MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgnn0gsum Structured version   Visualization version   GIF version

Theorem mulgnn0gsum 18227
Description: Group multiple (exponentiation) operation at a nonnegative integer expressed by a group sum. This corresponds to the definition in [Lang] p. 6, second formula. (Contributed by AV, 28-Dec-2023.)
Hypotheses
Ref Expression
mulgnngsum.b 𝐵 = (Base‘𝐺)
mulgnngsum.t · = (.g𝐺)
mulgnngsum.f 𝐹 = (𝑥 ∈ (1...𝑁) ↦ 𝑋)
Assertion
Ref Expression
mulgnn0gsum ((𝑁 ∈ ℕ0𝑋𝐵) → (𝑁 · 𝑋) = (𝐺 Σg 𝐹))
Distinct variable groups:   𝑥,𝐵   𝑥,𝑁   𝑥,𝑋
Allowed substitution hints:   · (𝑥)   𝐹(𝑥)   𝐺(𝑥)

Proof of Theorem mulgnn0gsum
StepHypRef Expression
1 elnn0 11893 . . 3 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
2 mulgnngsum.b . . . . . 6 𝐵 = (Base‘𝐺)
3 mulgnngsum.t . . . . . 6 · = (.g𝐺)
4 mulgnngsum.f . . . . . 6 𝐹 = (𝑥 ∈ (1...𝑁) ↦ 𝑋)
52, 3, 4mulgnngsum 18226 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → (𝑁 · 𝑋) = (𝐺 Σg 𝐹))
65ex 415 . . . 4 (𝑁 ∈ ℕ → (𝑋𝐵 → (𝑁 · 𝑋) = (𝐺 Σg 𝐹)))
7 oveq1 7156 . . . . . . 7 (𝑁 = 0 → (𝑁 · 𝑋) = (0 · 𝑋))
8 eqid 2820 . . . . . . . 8 (0g𝐺) = (0g𝐺)
92, 8, 3mulg0 18224 . . . . . . 7 (𝑋𝐵 → (0 · 𝑋) = (0g𝐺))
107, 9sylan9eq 2875 . . . . . 6 ((𝑁 = 0 ∧ 𝑋𝐵) → (𝑁 · 𝑋) = (0g𝐺))
11 oveq2 7157 . . . . . . . . . . . . 13 (𝑁 = 0 → (1...𝑁) = (1...0))
12 fz10 12925 . . . . . . . . . . . . 13 (1...0) = ∅
1311, 12syl6eq 2871 . . . . . . . . . . . 12 (𝑁 = 0 → (1...𝑁) = ∅)
14 eqidd 2821 . . . . . . . . . . . 12 (𝑁 = 0 → 𝑋 = 𝑋)
1513, 14mpteq12dv 5144 . . . . . . . . . . 11 (𝑁 = 0 → (𝑥 ∈ (1...𝑁) ↦ 𝑋) = (𝑥 ∈ ∅ ↦ 𝑋))
16 mpt0 6483 . . . . . . . . . . 11 (𝑥 ∈ ∅ ↦ 𝑋) = ∅
1715, 16syl6eq 2871 . . . . . . . . . 10 (𝑁 = 0 → (𝑥 ∈ (1...𝑁) ↦ 𝑋) = ∅)
184, 17syl5eq 2867 . . . . . . . . 9 (𝑁 = 0 → 𝐹 = ∅)
1918adantr 483 . . . . . . . 8 ((𝑁 = 0 ∧ 𝑋𝐵) → 𝐹 = ∅)
2019oveq2d 7165 . . . . . . 7 ((𝑁 = 0 ∧ 𝑋𝐵) → (𝐺 Σg 𝐹) = (𝐺 Σg ∅))
218gsum0 17887 . . . . . . 7 (𝐺 Σg ∅) = (0g𝐺)
2220, 21syl6eq 2871 . . . . . 6 ((𝑁 = 0 ∧ 𝑋𝐵) → (𝐺 Σg 𝐹) = (0g𝐺))
2310, 22eqtr4d 2858 . . . . 5 ((𝑁 = 0 ∧ 𝑋𝐵) → (𝑁 · 𝑋) = (𝐺 Σg 𝐹))
2423ex 415 . . . 4 (𝑁 = 0 → (𝑋𝐵 → (𝑁 · 𝑋) = (𝐺 Σg 𝐹)))
256, 24jaoi 853 . . 3 ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → (𝑋𝐵 → (𝑁 · 𝑋) = (𝐺 Σg 𝐹)))
261, 25sylbi 219 . 2 (𝑁 ∈ ℕ0 → (𝑋𝐵 → (𝑁 · 𝑋) = (𝐺 Σg 𝐹)))
2726imp 409 1 ((𝑁 ∈ ℕ0𝑋𝐵) → (𝑁 · 𝑋) = (𝐺 Σg 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  wo 843   = wceq 1536  wcel 2113  c0 4284  cmpt 5139  cfv 6348  (class class class)co 7149  0cc0 10530  1c1 10531  cn 11631  0cn0 11891  ...cfz 12889  Basecbs 16476  0gc0g 16706   Σg cgsu 16707  .gcmg 18217
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2792  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5323  ax-un 7454  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2892  df-nfc 2962  df-ne 3016  df-nel 3123  df-ral 3142  df-rex 3143  df-reu 3144  df-rmo 3145  df-rab 3146  df-v 3493  df-sbc 3769  df-csb 3877  df-dif 3932  df-un 3934  df-in 3936  df-ss 3945  df-pss 3947  df-nul 4285  df-if 4461  df-pw 4534  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-om 7574  df-1st 7682  df-2nd 7683  df-wrecs 7940  df-recs 8001  df-rdg 8039  df-er 8282  df-en 8503  df-dom 8504  df-sdom 8505  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-nn 11632  df-n0 11892  df-z 11976  df-uz 12238  df-fz 12890  df-seq 13367  df-0g 16708  df-gsum 16709  df-mulg 18218
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator