![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > metss2 | Structured version Visualization version GIF version |
Description: If the metric 𝐷 is "strongly finer" than 𝐶 (meaning that there is a positive real constant 𝑅 such that 𝐶(𝑥, 𝑦) ≤ 𝑅 · 𝐷(𝑥, 𝑦)), then 𝐷 generates a finer topology. (Using this theorem twice in each direction states that if two metrics are strongly equivalent, then they generate the same topology.) (Contributed by Mario Carneiro, 14-Sep-2015.) |
Ref | Expression |
---|---|
metequiv.3 | ⊢ 𝐽 = (MetOpen‘𝐶) |
metequiv.4 | ⊢ 𝐾 = (MetOpen‘𝐷) |
metss2.1 | ⊢ (𝜑 → 𝐶 ∈ (Met‘𝑋)) |
metss2.2 | ⊢ (𝜑 → 𝐷 ∈ (Met‘𝑋)) |
metss2.3 | ⊢ (𝜑 → 𝑅 ∈ ℝ+) |
metss2.4 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑥𝐶𝑦) ≤ (𝑅 · (𝑥𝐷𝑦))) |
Ref | Expression |
---|---|
metss2 | ⊢ (𝜑 → 𝐽 ⊆ 𝐾) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 484 | . . . . 5 ⊢ ((𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) → 𝑟 ∈ ℝ+) | |
2 | metss2.3 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ ℝ+) | |
3 | rpdivcl 13058 | . . . . 5 ⊢ ((𝑟 ∈ ℝ+ ∧ 𝑅 ∈ ℝ+) → (𝑟 / 𝑅) ∈ ℝ+) | |
4 | 1, 2, 3 | syl2anr 597 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+)) → (𝑟 / 𝑅) ∈ ℝ+) |
5 | metequiv.3 | . . . . 5 ⊢ 𝐽 = (MetOpen‘𝐶) | |
6 | metequiv.4 | . . . . 5 ⊢ 𝐾 = (MetOpen‘𝐷) | |
7 | metss2.1 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ (Met‘𝑋)) | |
8 | metss2.2 | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ (Met‘𝑋)) | |
9 | metss2.4 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑥𝐶𝑦) ≤ (𝑅 · (𝑥𝐷𝑦))) | |
10 | 5, 6, 7, 8, 2, 9 | metss2lem 24540 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+)) → (𝑥(ball‘𝐷)(𝑟 / 𝑅)) ⊆ (𝑥(ball‘𝐶)𝑟)) |
11 | oveq2 7439 | . . . . . 6 ⊢ (𝑠 = (𝑟 / 𝑅) → (𝑥(ball‘𝐷)𝑠) = (𝑥(ball‘𝐷)(𝑟 / 𝑅))) | |
12 | 11 | sseq1d 4027 | . . . . 5 ⊢ (𝑠 = (𝑟 / 𝑅) → ((𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟) ↔ (𝑥(ball‘𝐷)(𝑟 / 𝑅)) ⊆ (𝑥(ball‘𝐶)𝑟))) |
13 | 12 | rspcev 3622 | . . . 4 ⊢ (((𝑟 / 𝑅) ∈ ℝ+ ∧ (𝑥(ball‘𝐷)(𝑟 / 𝑅)) ⊆ (𝑥(ball‘𝐶)𝑟)) → ∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟)) |
14 | 4, 10, 13 | syl2anc 584 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+)) → ∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟)) |
15 | 14 | ralrimivva 3200 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝑋 ∀𝑟 ∈ ℝ+ ∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟)) |
16 | metxmet 24360 | . . . 4 ⊢ (𝐶 ∈ (Met‘𝑋) → 𝐶 ∈ (∞Met‘𝑋)) | |
17 | 7, 16 | syl 17 | . . 3 ⊢ (𝜑 → 𝐶 ∈ (∞Met‘𝑋)) |
18 | metxmet 24360 | . . . 4 ⊢ (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋)) | |
19 | 8, 18 | syl 17 | . . 3 ⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) |
20 | 5, 6 | metss 24537 | . . 3 ⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) → (𝐽 ⊆ 𝐾 ↔ ∀𝑥 ∈ 𝑋 ∀𝑟 ∈ ℝ+ ∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟))) |
21 | 17, 19, 20 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐽 ⊆ 𝐾 ↔ ∀𝑥 ∈ 𝑋 ∀𝑟 ∈ ℝ+ ∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟))) |
22 | 15, 21 | mpbird 257 | 1 ⊢ (𝜑 → 𝐽 ⊆ 𝐾) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ∀wral 3059 ∃wrex 3068 ⊆ wss 3963 class class class wbr 5148 ‘cfv 6563 (class class class)co 7431 · cmul 11158 ≤ cle 11294 / cdiv 11918 ℝ+crp 13032 ∞Metcxmet 21367 Metcmet 21368 ballcbl 21369 MetOpencmopn 21372 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-pre-sup 11231 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-er 8744 df-map 8867 df-en 8985 df-dom 8986 df-sdom 8987 df-sup 9480 df-inf 9481 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 df-nn 12265 df-2 12327 df-n0 12525 df-z 12612 df-uz 12877 df-q 12989 df-rp 13033 df-xneg 13152 df-xadd 13153 df-xmul 13154 df-topgen 17490 df-psmet 21374 df-xmet 21375 df-met 21376 df-bl 21377 df-mopn 21378 df-bases 22969 |
This theorem is referenced by: equivcmet 25365 |
Copyright terms: Public domain | W3C validator |