![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > metss2 | Structured version Visualization version GIF version |
Description: If the metric π· is "strongly finer" than πΆ (meaning that there is a positive real constant π such that πΆ(π₯, π¦) β€ π Β· π·(π₯, π¦)), then π· generates a finer topology. (Using this theorem twice in each direction states that if two metrics are strongly equivalent, then they generate the same topology.) (Contributed by Mario Carneiro, 14-Sep-2015.) |
Ref | Expression |
---|---|
metequiv.3 | β’ π½ = (MetOpenβπΆ) |
metequiv.4 | β’ πΎ = (MetOpenβπ·) |
metss2.1 | β’ (π β πΆ β (Metβπ)) |
metss2.2 | β’ (π β π· β (Metβπ)) |
metss2.3 | β’ (π β π β β+) |
metss2.4 | β’ ((π β§ (π₯ β π β§ π¦ β π)) β (π₯πΆπ¦) β€ (π Β· (π₯π·π¦))) |
Ref | Expression |
---|---|
metss2 | β’ (π β π½ β πΎ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 484 | . . . . 5 β’ ((π₯ β π β§ π β β+) β π β β+) | |
2 | metss2.3 | . . . . 5 β’ (π β π β β+) | |
3 | rpdivcl 13002 | . . . . 5 β’ ((π β β+ β§ π β β+) β (π / π ) β β+) | |
4 | 1, 2, 3 | syl2anr 596 | . . . 4 β’ ((π β§ (π₯ β π β§ π β β+)) β (π / π ) β β+) |
5 | metequiv.3 | . . . . 5 β’ π½ = (MetOpenβπΆ) | |
6 | metequiv.4 | . . . . 5 β’ πΎ = (MetOpenβπ·) | |
7 | metss2.1 | . . . . 5 β’ (π β πΆ β (Metβπ)) | |
8 | metss2.2 | . . . . 5 β’ (π β π· β (Metβπ)) | |
9 | metss2.4 | . . . . 5 β’ ((π β§ (π₯ β π β§ π¦ β π)) β (π₯πΆπ¦) β€ (π Β· (π₯π·π¦))) | |
10 | 5, 6, 7, 8, 2, 9 | metss2lem 24371 | . . . 4 β’ ((π β§ (π₯ β π β§ π β β+)) β (π₯(ballβπ·)(π / π )) β (π₯(ballβπΆ)π)) |
11 | oveq2 7412 | . . . . . 6 β’ (π = (π / π ) β (π₯(ballβπ·)π ) = (π₯(ballβπ·)(π / π ))) | |
12 | 11 | sseq1d 4008 | . . . . 5 β’ (π = (π / π ) β ((π₯(ballβπ·)π ) β (π₯(ballβπΆ)π) β (π₯(ballβπ·)(π / π )) β (π₯(ballβπΆ)π))) |
13 | 12 | rspcev 3606 | . . . 4 β’ (((π / π ) β β+ β§ (π₯(ballβπ·)(π / π )) β (π₯(ballβπΆ)π)) β βπ β β+ (π₯(ballβπ·)π ) β (π₯(ballβπΆ)π)) |
14 | 4, 10, 13 | syl2anc 583 | . . 3 β’ ((π β§ (π₯ β π β§ π β β+)) β βπ β β+ (π₯(ballβπ·)π ) β (π₯(ballβπΆ)π)) |
15 | 14 | ralrimivva 3194 | . 2 β’ (π β βπ₯ β π βπ β β+ βπ β β+ (π₯(ballβπ·)π ) β (π₯(ballβπΆ)π)) |
16 | metxmet 24191 | . . . 4 β’ (πΆ β (Metβπ) β πΆ β (βMetβπ)) | |
17 | 7, 16 | syl 17 | . . 3 β’ (π β πΆ β (βMetβπ)) |
18 | metxmet 24191 | . . . 4 β’ (π· β (Metβπ) β π· β (βMetβπ)) | |
19 | 8, 18 | syl 17 | . . 3 β’ (π β π· β (βMetβπ)) |
20 | 5, 6 | metss 24368 | . . 3 β’ ((πΆ β (βMetβπ) β§ π· β (βMetβπ)) β (π½ β πΎ β βπ₯ β π βπ β β+ βπ β β+ (π₯(ballβπ·)π ) β (π₯(ballβπΆ)π))) |
21 | 17, 19, 20 | syl2anc 583 | . 2 β’ (π β (π½ β πΎ β βπ₯ β π βπ β β+ βπ β β+ (π₯(ballβπ·)π ) β (π₯(ballβπΆ)π))) |
22 | 15, 21 | mpbird 257 | 1 β’ (π β π½ β πΎ) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 395 = wceq 1533 β wcel 2098 βwral 3055 βwrex 3064 β wss 3943 class class class wbr 5141 βcfv 6536 (class class class)co 7404 Β· cmul 11114 β€ cle 11250 / cdiv 11872 β+crp 12977 βMetcxmet 21221 Metcmet 21222 ballcbl 21223 MetOpencmopn 21226 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 ax-pre-sup 11187 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6293 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8264 df-wrecs 8295 df-recs 8369 df-rdg 8408 df-er 8702 df-map 8821 df-en 8939 df-dom 8940 df-sdom 8941 df-sup 9436 df-inf 9437 df-pnf 11251 df-mnf 11252 df-xr 11253 df-ltxr 11254 df-le 11255 df-sub 11447 df-neg 11448 df-div 11873 df-nn 12214 df-2 12276 df-n0 12474 df-z 12560 df-uz 12824 df-q 12934 df-rp 12978 df-xneg 13095 df-xadd 13096 df-xmul 13097 df-topgen 17396 df-psmet 21228 df-xmet 21229 df-met 21230 df-bl 21231 df-mopn 21232 df-bases 22800 |
This theorem is referenced by: equivcmet 25196 |
Copyright terms: Public domain | W3C validator |