| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lmat22e12 | Structured version Visualization version GIF version | ||
| Description: Entry of a 2x2 literal matrix. (Contributed by Thierry Arnoux, 12-Sep-2020.) |
| Ref | Expression |
|---|---|
| lmat22.m | ⊢ 𝑀 = (litMat‘〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉) |
| lmat22.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| lmat22.b | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
| lmat22.c | ⊢ (𝜑 → 𝐶 ∈ 𝑉) |
| lmat22.d | ⊢ (𝜑 → 𝐷 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| lmat22e12 | ⊢ (𝜑 → (1𝑀2) = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmat22.m | . 2 ⊢ 𝑀 = (litMat‘〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉) | |
| 2 | 2nn 12313 | . . 3 ⊢ 2 ∈ ℕ | |
| 3 | 2 | a1i 11 | . 2 ⊢ (𝜑 → 2 ∈ ℕ) |
| 4 | lmat22.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 5 | lmat22.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
| 6 | 4, 5 | s2cld 14890 | . . 3 ⊢ (𝜑 → 〈“𝐴𝐵”〉 ∈ Word 𝑉) |
| 7 | lmat22.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑉) | |
| 8 | lmat22.d | . . . 4 ⊢ (𝜑 → 𝐷 ∈ 𝑉) | |
| 9 | 7, 8 | s2cld 14890 | . . 3 ⊢ (𝜑 → 〈“𝐶𝐷”〉 ∈ Word 𝑉) |
| 10 | 6, 9 | s2cld 14890 | . 2 ⊢ (𝜑 → 〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉 ∈ Word Word 𝑉) |
| 11 | s2len 14908 | . . 3 ⊢ (♯‘〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉) = 2 | |
| 12 | 11 | a1i 11 | . 2 ⊢ (𝜑 → (♯‘〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉) = 2) |
| 13 | 1, 4, 5, 7, 8 | lmat22lem 33848 | . 2 ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^2)) → (♯‘(〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉‘𝑖)) = 2) |
| 14 | 0nn0 12516 | . 2 ⊢ 0 ∈ ℕ0 | |
| 15 | 1nn0 12517 | . 2 ⊢ 1 ∈ ℕ0 | |
| 16 | 1le2 12449 | . 2 ⊢ 1 ≤ 2 | |
| 17 | 2 | nnrei 12249 | . . 3 ⊢ 2 ∈ ℝ |
| 18 | 17 | leidi 11771 | . 2 ⊢ 2 ≤ 2 |
| 19 | 0p1e1 12362 | . 2 ⊢ (0 + 1) = 1 | |
| 20 | 1p1e2 12365 | . 2 ⊢ (1 + 1) = 2 | |
| 21 | s2cli 14899 | . . 3 ⊢ 〈“𝐴𝐵”〉 ∈ Word V | |
| 22 | s2fv0 14906 | . . 3 ⊢ (〈“𝐴𝐵”〉 ∈ Word V → (〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉‘0) = 〈“𝐴𝐵”〉) | |
| 23 | 21, 22 | ax-mp 5 | . 2 ⊢ (〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉‘0) = 〈“𝐴𝐵”〉 |
| 24 | s2fv1 14907 | . . 3 ⊢ (𝐵 ∈ 𝑉 → (〈“𝐴𝐵”〉‘1) = 𝐵) | |
| 25 | 5, 24 | syl 17 | . 2 ⊢ (𝜑 → (〈“𝐴𝐵”〉‘1) = 𝐵) |
| 26 | 1, 3, 10, 12, 13, 14, 15, 16, 18, 19, 20, 23, 25 | lmatfvlem 33846 | 1 ⊢ (𝜑 → (1𝑀2) = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 Vcvv 3459 ‘cfv 6531 (class class class)co 7405 0cc0 11129 1c1 11130 ℕcn 12240 2c2 12295 ♯chash 14348 Word cword 14531 〈“cs2 14860 litMatclmat 33842 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-card 9953 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-2 12303 df-n0 12502 df-z 12589 df-uz 12853 df-fz 13525 df-fzo 13672 df-hash 14349 df-word 14532 df-concat 14589 df-s1 14614 df-s2 14867 df-lmat 33843 |
| This theorem is referenced by: lmat22det 33853 |
| Copyright terms: Public domain | W3C validator |