| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lmat22e21 | Structured version Visualization version GIF version | ||
| Description: Entry of a 2x2 literal matrix. (Contributed by Thierry Arnoux, 12-Sep-2020.) |
| Ref | Expression |
|---|---|
| lmat22.m | ⊢ 𝑀 = (litMat‘〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉) |
| lmat22.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| lmat22.b | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
| lmat22.c | ⊢ (𝜑 → 𝐶 ∈ 𝑉) |
| lmat22.d | ⊢ (𝜑 → 𝐷 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| lmat22e21 | ⊢ (𝜑 → (2𝑀1) = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmat22.m | . 2 ⊢ 𝑀 = (litMat‘〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉) | |
| 2 | 2nn 12235 | . . 3 ⊢ 2 ∈ ℕ | |
| 3 | 2 | a1i 11 | . 2 ⊢ (𝜑 → 2 ∈ ℕ) |
| 4 | lmat22.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 5 | lmat22.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
| 6 | 4, 5 | s2cld 14813 | . . 3 ⊢ (𝜑 → 〈“𝐴𝐵”〉 ∈ Word 𝑉) |
| 7 | lmat22.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑉) | |
| 8 | lmat22.d | . . . 4 ⊢ (𝜑 → 𝐷 ∈ 𝑉) | |
| 9 | 7, 8 | s2cld 14813 | . . 3 ⊢ (𝜑 → 〈“𝐶𝐷”〉 ∈ Word 𝑉) |
| 10 | 6, 9 | s2cld 14813 | . 2 ⊢ (𝜑 → 〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉 ∈ Word Word 𝑉) |
| 11 | s2len 14831 | . . 3 ⊢ (♯‘〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉) = 2 | |
| 12 | 11 | a1i 11 | . 2 ⊢ (𝜑 → (♯‘〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉) = 2) |
| 13 | 1, 4, 5, 7, 8 | lmat22lem 33780 | . 2 ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^2)) → (♯‘(〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉‘𝑖)) = 2) |
| 14 | 1nn0 12434 | . 2 ⊢ 1 ∈ ℕ0 | |
| 15 | 0nn0 12433 | . 2 ⊢ 0 ∈ ℕ0 | |
| 16 | 2 | nnrei 12171 | . . 3 ⊢ 2 ∈ ℝ |
| 17 | 16 | leidi 11688 | . 2 ⊢ 2 ≤ 2 |
| 18 | 1le2 12366 | . 2 ⊢ 1 ≤ 2 | |
| 19 | 1p1e2 12282 | . 2 ⊢ (1 + 1) = 2 | |
| 20 | 0p1e1 12279 | . 2 ⊢ (0 + 1) = 1 | |
| 21 | s2cli 14822 | . . 3 ⊢ 〈“𝐶𝐷”〉 ∈ Word V | |
| 22 | s2fv1 14830 | . . 3 ⊢ (〈“𝐶𝐷”〉 ∈ Word V → (〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉‘1) = 〈“𝐶𝐷”〉) | |
| 23 | 21, 22 | ax-mp 5 | . 2 ⊢ (〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉‘1) = 〈“𝐶𝐷”〉 |
| 24 | s2fv0 14829 | . . 3 ⊢ (𝐶 ∈ 𝑉 → (〈“𝐶𝐷”〉‘0) = 𝐶) | |
| 25 | 7, 24 | syl 17 | . 2 ⊢ (𝜑 → (〈“𝐶𝐷”〉‘0) = 𝐶) |
| 26 | 1, 3, 10, 12, 13, 14, 15, 17, 18, 19, 20, 23, 25 | lmatfvlem 33778 | 1 ⊢ (𝜑 → (2𝑀1) = 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3444 ‘cfv 6499 (class class class)co 7369 0cc0 11044 1c1 11045 ℕcn 12162 2c2 12217 ♯chash 14271 Word cword 14454 〈“cs2 14783 litMatclmat 33774 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-card 9868 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-n0 12419 df-z 12506 df-uz 12770 df-fz 13445 df-fzo 13592 df-hash 14272 df-word 14455 df-concat 14512 df-s1 14537 df-s2 14790 df-lmat 33775 |
| This theorem is referenced by: lmat22det 33785 |
| Copyright terms: Public domain | W3C validator |