-oprab 7366  df-mpo 7367  df-er 8655  df-en 8891  df-dom 8892  df-sdom 8893  df-pnf 11198  df-mnf 11199  df-xr 11200  df-ltxr 11201  df-le 11202  df-sub 11394  df-neg 11395  df-div 11820  df-2 12223  df-cj 14991  df-re 14992  df-im 14993
This theorem is referenced by:  imsub  15027  cjadd  15033  imaddi  15077  imaddd  15107  fsumim  15701  gzaddcl  16816  logrnaddcl  25946  logimul  25985  atancj  26276  atanlogaddlem  26279  atanlogsublem  26281
  Copyright terms: Public domain W3C validator