| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > metss2 | Structured version Visualization version GIF version | ||
| Description: If the metric 𝐷 is "strongly finer" than 𝐶 (meaning that there is a positive real constant 𝑅 such that 𝐶(𝑥, 𝑦) ≤ 𝑅 · 𝐷(𝑥, 𝑦)), then 𝐷 generates a finer topology. (Using this theorem twice in each direction states that if two metrics are strongly equivalent, then they generate the same topology.) (Contributed by Mario Carneiro, 14-Sep-2015.) |
| Ref | Expression |
|---|---|
| metequiv.3 | ⊢ 𝐽 = (MetOpen‘𝐶) |
| metequiv.4 | ⊢ 𝐾 = (MetOpen‘𝐷) |
| metss2.1 | ⊢ (𝜑 → 𝐶 ∈ (Met‘𝑋)) |
| metss2.2 | ⊢ (𝜑 → 𝐷 ∈ (Met‘𝑋)) |
| metss2.3 | ⊢ (𝜑 → 𝑅 ∈ ℝ+) |
| metss2.4 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑥𝐶𝑦) ≤ (𝑅 · (𝑥𝐷𝑦))) |
| Ref | Expression |
|---|---|
| metss2 | ⊢ (𝜑 → 𝐽 ⊆ 𝐾) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . . . . 5 ⊢ ((𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) → 𝑟 ∈ ℝ+) | |
| 2 | metss2.3 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ ℝ+) | |
| 3 | rpdivcl 12914 | . . . . 5 ⊢ ((𝑟 ∈ ℝ+ ∧ 𝑅 ∈ ℝ+) → (𝑟 / 𝑅) ∈ ℝ+) | |
| 4 | 1, 2, 3 | syl2anr 597 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+)) → (𝑟 / 𝑅) ∈ ℝ+) |
| 5 | metequiv.3 | . . . . 5 ⊢ 𝐽 = (MetOpen‘𝐶) | |
| 6 | metequiv.4 | . . . . 5 ⊢ 𝐾 = (MetOpen‘𝐷) | |
| 7 | metss2.1 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ (Met‘𝑋)) | |
| 8 | metss2.2 | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ (Met‘𝑋)) | |
| 9 | metss2.4 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑥𝐶𝑦) ≤ (𝑅 · (𝑥𝐷𝑦))) | |
| 10 | 5, 6, 7, 8, 2, 9 | metss2lem 24424 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+)) → (𝑥(ball‘𝐷)(𝑟 / 𝑅)) ⊆ (𝑥(ball‘𝐶)𝑟)) |
| 11 | oveq2 7354 | . . . . . 6 ⊢ (𝑠 = (𝑟 / 𝑅) → (𝑥(ball‘𝐷)𝑠) = (𝑥(ball‘𝐷)(𝑟 / 𝑅))) | |
| 12 | 11 | sseq1d 3966 | . . . . 5 ⊢ (𝑠 = (𝑟 / 𝑅) → ((𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟) ↔ (𝑥(ball‘𝐷)(𝑟 / 𝑅)) ⊆ (𝑥(ball‘𝐶)𝑟))) |
| 13 | 12 | rspcev 3577 | . . . 4 ⊢ (((𝑟 / 𝑅) ∈ ℝ+ ∧ (𝑥(ball‘𝐷)(𝑟 / 𝑅)) ⊆ (𝑥(ball‘𝐶)𝑟)) → ∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟)) |
| 14 | 4, 10, 13 | syl2anc 584 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+)) → ∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟)) |
| 15 | 14 | ralrimivva 3175 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝑋 ∀𝑟 ∈ ℝ+ ∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟)) |
| 16 | metxmet 24247 | . . . 4 ⊢ (𝐶 ∈ (Met‘𝑋) → 𝐶 ∈ (∞Met‘𝑋)) | |
| 17 | 7, 16 | syl 17 | . . 3 ⊢ (𝜑 → 𝐶 ∈ (∞Met‘𝑋)) |
| 18 | metxmet 24247 | . . . 4 ⊢ (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋)) | |
| 19 | 8, 18 | syl 17 | . . 3 ⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) |
| 20 | 5, 6 | metss 24421 | . . 3 ⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) → (𝐽 ⊆ 𝐾 ↔ ∀𝑥 ∈ 𝑋 ∀𝑟 ∈ ℝ+ ∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟))) |
| 21 | 17, 19, 20 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐽 ⊆ 𝐾 ↔ ∀𝑥 ∈ 𝑋 ∀𝑟 ∈ ℝ+ ∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟))) |
| 22 | 15, 21 | mpbird 257 | 1 ⊢ (𝜑 → 𝐽 ⊆ 𝐾) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ∃wrex 3056 ⊆ wss 3902 class class class wbr 5091 ‘cfv 6481 (class class class)co 7346 · cmul 11008 ≤ cle 11144 / cdiv 11771 ℝ+crp 12887 ∞Metcxmet 21274 Metcmet 21275 ballcbl 21276 MetOpencmopn 21279 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 ax-pre-sup 11081 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-sup 9326 df-inf 9327 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-div 11772 df-nn 12123 df-2 12185 df-n0 12379 df-z 12466 df-uz 12730 df-q 12844 df-rp 12888 df-xneg 13008 df-xadd 13009 df-xmul 13010 df-topgen 17344 df-psmet 21281 df-xmet 21282 df-met 21283 df-bl 21284 df-mopn 21285 df-bases 22859 |
| This theorem is referenced by: equivcmet 25242 |
| Copyright terms: Public domain | W3C validator |