| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mulgnn0gsum | Structured version Visualization version GIF version | ||
| Description: Group multiple (exponentiation) operation at a nonnegative integer expressed by a group sum. This corresponds to the definition in [Lang] p. 6, second formula. (Contributed by AV, 28-Dec-2023.) |
| Ref | Expression |
|---|---|
| mulgnngsum.b | ⊢ 𝐵 = (Base‘𝐺) |
| mulgnngsum.t | ⊢ · = (.g‘𝐺) |
| mulgnngsum.f | ⊢ 𝐹 = (𝑥 ∈ (1...𝑁) ↦ 𝑋) |
| Ref | Expression |
|---|---|
| mulgnn0gsum | ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵) → (𝑁 · 𝑋) = (𝐺 Σg 𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elnn0 12420 | . . 3 ⊢ (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0)) | |
| 2 | mulgnngsum.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐺) | |
| 3 | mulgnngsum.t | . . . . . 6 ⊢ · = (.g‘𝐺) | |
| 4 | mulgnngsum.f | . . . . . 6 ⊢ 𝐹 = (𝑥 ∈ (1...𝑁) ↦ 𝑋) | |
| 5 | 2, 3, 4 | mulgnngsum 18993 | . . . . 5 ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → (𝑁 · 𝑋) = (𝐺 Σg 𝐹)) |
| 6 | 5 | ex 412 | . . . 4 ⊢ (𝑁 ∈ ℕ → (𝑋 ∈ 𝐵 → (𝑁 · 𝑋) = (𝐺 Σg 𝐹))) |
| 7 | oveq1 7376 | . . . . . . 7 ⊢ (𝑁 = 0 → (𝑁 · 𝑋) = (0 · 𝑋)) | |
| 8 | eqid 2729 | . . . . . . . 8 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
| 9 | 2, 8, 3 | mulg0 18988 | . . . . . . 7 ⊢ (𝑋 ∈ 𝐵 → (0 · 𝑋) = (0g‘𝐺)) |
| 10 | 7, 9 | sylan9eq 2784 | . . . . . 6 ⊢ ((𝑁 = 0 ∧ 𝑋 ∈ 𝐵) → (𝑁 · 𝑋) = (0g‘𝐺)) |
| 11 | oveq2 7377 | . . . . . . . . . . . . 13 ⊢ (𝑁 = 0 → (1...𝑁) = (1...0)) | |
| 12 | fz10 13482 | . . . . . . . . . . . . 13 ⊢ (1...0) = ∅ | |
| 13 | 11, 12 | eqtrdi 2780 | . . . . . . . . . . . 12 ⊢ (𝑁 = 0 → (1...𝑁) = ∅) |
| 14 | eqidd 2730 | . . . . . . . . . . . 12 ⊢ (𝑁 = 0 → 𝑋 = 𝑋) | |
| 15 | 13, 14 | mpteq12dv 5189 | . . . . . . . . . . 11 ⊢ (𝑁 = 0 → (𝑥 ∈ (1...𝑁) ↦ 𝑋) = (𝑥 ∈ ∅ ↦ 𝑋)) |
| 16 | mpt0 6642 | . . . . . . . . . . 11 ⊢ (𝑥 ∈ ∅ ↦ 𝑋) = ∅ | |
| 17 | 15, 16 | eqtrdi 2780 | . . . . . . . . . 10 ⊢ (𝑁 = 0 → (𝑥 ∈ (1...𝑁) ↦ 𝑋) = ∅) |
| 18 | 4, 17 | eqtrid 2776 | . . . . . . . . 9 ⊢ (𝑁 = 0 → 𝐹 = ∅) |
| 19 | 18 | adantr 480 | . . . . . . . 8 ⊢ ((𝑁 = 0 ∧ 𝑋 ∈ 𝐵) → 𝐹 = ∅) |
| 20 | 19 | oveq2d 7385 | . . . . . . 7 ⊢ ((𝑁 = 0 ∧ 𝑋 ∈ 𝐵) → (𝐺 Σg 𝐹) = (𝐺 Σg ∅)) |
| 21 | 8 | gsum0 18593 | . . . . . . 7 ⊢ (𝐺 Σg ∅) = (0g‘𝐺) |
| 22 | 20, 21 | eqtrdi 2780 | . . . . . 6 ⊢ ((𝑁 = 0 ∧ 𝑋 ∈ 𝐵) → (𝐺 Σg 𝐹) = (0g‘𝐺)) |
| 23 | 10, 22 | eqtr4d 2767 | . . . . 5 ⊢ ((𝑁 = 0 ∧ 𝑋 ∈ 𝐵) → (𝑁 · 𝑋) = (𝐺 Σg 𝐹)) |
| 24 | 23 | ex 412 | . . . 4 ⊢ (𝑁 = 0 → (𝑋 ∈ 𝐵 → (𝑁 · 𝑋) = (𝐺 Σg 𝐹))) |
| 25 | 6, 24 | jaoi 857 | . . 3 ⊢ ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → (𝑋 ∈ 𝐵 → (𝑁 · 𝑋) = (𝐺 Σg 𝐹))) |
| 26 | 1, 25 | sylbi 217 | . 2 ⊢ (𝑁 ∈ ℕ0 → (𝑋 ∈ 𝐵 → (𝑁 · 𝑋) = (𝐺 Σg 𝐹))) |
| 27 | 26 | imp 406 | 1 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵) → (𝑁 · 𝑋) = (𝐺 Σg 𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ∅c0 4292 ↦ cmpt 5183 ‘cfv 6499 (class class class)co 7369 0cc0 11044 1c1 11045 ℕcn 12162 ℕ0cn0 12418 ...cfz 13444 Basecbs 17155 0gc0g 17378 Σg cgsu 17379 .gcmg 18981 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-n0 12419 df-z 12506 df-uz 12770 df-fz 13445 df-seq 13943 df-0g 17380 df-gsum 17381 df-mulg 18982 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |