Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lmat22e22 | Structured version Visualization version GIF version |
Description: Entry of a 2x2 literal matrix. (Contributed by Thierry Arnoux, 12-Sep-2020.) |
Ref | Expression |
---|---|
lmat22.m | ⊢ 𝑀 = (litMat‘〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉) |
lmat22.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
lmat22.b | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
lmat22.c | ⊢ (𝜑 → 𝐶 ∈ 𝑉) |
lmat22.d | ⊢ (𝜑 → 𝐷 ∈ 𝑉) |
Ref | Expression |
---|---|
lmat22e22 | ⊢ (𝜑 → (2𝑀2) = 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmat22.m | . 2 ⊢ 𝑀 = (litMat‘〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉) | |
2 | 2nn 12046 | . . 3 ⊢ 2 ∈ ℕ | |
3 | 2 | a1i 11 | . 2 ⊢ (𝜑 → 2 ∈ ℕ) |
4 | lmat22.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
5 | lmat22.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
6 | 4, 5 | s2cld 14584 | . . 3 ⊢ (𝜑 → 〈“𝐴𝐵”〉 ∈ Word 𝑉) |
7 | lmat22.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑉) | |
8 | lmat22.d | . . . 4 ⊢ (𝜑 → 𝐷 ∈ 𝑉) | |
9 | 7, 8 | s2cld 14584 | . . 3 ⊢ (𝜑 → 〈“𝐶𝐷”〉 ∈ Word 𝑉) |
10 | 6, 9 | s2cld 14584 | . 2 ⊢ (𝜑 → 〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉 ∈ Word Word 𝑉) |
11 | s2len 14602 | . . 3 ⊢ (♯‘〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉) = 2 | |
12 | 11 | a1i 11 | . 2 ⊢ (𝜑 → (♯‘〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉) = 2) |
13 | 1, 4, 5, 7, 8 | lmat22lem 31767 | . 2 ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^2)) → (♯‘(〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉‘𝑖)) = 2) |
14 | 1nn0 12249 | . 2 ⊢ 1 ∈ ℕ0 | |
15 | 2 | nnrei 11982 | . . 3 ⊢ 2 ∈ ℝ |
16 | 15 | leidi 11509 | . 2 ⊢ 2 ≤ 2 |
17 | 1p1e2 12098 | . 2 ⊢ (1 + 1) = 2 | |
18 | s2cli 14593 | . . 3 ⊢ 〈“𝐶𝐷”〉 ∈ Word V | |
19 | s2fv1 14601 | . . 3 ⊢ (〈“𝐶𝐷”〉 ∈ Word V → (〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉‘1) = 〈“𝐶𝐷”〉) | |
20 | 18, 19 | ax-mp 5 | . 2 ⊢ (〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉‘1) = 〈“𝐶𝐷”〉 |
21 | s2fv1 14601 | . . 3 ⊢ (𝐷 ∈ 𝑉 → (〈“𝐶𝐷”〉‘1) = 𝐷) | |
22 | 8, 21 | syl 17 | . 2 ⊢ (𝜑 → (〈“𝐶𝐷”〉‘1) = 𝐷) |
23 | 1, 3, 10, 12, 13, 14, 14, 16, 16, 17, 17, 20, 22 | lmatfvlem 31765 | 1 ⊢ (𝜑 → (2𝑀2) = 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 Vcvv 3432 ‘cfv 6433 (class class class)co 7275 1c1 10872 ℕcn 11973 2c2 12028 ♯chash 14044 Word cword 14217 〈“cs2 14554 litMatclmat 31761 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-card 9697 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-n0 12234 df-z 12320 df-uz 12583 df-fz 13240 df-fzo 13383 df-hash 14045 df-word 14218 df-concat 14274 df-s1 14301 df-s2 14561 df-lmat 31762 |
This theorem is referenced by: lmat22det 31772 |
Copyright terms: Public domain | W3C validator |