MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metss2 Structured version   Visualization version   GIF version

Theorem metss2 23871
Description: If the metric 𝐷 is "strongly finer" than 𝐢 (meaning that there is a positive real constant 𝑅 such that 𝐢(π‘₯, 𝑦) ≀ 𝑅 Β· 𝐷(π‘₯, 𝑦)), then 𝐷 generates a finer topology. (Using this theorem twice in each direction states that if two metrics are strongly equivalent, then they generate the same topology.) (Contributed by Mario Carneiro, 14-Sep-2015.)
Hypotheses
Ref Expression
metequiv.3 𝐽 = (MetOpenβ€˜πΆ)
metequiv.4 𝐾 = (MetOpenβ€˜π·)
metss2.1 (πœ‘ β†’ 𝐢 ∈ (Metβ€˜π‘‹))
metss2.2 (πœ‘ β†’ 𝐷 ∈ (Metβ€˜π‘‹))
metss2.3 (πœ‘ β†’ 𝑅 ∈ ℝ+)
metss2.4 ((πœ‘ ∧ (π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) β†’ (π‘₯𝐢𝑦) ≀ (𝑅 Β· (π‘₯𝐷𝑦)))
Assertion
Ref Expression
metss2 (πœ‘ β†’ 𝐽 βŠ† 𝐾)
Distinct variable groups:   π‘₯,𝑦,𝐢   π‘₯,𝐽,𝑦   π‘₯,𝐾,𝑦   𝑦,𝑅   π‘₯,𝐷,𝑦   πœ‘,π‘₯,𝑦   π‘₯,𝑋,𝑦
Allowed substitution hint:   𝑅(π‘₯)

Proof of Theorem metss2
Dummy variables 𝑠 π‘Ÿ are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 486 . . . . 5 ((π‘₯ ∈ 𝑋 ∧ π‘Ÿ ∈ ℝ+) β†’ π‘Ÿ ∈ ℝ+)
2 metss2.3 . . . . 5 (πœ‘ β†’ 𝑅 ∈ ℝ+)
3 rpdivcl 12941 . . . . 5 ((π‘Ÿ ∈ ℝ+ ∧ 𝑅 ∈ ℝ+) β†’ (π‘Ÿ / 𝑅) ∈ ℝ+)
41, 2, 3syl2anr 598 . . . 4 ((πœ‘ ∧ (π‘₯ ∈ 𝑋 ∧ π‘Ÿ ∈ ℝ+)) β†’ (π‘Ÿ / 𝑅) ∈ ℝ+)
5 metequiv.3 . . . . 5 𝐽 = (MetOpenβ€˜πΆ)
6 metequiv.4 . . . . 5 𝐾 = (MetOpenβ€˜π·)
7 metss2.1 . . . . 5 (πœ‘ β†’ 𝐢 ∈ (Metβ€˜π‘‹))
8 metss2.2 . . . . 5 (πœ‘ β†’ 𝐷 ∈ (Metβ€˜π‘‹))
9 metss2.4 . . . . 5 ((πœ‘ ∧ (π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) β†’ (π‘₯𝐢𝑦) ≀ (𝑅 Β· (π‘₯𝐷𝑦)))
105, 6, 7, 8, 2, 9metss2lem 23870 . . . 4 ((πœ‘ ∧ (π‘₯ ∈ 𝑋 ∧ π‘Ÿ ∈ ℝ+)) β†’ (π‘₯(ballβ€˜π·)(π‘Ÿ / 𝑅)) βŠ† (π‘₯(ballβ€˜πΆ)π‘Ÿ))
11 oveq2 7366 . . . . . 6 (𝑠 = (π‘Ÿ / 𝑅) β†’ (π‘₯(ballβ€˜π·)𝑠) = (π‘₯(ballβ€˜π·)(π‘Ÿ / 𝑅)))
1211sseq1d 3976 . . . . 5 (𝑠 = (π‘Ÿ / 𝑅) β†’ ((π‘₯(ballβ€˜π·)𝑠) βŠ† (π‘₯(ballβ€˜πΆ)π‘Ÿ) ↔ (π‘₯(ballβ€˜π·)(π‘Ÿ / 𝑅)) βŠ† (π‘₯(ballβ€˜πΆ)π‘Ÿ)))
1312rspcev 3582 . . . 4 (((π‘Ÿ / 𝑅) ∈ ℝ+ ∧ (π‘₯(ballβ€˜π·)(π‘Ÿ / 𝑅)) βŠ† (π‘₯(ballβ€˜πΆ)π‘Ÿ)) β†’ βˆƒπ‘  ∈ ℝ+ (π‘₯(ballβ€˜π·)𝑠) βŠ† (π‘₯(ballβ€˜πΆ)π‘Ÿ))
144, 10, 13syl2anc 585 . . 3 ((πœ‘ ∧ (π‘₯ ∈ 𝑋 ∧ π‘Ÿ ∈ ℝ+)) β†’ βˆƒπ‘  ∈ ℝ+ (π‘₯(ballβ€˜π·)𝑠) βŠ† (π‘₯(ballβ€˜πΆ)π‘Ÿ))
1514ralrimivva 3198 . 2 (πœ‘ β†’ βˆ€π‘₯ ∈ 𝑋 βˆ€π‘Ÿ ∈ ℝ+ βˆƒπ‘  ∈ ℝ+ (π‘₯(ballβ€˜π·)𝑠) βŠ† (π‘₯(ballβ€˜πΆ)π‘Ÿ))
16 metxmet 23690 . . . 4 (𝐢 ∈ (Metβ€˜π‘‹) β†’ 𝐢 ∈ (∞Metβ€˜π‘‹))
177, 16syl 17 . . 3 (πœ‘ β†’ 𝐢 ∈ (∞Metβ€˜π‘‹))
