| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mulgnn0gsum | Structured version Visualization version GIF version | ||
| Description: Group multiple (exponentiation) operation at a nonnegative integer expressed by a group sum. This corresponds to the definition in [Lang] p. 6, second formula. (Contributed by AV, 28-Dec-2023.) |
| Ref | Expression |
|---|---|
| mulgnngsum.b | ⊢ 𝐵 = (Base‘𝐺) |
| mulgnngsum.t | ⊢ · = (.g‘𝐺) |
| mulgnngsum.f | ⊢ 𝐹 = (𝑥 ∈ (1...𝑁) ↦ 𝑋) |
| Ref | Expression |
|---|---|
| mulgnn0gsum | ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵) → (𝑁 · 𝑋) = (𝐺 Σg 𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elnn0 12386 | . . 3 ⊢ (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0)) | |
| 2 | mulgnngsum.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐺) | |
| 3 | mulgnngsum.t | . . . . . 6 ⊢ · = (.g‘𝐺) | |
| 4 | mulgnngsum.f | . . . . . 6 ⊢ 𝐹 = (𝑥 ∈ (1...𝑁) ↦ 𝑋) | |
| 5 | 2, 3, 4 | mulgnngsum 18958 | . . . . 5 ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → (𝑁 · 𝑋) = (𝐺 Σg 𝐹)) |
| 6 | 5 | ex 412 | . . . 4 ⊢ (𝑁 ∈ ℕ → (𝑋 ∈ 𝐵 → (𝑁 · 𝑋) = (𝐺 Σg 𝐹))) |
| 7 | oveq1 7356 | . . . . . . 7 ⊢ (𝑁 = 0 → (𝑁 · 𝑋) = (0 · 𝑋)) | |
| 8 | eqid 2729 | . . . . . . . 8 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
| 9 | 2, 8, 3 | mulg0 18953 | . . . . . . 7 ⊢ (𝑋 ∈ 𝐵 → (0 · 𝑋) = (0g‘𝐺)) |
| 10 | 7, 9 | sylan9eq 2784 | . . . . . 6 ⊢ ((𝑁 = 0 ∧ 𝑋 ∈ 𝐵) → (𝑁 · 𝑋) = (0g‘𝐺)) |
| 11 | oveq2 7357 | . . . . . . . . . . . . 13 ⊢ (𝑁 = 0 → (1...𝑁) = (1...0)) | |
| 12 | fz10 13448 | . . . . . . . . . . . . 13 ⊢ (1...0) = ∅ | |
| 13 | 11, 12 | eqtrdi 2780 | . . . . . . . . . . . 12 ⊢ (𝑁 = 0 → (1...𝑁) = ∅) |
| 14 | eqidd 2730 | . . . . . . . . . . . 12 ⊢ (𝑁 = 0 → 𝑋 = 𝑋) | |
| 15 | 13, 14 | mpteq12dv 5179 | . . . . . . . . . . 11 ⊢ (𝑁 = 0 → (𝑥 ∈ (1...𝑁) ↦ 𝑋) = (𝑥 ∈ ∅ ↦ 𝑋)) |
| 16 | mpt0 6624 | . . . . . . . . . . 11 ⊢ (𝑥 ∈ ∅ ↦ 𝑋) = ∅ | |
| 17 | 15, 16 | eqtrdi 2780 | . . . . . . . . . 10 ⊢ (𝑁 = 0 → (𝑥 ∈ (1...𝑁) ↦ 𝑋) = ∅) |
| 18 | 4, 17 | eqtrid 2776 | . . . . . . . . 9 ⊢ (𝑁 = 0 → 𝐹 = ∅) |
| 19 | 18 | adantr 480 | . . . . . . . 8 ⊢ ((𝑁 = 0 ∧ 𝑋 ∈ 𝐵) → 𝐹 = ∅) |
| 20 | 19 | oveq2d 7365 | . . . . . . 7 ⊢ ((𝑁 = 0 ∧ 𝑋 ∈ 𝐵) → (𝐺 Σg 𝐹) = (𝐺 Σg ∅)) |
| 21 | 8 | gsum0 18558 | . . . . . . 7 ⊢ (𝐺 Σg ∅) = (0g‘𝐺) |
| 22 | 20, 21 | eqtrdi 2780 | . . . . . 6 ⊢ ((𝑁 = 0 ∧ 𝑋 ∈ 𝐵) → (𝐺 Σg 𝐹) = (0g‘𝐺)) |
| 23 | 10, 22 | eqtr4d 2767 | . . . . 5 ⊢ ((𝑁 = 0 ∧ 𝑋 ∈ 𝐵) → (𝑁 · 𝑋) = (𝐺 Σg 𝐹)) |
| 24 | 23 | ex 412 | . . . 4 ⊢ (𝑁 = 0 → (𝑋 ∈ 𝐵 → (𝑁 · 𝑋) = (𝐺 Σg 𝐹))) |
| 25 | 6, 24 | jaoi 857 | . . 3 ⊢ ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → (𝑋 ∈ 𝐵 → (𝑁 · 𝑋) = (𝐺 Σg 𝐹))) |
| 26 | 1, 25 | sylbi 217 | . 2 ⊢ (𝑁 ∈ ℕ0 → (𝑋 ∈ 𝐵 → (𝑁 · 𝑋) = (𝐺 Σg 𝐹))) |
| 27 | 26 | imp 406 | 1 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵) → (𝑁 · 𝑋) = (𝐺 Σg 𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ∅c0 4284 ↦ cmpt 5173 ‘cfv 6482 (class class class)co 7349 0cc0 11009 1c1 11010 ℕcn 12128 ℕ0cn0 12384 ...cfz 13410 Basecbs 17120 0gc0g 17343 Σg cgsu 17344 .gcmg 18946 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-n0 12385 df-z 12472 df-uz 12736 df-fz 13411 df-seq 13909 df-0g 17345 df-gsum 17346 df-mulg 18947 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |