![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lmat22e21 | Structured version Visualization version GIF version |
Description: Entry of a 2x2 literal matrix. (Contributed by Thierry Arnoux, 12-Sep-2020.) |
Ref | Expression |
---|---|
lmat22.m | β’ π = (litMatββ¨ββ¨βπ΄π΅ββ©β¨βπΆπ·ββ©ββ©) |
lmat22.a | β’ (π β π΄ β π) |
lmat22.b | β’ (π β π΅ β π) |
lmat22.c | β’ (π β πΆ β π) |
lmat22.d | β’ (π β π· β π) |
Ref | Expression |
---|---|
lmat22e21 | β’ (π β (2π1) = πΆ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmat22.m | . 2 β’ π = (litMatββ¨ββ¨βπ΄π΅ββ©β¨βπΆπ·ββ©ββ©) | |
2 | 2nn 12281 | . . 3 β’ 2 β β | |
3 | 2 | a1i 11 | . 2 β’ (π β 2 β β) |
4 | lmat22.a | . . . 4 β’ (π β π΄ β π) | |
5 | lmat22.b | . . . 4 β’ (π β π΅ β π) | |
6 | 4, 5 | s2cld 14818 | . . 3 β’ (π β β¨βπ΄π΅ββ© β Word π) |
7 | lmat22.c | . . . 4 β’ (π β πΆ β π) | |
8 | lmat22.d | . . . 4 β’ (π β π· β π) | |
9 | 7, 8 | s2cld 14818 | . . 3 β’ (π β β¨βπΆπ·ββ© β Word π) |
10 | 6, 9 | s2cld 14818 | . 2 β’ (π β β¨ββ¨βπ΄π΅ββ©β¨βπΆπ·ββ©ββ© β Word Word π) |
11 | s2len 14836 | . . 3 β’ (β―ββ¨ββ¨βπ΄π΅ββ©β¨βπΆπ·ββ©ββ©) = 2 | |
12 | 11 | a1i 11 | . 2 β’ (π β (β―ββ¨ββ¨βπ΄π΅ββ©β¨βπΆπ·ββ©ββ©) = 2) |
13 | 1, 4, 5, 7, 8 | lmat22lem 32785 | . 2 β’ ((π β§ π β (0..^2)) β (β―β(β¨ββ¨βπ΄π΅ββ©β¨βπΆπ·ββ©ββ©βπ)) = 2) |
14 | 1nn0 12484 | . 2 β’ 1 β β0 | |
15 | 0nn0 12483 | . 2 β’ 0 β β0 | |
16 | 2 | nnrei 12217 | . . 3 β’ 2 β β |
17 | 16 | leidi 11744 | . 2 β’ 2 β€ 2 |
18 | 1le2 12417 | . 2 β’ 1 β€ 2 | |
19 | 1p1e2 12333 | . 2 β’ (1 + 1) = 2 | |
20 | 0p1e1 12330 | . 2 β’ (0 + 1) = 1 | |
21 | s2cli 14827 | . . 3 β’ β¨βπΆπ·ββ© β Word V | |
22 | s2fv1 14835 | . . 3 β’ (β¨βπΆπ·ββ© β Word V β (β¨ββ¨βπ΄π΅ββ©β¨βπΆπ·ββ©ββ©β1) = β¨βπΆπ·ββ©) | |
23 | 21, 22 | ax-mp 5 | . 2 β’ (β¨ββ¨βπ΄π΅ββ©β¨βπΆπ·ββ©ββ©β1) = β¨βπΆπ·ββ© |
24 | s2fv0 14834 | . . 3 β’ (πΆ β π β (β¨βπΆπ·ββ©β0) = πΆ) | |
25 | 7, 24 | syl 17 | . 2 β’ (π β (β¨βπΆπ·ββ©β0) = πΆ) |
26 | 1, 3, 10, 12, 13, 14, 15, 17, 18, 19, 20, 23, 25 | lmatfvlem 32783 | 1 β’ (π β (2π1) = πΆ) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1541 β wcel 2106 Vcvv 3474 βcfv 6540 (class class class)co 7405 0cc0 11106 1c1 11107 βcn 12208 2c2 12263 β―chash 14286 Word cword 14460 β¨βcs2 14788 litMatclmat 32779 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-card 9930 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-2 12271 df-n0 12469 df-z 12555 df-uz 12819 df-fz 13481 df-fzo 13624 df-hash 14287 df-word 14461 df-concat 14517 df-s1 14542 df-s2 14795 df-lmat 32780 |
This theorem is referenced by: lmat22det 32790 |
Copyright terms: Public domain | W3C validator |