18 metxmet 23690 . . . 4 (𝐷 ∈ (Metβ€˜π‘‹) β†’ 𝐷 ∈ (∞Metβ€˜π‘‹))
198, 18syl 17 . . 3 (πœ‘ β†’ 𝐷 ∈ (∞Metβ€˜π‘‹))
205, 6metss 23867 . . 3 ((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘‹)) β†’ (𝐽 βŠ† 𝐾 ↔ βˆ€π‘₯ ∈ 𝑋 βˆ€π‘Ÿ ∈ ℝ+ βˆƒπ‘  ∈ ℝ+ (π‘₯(ballβ€˜π·)𝑠) βŠ† (π‘₯(ballβ€˜πΆ)π‘Ÿ)))
2117, 19, 20syl2anc 585 . 2 (πœ‘ β†’ (𝐽 βŠ† 𝐾 ↔ βˆ€π‘₯ ∈ 𝑋 βˆ€π‘Ÿ ∈ ℝ+ βˆƒπ‘  ∈ ℝ+ (π‘₯(ballβ€˜π·)𝑠) βŠ† (π‘₯(ballβ€˜πΆ)π‘Ÿ)))
2215, 21mpbird 257 1 (πœ‘ β†’ 𝐽 βŠ† 𝐾)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 397   = wceq 1542   ∈ wcel 2107  βˆ€wral 3065  βˆƒwrex 3074   βŠ† wss 3911   class class class wbr 5106  β€˜cfv 6497  (class class class)co 7358   Β· cmul 11057   ≀ cle 11191   / cdiv 11813  β„+crp 12916  βˆžMetcxmet 20784  Metcmet 20785  ballcbl 20786  MetOpencmopn 20789
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673  ax-cnex 11108  ax-resscn 11109  ax-1cn 11110  ax-icn 11111  ax-addcl 11112  ax-addrcl 11113  ax-mulcl 11114  ax-mulrcl 11115  ax-mulcom 11116  ax-addass 11117  ax-mulass 11118  ax-distr 11119  ax-i2m1 11120  ax-1ne0 11121  ax-1rid 11122  ax-rnegex 11123  ax-rrecex 11124  ax-cnre 11125  ax-pre-lttri 11126  ax-pre-lttrn 11127  ax-pre-ltadd 11128  ax-pre-mulgt0 11129  ax-pre-sup 11130
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3066  df-rex 3075  df-rmo 3354  df-reu 3355  df-rab 3409  df-v 3448  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3930  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-iun 4957  df-br 5107  df-opab 5169  df-mpt 5190  df-tr 5224  df-id 5532  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5589  df-we 5591  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-pred 6254  df-ord 6321  df-on 6322  df-lim 6323  df-suc 6324  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-riota 7314  df-ov 7361  df-oprab 7362  df-mpo 7363  df-om 7804  df-1st 7922  df-2nd 7923  df-frecs 8213  df-wrecs 8244  df-recs 8318  df-rdg 8357  df-er 8649  df-map 8768  df-en 8885  df-dom 8886  df-sdom 8887  df-sup 9379  df-inf 9380  df-pnf 11192  df-mnf 11193  df-xr 11194  df-ltxr 11195  df-le 11196  df-sub 11388  df-neg 11389  df-div 11814  df-nn 12155  df-2 12217  df-n0 12415  df-z 12501  df-uz 12765  df-q 12875  df-rp 12917  df-xneg 13034  df-xadd 13035  df-xmul 13036  df-topgen 17326  df-psmet 20791  df-xmet 20792  df-met 20793  df-bl 20794  df-mopn 20795  df-bases 22299
This theorem is referenced by:  equivcmet  24684
  Copyright terms: Public domain W3C validator