MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metss2 Structured version   Visualization version   GIF version

Theorem metss2 24425
Description: If the metric 𝐷 is "strongly finer" than 𝐶 (meaning that there is a positive real constant 𝑅 such that 𝐶(𝑥, 𝑦) ≤ 𝑅 · 𝐷(𝑥, 𝑦)), then 𝐷 generates a finer topology. (Using this theorem twice in each direction states that if two metrics are strongly equivalent, then they generate the same topology.) (Contributed by Mario Carneiro, 14-Sep-2015.)
Hypotheses
Ref Expression
metequiv.3 𝐽 = (MetOpen‘𝐶)
metequiv.4 𝐾 = (MetOpen‘𝐷)
metss2.1 (𝜑𝐶 ∈ (Met‘𝑋))
metss2.2 (𝜑𝐷 ∈ (Met‘𝑋))
metss2.3 (𝜑𝑅 ∈ ℝ+)
metss2.4 ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → (𝑥𝐶𝑦) ≤ (𝑅 · (𝑥𝐷𝑦)))
Assertion
Ref Expression
metss2 (𝜑𝐽𝐾)
Distinct variable groups:   𝑥,𝑦,𝐶   𝑥,𝐽,𝑦   𝑥,𝐾,𝑦   𝑦,𝑅   𝑥,𝐷,𝑦   𝜑,𝑥,𝑦   𝑥,𝑋,𝑦
Allowed substitution hint:   𝑅(𝑥)

Proof of Theorem metss2
Dummy variables 𝑠 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . . 5 ((𝑥𝑋𝑟 ∈ ℝ+) → 𝑟 ∈ ℝ+)
2 metss2.3 . . . . 5 (𝜑𝑅 ∈ ℝ+)
3 rpdivcl 12914 . . . . 5 ((𝑟 ∈ ℝ+𝑅 ∈ ℝ+) → (𝑟 / 𝑅) ∈ ℝ+)
41, 2, 3syl2anr 597 . . . 4 ((𝜑 ∧ (𝑥𝑋𝑟 ∈ ℝ+)) → (𝑟 / 𝑅) ∈ ℝ+)
5 metequiv.3 . . . . 5 𝐽 = (MetOpen‘𝐶)
6 metequiv.4 . . . . 5 𝐾 = (MetOpen‘𝐷)
7 metss2.1 . . . . 5 (𝜑𝐶 ∈ (Met‘𝑋))
8 metss2.2 . . . . 5 (𝜑𝐷 ∈ (Met‘𝑋))
9 metss2.4 . . . . 5 ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → (𝑥𝐶𝑦) ≤ (𝑅 · (𝑥𝐷𝑦)))
105, 6, 7, 8, 2, 9metss2lem 24424 . . . 4 ((𝜑 ∧ (𝑥𝑋𝑟 ∈ ℝ+)) → (𝑥(ball‘𝐷)(𝑟 / 𝑅)) ⊆ (𝑥(ball‘𝐶)𝑟))
11 oveq2 7354 . . . . . 6 (𝑠 = (𝑟 / 𝑅) → (𝑥(ball‘𝐷)𝑠) = (𝑥(ball‘𝐷)(𝑟 / 𝑅)))
1211sseq1d 3966 . . . . 5 (𝑠 = (𝑟 / 𝑅) → ((𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟) ↔ (𝑥(ball‘𝐷)(𝑟 / 𝑅)) ⊆ (𝑥(ball‘𝐶)𝑟)))
1312rspcev 3577 . . . 4 (((𝑟 / 𝑅) ∈ ℝ+ ∧ (𝑥(ball‘𝐷)(𝑟 / 𝑅)) ⊆ (𝑥(ball‘𝐶)𝑟)) → ∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟))
144, 10, 13syl2anc 584 . . 3 ((𝜑 ∧ (𝑥𝑋𝑟 ∈ ℝ+)) → ∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟))
1514ralrimivva 3175 . 2 (𝜑 → ∀𝑥𝑋𝑟 ∈ ℝ+𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟))
16 metxmet 24247 . . . 4 (𝐶 ∈ (Met‘𝑋) → 𝐶 ∈ (∞Met‘𝑋))
177, 16syl 17 . . 3 (𝜑𝐶 ∈ (∞Met‘𝑋))
18 metxmet 24247 . . . 4 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
198, 18syl 17 . . 3 (𝜑𝐷 ∈ (∞Met‘𝑋))
205, 6metss 24421 . . 3 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) → (𝐽𝐾 ↔ ∀𝑥𝑋𝑟 ∈ ℝ+𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟)))
2117, 19, 20syl2anc 584 . 2 (𝜑 → (𝐽𝐾 ↔ ∀𝑥𝑋𝑟 ∈ ℝ+𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟)))
2215, 21mpbird 257 1 (𝜑𝐽𝐾)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wral 3047  wrex 3056  wss 3902   class class class wbr 5091  cfv 6481  (class class class)co 7346   · cmul 11008  cle 11144   / cdiv 11771  +crp 12887  ∞Metcxmet 21274  Metcmet 21275  ballcbl 21276  MetOpencmopn 21279
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080  ax-pre-sup 11081
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-sup 9326  df-inf 9327  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-div 11772  df-nn 12123  df-2 12185  df-n0 12379  df-z 12466  df-uz 12730  df-q 12844  df-rp 12888  df-xneg 13008  df-xadd 13009  df-xmul 13010  df-topgen 17344  df-psmet 21281  df-xmet 21282  df-met 21283  df-bl 21284  df-mopn 21285  df-bases 22859
This theorem is referenced by:  equivcmet  25242
  Copyright terms: Public domain W3C validator